1
|
Jiang P, Zhang Y, Hu R, Shi B, Zhang L, Huang Q, Yang Y, Tang P, Lin C. Advanced surface engineering of titanium materials for biomedical applications: From static modification to dynamic responsive regulation. Bioact Mater 2023; 27:15-57. [PMID: 37035422 PMCID: PMC10074421 DOI: 10.1016/j.bioactmat.2023.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Titanium (Ti) and its alloys have been widely used as orthopedic implants, because of their favorable mechanical properties, corrosion resistance and biocompatibility. Despite their significant success in various clinical applications, the probability of failure, degradation and revision is undesirably high, especially for the patients with low bone density, insufficient quantity of bone or osteoporosis, which renders the studies on surface modification of Ti still active to further improve clinical results. It is discerned that surface physicochemical properties directly influence and even control the dynamic interaction that subsequently determines the success or rejection of orthopedic implants. Therefore, it is crucial to endow bulk materials with specific surface properties of high bioactivity that can be performed by surface modification to realize the osseointegration. This article first reviews surface characteristics of Ti materials and various conventional surface modification techniques involving mechanical, physical and chemical treatments based on the formation mechanism of the modified coatings. Such conventional methods are able to improve bioactivity of Ti implants, but the surfaces with static state cannot respond to the dynamic biological cascades from the living cells and tissues. Hence, beyond traditional static design, dynamic responsive avenues are then emerging. The dynamic stimuli sources for surface functionalization can originate from environmental triggers or physiological triggers. In short, this review surveys recent developments in the surface engineering of Ti materials, with a specific emphasis on advances in static to dynamic functionality, which provides perspectives for improving bioactivity and biocompatibility of Ti implants.
Collapse
Affiliation(s)
- Pinliang Jiang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yanmei Zhang
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ren Hu
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bin Shi
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Lihai Zhang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Qiaoling Huang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yun Yang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Peifu Tang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Changjian Lin
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
2
|
Berger MB, Cohen DJ, Snyder K, Sions J, Boyan BD, Schwartz Z. Bone marrow stromal cells are sensitive to discrete surface alterations in build and post-build modifications of bioinspired Ti6Al4V 3D-printed in vitro testing constructs. J Biomed Mater Res B Appl Biomater 2023; 111:829-845. [PMID: 36372947 DOI: 10.1002/jbm.b.35194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/13/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022]
Abstract
Current standards in bone-facing implant fabrication by metal 3D (M3D) printing require post-manufacturing modifications to create distinct surface properties and create implant microenvironments that promote osseointegration. However, the biological consequences of build parameters and surface modifications are not well understood. This study evaluated the relative contributions of build parameters and post-manufacturing modification techniques to cell responses that impact osseointegration in vivo. Biomimetic testing constructs were created by using a M3D printer with standard titanium-aluminum-vanadium (Ti6Al4V) print parameters. These constructs were treated by either grit-blasting and acid-etching (GB + AE) or GB + AE followed by hot isostatic pressure (HIP) (GB + AE, HIP). Next, nine constructs were created by using a M3D printer with three build parameters: (1) standard, (2) increased hatch spacing, and (3) no infill, and additional contour trace. Each build type was further processed by either GB + AE, or HIP, or a combination of HIP treatment followed by GB + AE (GB + AE, HIP). Resulting constructs were assessed by SEM, micro-CT, optical profilometry, XPS, and mechanical compression. Cellular response was determined by culturing human bone marrow stromal cells (MSCs) for 7 days. Surface topography differed depending on processing method; HIP created micro-/nano-ridge like structures and GB + AE created micro-pits and nano-scale texture. Micro-CT showed decreases in closed pore number and closed porosity after HIP treatment in the third build parameter constructs. Compressive moduli were similar for all constructs. All constructs exhibited ability to differentiate MSCs into osteoblasts. MSCs responded best to micro-/nano-structures created by final post-processing by GB + AE, increasing OCN, OPG, VEGFA, latent TGFβ1, IL4, and IL10. Collectively these data demonstrate that M3D-printed constructs can be readily manufactured with distinct architectures based on the print parameters and post-build modifications. MSCs are sensitive to discrete surface topographical differences that may not show up in qualitative assessments of surface properties and respond by altering local factor production. These factors are vital for osseointegration after implant insertion, especially in patients with compromised bone qualities.
Collapse
Affiliation(s)
- Michael B Berger
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - D Joshua Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kyle Snyder
- Commonwealth Center for Advanced Manufacturing, Virginia, USA
| | - John Sions
- Commonwealth Center for Advanced Manufacturing, Virginia, USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Periodontology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
3
|
Berger MB, Cohen DJ, Bosh KB, Kapitanov M, Slosar PJ, Levit MM, Gallagher M, Rawlinson JJ, Schwartz Z, Boyan BD. Bone marrow stromal cells generate an osteoinductive microenvironment when cultured on titanium-aluminum-vanadium substrates with biomimetic multiscale surface roughness. Biomed Mater 2023; 18. [PMID: 36827708 PMCID: PMC9993812 DOI: 10.1088/1748-605x/acbf15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/24/2023] [Indexed: 02/26/2023]
Abstract
Osseointegration of titanium-based implants possessing complex macroscale/microscale/mesoscale/nanoscale (multiscale) topographies support a direct and functional connection with native bone tissue by promoting recruitment, attachment and osteoblastic differentiation of bone marrow stromal cells (MSCs). Recent studies show that the MSCs on these surfaces produce factors, including bone morphogenetic protein 2 (BMP2) that can cause MSCs not on the surface to undergo osteoblast differentiation, suggesting they may produce an osteogenic environmentin vivo. This study examined if soluble factors produced by MSCs in contact with titanium-aluminum-vanadium (Ti6Al4V) implants possessing a complex multiscale biomimetic topography are able to induce osteogenesis ectopically. Ti6Al4V disks were grit-blasted and acid-etched to create surfaces possessing macroscale and microscale roughness (MM), micro/meso/nanoscale topography (MN), and macro/micro/meso/nanoscale topography (MMNTM). Polyether-ether-ketone (PEEK) disks were also fabricated by machining to medical-grade specifications. Surface properties were assessed by scanning electron microscopy, contact angle, optical profilometry, and x-ray photoelectron spectroscopy. MSCs were cultured in growth media (GM). Proteins and local factors in their conditioned media (CM) were measured on days 4, 8, 10 and 14: osteocalcin, osteopontin, osteoprotegerin, BMP2, BMP4, and cytokines interleukins 6, 4 and 10 (IL6, IL4, and IL10). CM was collected from D14 MSCs on MMNTMand tissue culture polystyrene (TCPS) and lyophilized. Gel capsules containing active demineralized bone matrix (DBM), heat-inactivated DBM (iDBM), and iDBM + MMN-GM were implanted bilaterally in the gastrocnemius of athymic nude mice (N= 8 capsules/group). Controls included iDBM + GM; iDBM + TCPS-CM from D5 to D10 MSCs; iDBM + MMN-CM from D5 to D10; and iDBM + rhBMP2 (R&D Systems) at a concentration similar to D5-D10 production of MSCs on MMNTMsurfaces. Legs were harvested at 35D. Bone formation was assessed by micro computed tomography and histomorphometry (hematoxylin and eosin staining) with the histology scored according to ASTM 2529-13. DNA was greatest on PEEK at all time points; DNA was lowest on MN at early time points, but increased with time. Cells on PEEK exhibited small changes in differentiation with reduced production of BMP2. Osteoblast differentiation was greatest on the MN and MMNTM, reflecting increased production of BMP2 and BMP4. Pro-regenerative cytokines IL4 and IL10 were increased on Ti-based surfaces; IL6 was reduced compared to PEEK. None of the media from TCPS cultures was osteoinductive. However, MMN-CM exhibited increased bone formation compared to iDBM and iDBM + rhBMP2. Furthermore, exogenous rhBMP2 alone, at the concentration found in MMN-CM collected from D5 to D10 cultures, failed to induce new bone, indicating that other factors in the CM play a critical role in that osteoinductive microenvironment. MSCs cultured on MMNTMTi6Al4V surfaces differentiate and produce an increase in local factors, including BMP2, and the CM from these cultures can induce ectopic bone formation compared to control groups, indicating that the increased bone formation arises from the local response by MSCs to a biomimetic, multiscale surface topography.
Collapse
Affiliation(s)
- Michael B Berger
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, United States of America
| | - D Joshua Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, United States of America
| | - Kyla B Bosh
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, United States of America
| | - Marina Kapitanov
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, United States of America
| | - Paul J Slosar
- SpineCare Medical Group, 455 Hickey Blvd., Suite 310, Daly City, CA 94015, United States of America
| | - Michael M Levit
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, United States of America
| | - Michelle Gallagher
- Medtronic, Applied Research-Spine, Minneapolis, MN, United States of America
| | - Jeremy J Rawlinson
- Medtronic, Applied Research-Spine, Minneapolis, MN, United States of America
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, United States of America.,Department of Periodontology, University of Texas Health Science Center at San Antonio, 7703, Floyd Curl Drive, San Antonio, TX 78229, United States of America
| | - Barbara D Boyan
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, United States of America.,Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, United States of America
| |
Collapse
|
4
|
Van den Borre CE, Zigterman BGR, Mommaerts MY, Braem A. How surface coatings on titanium implants affect keratinized tissue: A systematic review. J Biomed Mater Res B Appl Biomater 2022; 110:1713-1723. [PMID: 35103386 PMCID: PMC9306745 DOI: 10.1002/jbm.b.35025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/24/2021] [Accepted: 01/19/2022] [Indexed: 02/04/2023]
Abstract
Apart from osseointegration, the stability and long‐term survival of percutaneous titanium implants is also strongly dependent on a qualitative soft‐tissue integration in the transcutaneous region. A firm connective tissue seal is needed to minimize soft‐tissue dehiscence and epithelial downgrowth. It is well‐known that the implant surface plays a key role in controlling the biological response of the surrounding keratinized tissue and several coating systems have been suggested to enhance the soft‐tissue cell interactions. Although some promising results have been obtained in vitro, their clinical significance can be debated. Therefore, the purpose of this systematic review is to gain more insight into the effect of such coatings on the interface formed with keratinized soft‐tissue in vivo. A comprehensive search was undertaken in March 2021. Relevant electronic databases were consulted to identify appropriate studies using a set of search strings. In total, 12 out of 4971 publications were included in this review. The reported coating systems were assigned to several subgroups according to their characteristics: metallic, ceramic and composite. Notwithstanding the differences in study characteristics (animal model, implantation period, reported outcomes), it was noticed that several coatings improve the soft‐tissue integration as compared to pristine titanium. Porous titanium coatings having only limited pore sizes (<250 μm) do not support dermal fibroblast tissue attachment. Yet, larger pores (>700 μm) allow extensive vascularized soft‐tissue infiltration, thereby supporting cell attachment. Nanostructured ceramic coatings are found to reduce the inflammatory response in favor of the formation of cell adhesive structures, that is, hemidesmosomes. Biomolecule coatings seem of particular interest to stimulate the soft‐tissue behavior provided that a durable fixation to the implant surface can be ensured. In this respect, fibroblast growth factor‐2 entrapped in a biomimetic apatite coating instigates a close to natural soft‐tissue attachment with epidermal collagen fibers attaching almost perpendicular to the implant surface. However, several studies had limitations with respect to coating characterization and detailed soft‐tissue analysis, small sample size and short implantation periods. To date, robust and long‐term in vivo studies are still lacking. Further investigation is required before a clear consensus on the optimal coating system allowing enhancing the soft‐tissue seal around percutaneous titanium implants can be reached.
Collapse
Affiliation(s)
- Casper E Van den Borre
- Doctoral School of Life Sciences and Medicine, Vrije Universiteit Brussel, Brussels, Belgium.,European Face Centre, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Brandaan G R Zigterman
- European Face Centre, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Maurice Y Mommaerts
- European Face Centre, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Annabel Braem
- Department of Materials Engineering, Biomaterials and Tissue Engineering Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
A Comprehensive Review on the Corrosion Pathways of Titanium Dental Implants and Their Biological Adverse Effects. METALS 2020. [DOI: 10.3390/met10091272] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The main aim of this work was to perform a comprehensive review of findings reported by previous studies on the corrosion of titanium dental implants and consequent clinical detrimental effects to the patients. Most studies were performed by in vitro electrochemical tests and complemented with microscopic techniques to evaluate the corrosion behavior of the protective passive oxide film layer, namely TiO2. Results revealed that bacterial accumulation, dietary, inflammation, infection, and therapeutic solutions decrease the pH of the oral environment leading to the corrosion of titanium. Some therapeutic products used as mouthwash negatively affect the corrosion behavior of the titanium oxide film and promote changes on the implant surface. In addition, toothpaste and bleaching agents, can amplify the chemical reactivity of titanium since fluor ions interacting with the titanium oxide film. Furthermore, the number of in vivo studies is limited although corrosion signs have been found in retrieved implants. Histological evaluation revealed titanium macro- and micro-scale particles on the peri-implant tissues. As a consequence, progressive damage of the dental implants and the evolution of inflammatory reactions depend on the size, chemical composition, and concentration of submicron- and nanoparticles in the surrounding tissues and internalized by the cells. In fact, the damage of the implant surfaces results in the loss of material that compromises the implant surfaces, implant-abutment connections, and the interaction with soft tissues. The corrosion can be an initial trigger point for the development of biological or mechanical failures in dental implants.
Collapse
|
6
|
Evaluation of the surface damage of dental implants caused by different surgical protocols: an in vitro study. Int J Oral Maxillofac Surg 2019; 48:971-981. [DOI: 10.1016/j.ijom.2018.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/08/2018] [Accepted: 12/13/2018] [Indexed: 01/04/2023]
|
7
|
Effect of Titanium Particles on the Voltage-Gated Potassium Channel Currents in Trigeminal Root Ganglion Neurons. IMPLANT DENT 2019; 28:54-61. [PMID: 30507652 DOI: 10.1097/id.0000000000000848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE Titanium (Ti) is the key material used in dental implants because of its excellent biocompatibility. But wear and corrosion Ti particles had been widely reported to induce inflammation and promote bone absorption. However, little information is known about the damage of Ti particles on neurons. MATERIALS AND METHODS Trigeminal root ganglion (TRG) neurons were exposed to Ti particles (<5 μm). The electrophysiological properties of 2 main subtypes of voltage-gated potassium channels (VGPCs) (KA and KV) were examined by whole-cell patch-clamp techniques. RESULT With the presence of 0.25 mg/mL Ti particles, amplitudes of IK, A and IK, V were both obviously inhibited. For IK, A, the activation V1/2 shifted to the depolarizing direction with an increased k value, whereas the inactivation V1/2 showed obvious hyperdepolarizing shifts. For IK, V, 0.5 mg/mL Ti particles produced a depolarizing shift of activation V1/2 with a slower activation rate. No significant changes of its inactivation kinetics were found. CONCLUSION Titanium (Ti) particles might alter the electrophysiological properties of VGPCs on TRG neurons, which are likely to further influence the excitability of neurons.
Collapse
|
8
|
Suárez-López del Amo F, Garaicoa-Pazmiño C, Fretwurst T, Castilho RM, Squarize CH. Dental implants-associated release of titanium particles: A systematic review. Clin Oral Implants Res 2018; 29:1085-1100. [DOI: 10.1111/clr.13372] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/16/2018] [Accepted: 08/28/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Fernando Suárez-López del Amo
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine; University of Michigan School; Ann Arbor Michigan
- Department of Periodontics; University of Oklahoma Health Sciences Center; Oklahoma City Oklahoma
| | - Carlos Garaicoa-Pazmiño
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine; University of Michigan School; Ann Arbor Michigan
- Department of Periodontics and Oral Medicine; University of Michigan School of Dentistry; Ann Arbor Michigan
| | - Tobias Fretwurst
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine; University of Michigan School; Ann Arbor Michigan
- Department of Oral and Craniomaxillofacial Surgery, Center for Dental Medicine; University Medical Center Freiburg; Freiburg Germany
| | - Rogerio M. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine; University of Michigan School; Ann Arbor Michigan
- Department of Periodontics and Oral Medicine; University of Michigan School of Dentistry; Ann Arbor Michigan
| | - Cristiane H. Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine; University of Michigan School; Ann Arbor Michigan
- Department of Periodontics and Oral Medicine; University of Michigan School of Dentistry; Ann Arbor Michigan
| |
Collapse
|
9
|
Lechner J, Noumbissi S, von Baehr V. Titanium implants and silent inflammation in jawbone-a critical interplay of dissolved titanium particles and cytokines TNF-α and RANTES/CCL5 on overall health? EPMA J 2018; 9:331-343. [PMID: 30174768 PMCID: PMC6107454 DOI: 10.1007/s13167-018-0138-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND INTRODUCTION It is a well-known fact that titanium particles deriving from dental titanium implants (DTI) dissolve into the surrounding bone. Although titanium (TI) is regarded as a compatible implant material, increasing concern is coming up that the dissolved titanium particles induce inflammatory reactions around the implant. Specifically, the inflammatory cytokine tumor necrosis factor-alpha (TNF-α) is expressed in the adjacent bone. The transition from TNF-α-induced local inflammation following insertion of DTI surgery to a chronic stage of "silent inflammation" could be a neglected cause of unexplained medical conditions. MATERIAL AND METHODS The signaling pathways involved in the induction of cytokine release were analyzed by multiplex analysis. We examined samples of jawbone (JB) for seven cytokines in two groups: specimens from 14 patients were analyzed in areas of DTI for particle-mediated release of cytokines. Each of the adjacent to DTI tissue samples showed clinically fatty degenerated and osteonecrotic medullary changes in the JB (FDOJ). Specimens from 19 patients were of healthy JB. In five cases, we measured the concentration of dissolved Ti particles by spectrometry. RESULTS All DTI-FDOJ samples showed RANTES/CCL5 (R/C) as the only extremely overexpressed cytokine. DTI-FDOJ cohort showed a 30-fold mean overexpression of R/C as compared with a control cohort of 19 healthy JB samples. Concentration of dissolved Ti particles in DTI-FDOJ was 30-fold higher than an estimated maximum of 1.000 μg/kg. DISCUSSION As R/C is discussed in the literature as a possible contributor to inflammatory diseases, the here-presented research examines the question of whether common DTI may provoke the development of chronic inflammation in the jawbone in an impaired state of healing. Such changes in areas of the JB may lead to hyperactivated signaling pathways of TNF-α induced R/C overexpression, and result in unrecognized sources of silent inflammation. This may contribute to disease patterns like rheumatic arthritis, multiple sclerosis, and other systemic-inflammatory diseases, which is widely discussed in scientific papers. CONCLUSION From a systemic perspective, we recommend that more attention be paid to the cytokine cross-talk that is provoked by dissolved Ti particles from DTI in medicine and dentistry. This may contribute to further development of personalized strategies in preventive medicine.
Collapse
Affiliation(s)
- Johann Lechner
- Clinic for Integrative Dentistry, Grünwalder Str. 10A, Munich, Germany
| | - Sammy Noumbissi
- Miles of Smiles Implant Dentistry, 801 Wayne Ave no. G200, Silver Spring, USA
| | - Volker von Baehr
- Institute for Medical Diagnostics in MVZ GbR, Nicolaistr. 22, 12247 Berlin, Germany
| |
Collapse
|
10
|
Kienle A, Krieger A, Willems K, Wilke HJ. Resistance of coated polyetheretherketone lumbar interbody fusion cages against abrasion under simulated impaction into the disc space. J Appl Biomater Funct Mater 2018; 17:2280800018782854. [PMID: 30066601 DOI: 10.1177/2280800018782854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In order to improve osseointegration, polyetheretherketone (PEEK) interbody fusion cages are frequently surface coated. The bonding strength of the coatings is mostly investigated under unrealistic loading conditions. To close this gap, in this study, uncoated and coated cages were loaded in a clinical setup in order to investigate their real resistance against abrasion. Six uncoated, six calcium phosphate (CaP) nanocoated, and six titanium (Ti) nanocoated PEEK cages were tested in this study. The experimental setup was designed to mimic cage impaction into the intervertebral disc space using polyurethane (PU) foam blocks as vertebral body substitutes. The cage surface was inspected before and after impaction, and their weight was measured. Impaction resulted in abrasion at the tip of the ridges on the implant surface. The mean weight loss was 0.39 mg for the uncoated cages, 0.57 mg for the CaP nanocoated cages, and 0.75 mg for the Ti nanocoated cages. These differences were statistically significant. In conclusion, differences between the three cage types were found concerning the amount of abrasion. However, all three cages lost less weight than a comparative Ti plasma spray coated cage, which showed a mean weight loss of 2.02 mg. This may be because the plasma spray coating is significantly thicker than the two nanocoatings. If compared with the permitted amount of weight loss derived from an FDA guidance document, which is approximately 1.7 mg, the wear of the Ti plasma spray coated cage is above this limit, whereas the wear for all other cage types is below.
Collapse
Affiliation(s)
| | | | | | - Hans-Joachim Wilke
- 3 Institute for Orthopedic Research and Biomechanics, University of Ulm, Germany
| |
Collapse
|
11
|
Curtin JP, Wang M, Cheng T, Jin L, Sun H. The role of citrate, lactate and transferrin in determining titanium release from surgical devices into human serum. J Biol Inorg Chem 2018; 23:471-480. [PMID: 29623422 DOI: 10.1007/s00775-018-1557-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/30/2018] [Indexed: 11/25/2022]
Abstract
The presence of ionic titanium in the serum of patients with titanium implants is currently unexplained. This is presumed due to corrosion, and yet the serum titanium concentration measured in patients is far greater than that predicted by its solubility. The binding of titanium ion as Ti(IV) to human transferrin (hTF) in serum indicates that Ti(IV) ions interact with human physiology. This is an intriguing finding since there is currently no known role for titanium ions in human physiology. Thus, understanding the factors that determine in vivo titanium ion release is relevant to further understanding this metal's interactions with human biochemistry. The present study sought to determine the extent of titanium ion release of into human serum in vitro, and the role of citrate, lactate and hTF in this process. It was found that, when surgical devices of commercially pure titanium were placed into human serum, citrate and lactate concentrations were the prime determinants of titanium release. Crystallography revealed Ti(IV) bound to hTF in the presence of citrate alone, signalling that citrate can act as an independent ligand for Ti(IV) binding to hTF. Based on these findings, a two-stage process of titanium ion release into human serum that is dependent upon both citrate and hTF is proposed to explain the ongoing presence of titanium ion in human subjects with implanted titanium devices.
Collapse
Affiliation(s)
- Justin P Curtin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - Minji Wang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Tianfan Cheng
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
Pettersson M, Pettersson J, Molin Thorén M, Johansson A. Release of titanium after insertion of dental implants with different surface characteristics - an ex vivo animal study. ACTA BIOMATERIALIA ODONTOLOGICA SCANDINAVICA 2017; 3:63-73. [PMID: 29242814 PMCID: PMC5724801 DOI: 10.1080/23337931.2017.1399270] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/27/2017] [Indexed: 12/27/2022]
Abstract
In the present study, amount of titanium (Ti) released into the surrounding bone during placement of implants with different surface structure was investigated. Quantification of Ti released during insertion from three different implants was performed in this ex vivo study. Jaw bone from pigs was used as model for installation of the implants and Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) was used for analysis of the released Ti. Implant surface were examined with scanning electron microscopy (SEM), before and after the placement into the bone. Ti was abraded to the surrounding bone upon insertion of a dental implant and the surface roughness of the implant increased the amount of Ti found. Diameter and total area of the implant were of less importance for the Ti released to the bone. No visible damages to the implant surfaces could be identified in SEM after placement.
Collapse
Affiliation(s)
- Mattias Pettersson
- Prosthetic Dentistry, Department of Odontology, Faculty of Medicine, Umeå UniversitySweden
| | - Jean Pettersson
- Analytic Chemistry, BMC, Department of Chemistry, Uppsala UniversitySweden
| | - Margareta Molin Thorén
- Prosthetic Dentistry, Department of Odontology, Faculty of Medicine, Umeå UniversitySweden
| | - Anders Johansson
- Molecular Periodontology, Department of Odontology, Faculty of Medicine, Umeå UniversitySweden
| |
Collapse
|
13
|
Are clinical findings of systemic titanium dispersion following implantation explained by available in vitro evidence? An evidence-based analysis. J Biol Inorg Chem 2017; 22:799-806. [PMID: 28516215 DOI: 10.1007/s00775-017-1464-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
Abstract
Although the presence of titanium wear particles released into tissues is known to induce local inflammation following the therapeutic implantation of titanium devices into humans, the role that titanium ions play in adverse tissue responses has received little attention. Support that ongoing titanium ion release occurs is evidenced by the presence of ionic titanium bound to transferrin in blood, and ongoing excretion in the urine of patients with titanium devices. However, as reports documenting the presence of titanium within tissues do not distinguish between particulate and ionic forms due to technical challenges, the degree to which ionic titanium is released into tissues is unknown. To determine the potential for titanium ion release into tissues, this study evaluates available in vitro evidence relating to the release of ionic titanium under physiological conditions. This is a systematic literature review of studies reporting titanium ion release into solutions from titanium devices under conditions replicating the interstitial pH and constituents. Inclusion and exclusion criteria were defined. Of 452 articles identified, titanium ions were reported in nine media relevant to human biology in seventeen studies. Only one study, using human serum replicated both physiological pH and the concentration of constituents while reporting the presence of titanium ions. While there is insufficient information to explain the factors that contribute to the presence of titanium ions in serum of humans implanted with titanium devices, currently available information suggests that areas of future inquiry include the role of transferrin and organic acids.
Collapse
|
14
|
Golasik M, Herman M, Piekoszewski W. Toxicological aspects of soluble titanium – a review of in vitro and in vivo studies. Metallomics 2016; 8:1227-1242. [DOI: 10.1039/c6mt00110f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Valanezhad A, Tsuru K, Ishikawa K. Fabrication of strongly attached hydroxyapatite coating on titanium by hydrothermal treatment of Ti-Zn-PO4 coated titanium in CaCl 2 solution. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:212. [PMID: 26178647 DOI: 10.1007/s10856-015-5548-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/09/2015] [Indexed: 06/04/2023]
Abstract
Hydroxyapatite (HAp) coating was formed on zinc phosphate (Ti-Zn-PO4) coated Ti plates by hydrothermal treatment in CaCl2 solution at 200 °C for 12 h. Uniform surface coverage of the fabricated HAp coating was obtained by this method. SEM-EDX analysis of the adhesion test area showed that the presence of fractures only occurred in HAp crystals. On the other words cohesive fracture was seen in HAp coating layer formed on the Ti-Zn-PO4. The measured strength was around 42.3 ± 17 MPa. Rat bone marrow (RBM) mesenchymal stem cells were cultured and differentiation-induced on each sample (Ti plate, Ti-Zn-PO4 coated and HAp coated), and cell calcification properties were examined. Apparent differences in morphology and extension of the RBM cells were obtained, while the Ti-Zn-PO4 coated samples showed the highest cell number among all samples. After differentiation-induction, HAp coated samples showed the highest amount of alkaline phosphatase activity, and the highest level of cell calcification. Therefore, the hard tissue compatibility of Ti is improved by hydrothermally HAp coating of samples.
Collapse
Affiliation(s)
- Alireza Valanezhad
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan,
| | | | | |
Collapse
|
16
|
Miller LE, Block JE. Minimally invasive arthrodesis for chronic sacroiliac joint dysfunction using the SImmetry SI Joint Fusion system. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2014; 7:125-30. [PMID: 24851059 PMCID: PMC4019609 DOI: 10.2147/mder.s63575] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Chronic sacroiliac (SI) joint-related low back pain (LBP) is a common, yet under-diagnosed and undertreated condition due to difficulties in accurate diagnosis and highly variable treatment practices. In patients with debilitating SI-related LBP for at least 6 months duration who have failed conservative management, arthrodesis is a viable option. The SImmetry® SI Joint Fusion System is a novel therapy for SI joint fusion, not just fixation, which utilizes a minimally invasive surgical approach, instrumented fixation for immediate stability, and joint preparation with bone grafting for a secure construct in the long term. The purpose of this report is to describe the minimally invasive SI Joint Fusion System, including patient selection criteria, implant characteristics, surgical technique, postoperative recovery, and biomechanical testing results. Advantages and limitations of this system will be discussed.
Collapse
Affiliation(s)
- Larry E Miller
- Miller Scientific Consulting, Inc., Asheville, NC, USA ; The Jon Block Group, San Francisco, CA, USA
| | | |
Collapse
|
17
|
Senna P, Antoninha Del Bel Cury A, Kates S, Meirelles L. Surface Damage on Dental Implants with Release of Loose Particles after Insertion into Bone. Clin Implant Dent Relat Res 2013; 17:681-92. [PMID: 24283455 DOI: 10.1111/cid.12167] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Modern dental implants present surface features of distinct dimensions that can be damaged during the insertion procedure into bone. PURPOSE The aims of this study were (1) to quantify by means of roughness parameters the surface damage caused by the insertion procedure of dental implants and (2) to investigate the presence of loose particles at the interface. MATERIALS AND METHODS Three groups of dental implants representing different surface topographies were inserted in fresh cow rib bone blocks. The surface roughness was characterized by interferometry on the same area before and after the insertion. Scanning electron microscopy (SEM)-back-scattered electron detector (BSD) analysis was used to identify loose particles at the interface. RESULTS The amplitude and hybrid roughness parameters of all three groups were lower after insertion. The surface presenting predominance of peaks (Ssk [skewness] > 0) associated to higher structures (height parameters) presented higher damage associated to more pronounced reduction of material volume. SEM-BSD images revealed loose titanium and aluminum particles at the interface mainly at the crestal cortical bone level. CONCLUSIONS Shearing forces during the insertion procedure alters the surface of dental implants. Loose metal particles can be generated at bone-implant interface especially around surfaces composed mainly by peaks and with increased height parameters.
Collapse
Affiliation(s)
- Plinio Senna
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, State University of Campinas, Brazil
| | | | - Stephen Kates
- Department of Orthopaedics, University of Rochester, Rochester, NY, USA
| | - Luiz Meirelles
- Division of Prosthodontics, Eastman Dental Center, University of Rochester, Rochester, NY, USA
| |
Collapse
|
18
|
Siddiqi A, Payne AGT, De Silva RK, Duncan WJ. Titanium allergy: could it affect dental implant integration? Clin Oral Implants Res 2011; 22:673-680. [PMID: 21251079 DOI: 10.1111/j.1600-0501.2010.02081.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE Degradation products of metallic biomaterials including titanium may result in metal hypersensitivity reaction. Hypersensitivity to biomaterials is often described in terms of vague pain, skin rashes, fatigue and malaise and in some cases implant loss. Recently, titanium hypersensitivity has been suggested as one of the factors responsible for implant failure. Although titanium hypersensitivity is a growing concern, epidemiological data on incidence of titanium-related allergic reactions are still lacking. MATERIALS AND METHODS A computer search of electronic databases primarily MEDLINE and PUBMED was performed with the following key words: 'titanium hypersensitivity', 'titanium allergy', 'titanium release' without any language restriction. Manual searches of the bibliographies of all the retrieved articles were also performed. In addition, a complementary hand search was also conducted to identify recent articles and case reports. RESULTS Most of the literature comprised case reports and prospective in vivo/in vitro trials. One hundred and twenty-seven publications were selected for full text reading. The bulk of the literature originated from the orthopaedic discipline, reporting wear debris following knee/hip arthroplasties. The rest comprised osteosynthesis (plates/screws), oral implant/dental materials, dermatology/cardiac-pacemaker, pathology/cancer, biomaterials and general reports. CONCLUSION This review of the literature indicates that titanium can induce hypersensitivity in susceptible patients and could play a critical role in implant failure. Furthermore, this review supports the need for long-term clinical and radiographic follow-up of all implant patients who are sensitive to metals. At present, we know little about titanium hypersensitivity, but it cannot be excluded as a reason for implant failure.
Collapse
Affiliation(s)
- Allauddin Siddiqi
- Oral Implantology Research Group, Sir John Walsh Research Institute, School of Dentistry, University of Otago, Dunedin, New Zealand
| | - Alan G T Payne
- Oral Implantology Research Group, Sir John Walsh Research Institute, School of Dentistry, University of Otago, Dunedin, New Zealand
| | - Rohana Kumara De Silva
- Oral Implantology Research Group, Sir John Walsh Research Institute, School of Dentistry, University of Otago, Dunedin, New Zealand
| | - Warwick J Duncan
- Oral Implantology Research Group, Sir John Walsh Research Institute, School of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
19
|
Meng B, Chen J, Guo D, Ye Q, Liang X. The effect of titanium particles on rat bone marrow stem cells in vitro. Toxicol Mech Methods 2010; 19:552-8. [PMID: 19874181 DOI: 10.3109/15376510903401716] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In arthroplasty prostheses and dental implant, titanium is an excellent biocompatible material for its advanced physical qualities and better biocompatibility. However, it was reported that high ratios of titanium particles can be liberated due to the continual loading or articulation cycles of the implant. Because bone marrow stem cells (BMSCs) located adjacent to the implant are critical contributors to osseous tissue integrity, this study researched the influence of titanium particles on BMSCs' viability, proliferation, and cell skeleton. In addition, the phagocytosis of titanium particles by BMSCs and expression of tumor suppressor protein p53 were also examined. It was found that exposure of BMSCs to titanium particles disrupted their viability and proliferation in vitro, which may due to the phagocytosis of titanium particles by BMSCs. Moreover, cell skeleton was destroyed and the p53 protein level increased as the titanium particles were added. For these results, it was concluded that titanium particles had a cytotoxic effect on BMSCs in vitro and would inhibit the bone formation around the implant.
Collapse
Affiliation(s)
- Bo Meng
- State Key Laboratory of Oral Diseases, Westchina College of Stomatology, Sichuan University, No14, 3rd Section, South Renmin Road, Chengdu 610041, PR China
| | | | | | | | | |
Collapse
|
20
|
Palazzo E, Andreola S, Battistini A, Gentile G, Zoja R. Release of metals from osteosynthesis implants as a method for identification: post-autopsy histopathological and ultrastructural forensic study. Int J Legal Med 2009; 125:21-6. [PMID: 19956966 DOI: 10.1007/s00414-009-0394-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 11/09/2009] [Indexed: 12/01/2022]
Abstract
Metal structures--especially of stainless steel, titanium and their alloys (biomaterials)--are widely used in orthopaedic practice and the subject of constant study in bioengineering and preventive medicine. This study presents the first experience of forensic research into the presence of permanent tissue variations around metal implants in various bone structures for the purpose of identification, with particular reference to skeletal remains or severely decomposed corpses in the absence of other identifying elements. The evaluation was conducted on 12 corpses who had undergone osteosynthesis intra-vitam, whose implants were still in place or had been removed, in comparison with five controls who had never undergone osteosynthesis. Bone fragments taken during autopsy were subjected to histopathological and scanning electron microscope-energy dispersive electroscopy examination in order to reveal and characterise any metal particles originating from osteosynthesis. The study enabled the discovery of intra-bone metal particles in tissues treated by osteosynthesis even in bone areas where the implants had been removed and even where there were no longer any radiological signs of their application. These results are therefore of considerable forensic importance, especially in the area of identification, providing a valid means of recognition beyond that of the well-established use of in situ metal implants.
Collapse
Affiliation(s)
- Elisa Palazzo
- Dipartimento di Morfologia Umana e Scienze Biomediche, Sezione di Medicina Legale e delle Assicurazioni, Università degli Studi di Milano, Via Luigi Mangiagalli, 37, 20133, Milan, Italy
| | | | | | | | | |
Collapse
|
21
|
Bacchelli B, Giavaresi G, Franchi M, Martini D, De Pasquale V, Trirè A, Fini M, Giardino R, Ruggeri A. Influence of a zirconia sandblasting treated surface on peri-implant bone healing: An experimental study in sheep. Acta Biomater 2009; 5:2246-57. [PMID: 19233751 DOI: 10.1016/j.actbio.2009.01.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 12/04/2008] [Accepted: 01/13/2009] [Indexed: 10/21/2022]
Abstract
A sandblasting process with round zirconia (ZrO(2)) particles might be an alternative surface treatment to enhance the osseointegration of titanium dental implants. Our previous study on sheep compared smooth surface titanium implants (control) with implant surfaces sandblasted with two different granulations of ZrO(2). As the sandblasted surfaces proved superior, the present study further compared the ZrO(2) surface implant with other surface treatments currently employed: machined titanium (control), titanium oxide plasma sprayed (TPS) and alumina sandblasted (Al-SL) at different times after insertion (2, 4 and 12weeks). Twelve sheep were divided into three groups of four animals each and underwent implant insertion in tibia cortical bone under general anaesthesia. The implants with surrounding tissues were subjected to histology, histomorphometry, scanning electron microscopy and microhardness tests. The experimentation indicated that at 2weeks Zr-SL implants had the highest significant bone ingrowth (p<0.05) compared to the other implant surfaces, and a microhardness of newly formed bone inside the threads significantly higher than that of Ti. The present work shows that the ZrO(2) treatment produces better results in peri-implant newly formed bone than Ti and TPS processing, whereas its performance is similar to the Al-SL surface treatment.
Collapse
|
22
|
Abstracts of the XXVII Italian Society for the Study of Connective Tissues (SISC) Meeting, Bologna, Italy, 8-10 November 2007. Connect Tissue Res 2007; 48:338-63. [PMID: 18075821 DOI: 10.1080/03008200701726970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|