Topographic distribution of serotonin-immunoreactive urethral endocrine cells and their relationship with calcitonin gene-related peptide-immunoreactive nerves in male rats.
Acta Histochem 2017;
119:78-83. [PMID:
27939448 DOI:
10.1016/j.acthis.2016.11.011]
[Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/09/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
Abstract
We investigated the topographic distribution and morphology of serotonin (5-HT)-immunoreactive endocrine cells in the urethra of male rats, and focused on their relationship with peptidergic nerve fibers immunoreactive for calcitonin gene-related peptide (CGRP). Urethral endocrine cells immunoreactive for 5-HT were densely distributed in the epithelial layers of the prostatic part, but were sparsely distributed in the membranous and spongy parts of urethra. Distribution of urethral endocrine cells with 5-HT immunoreactivity in the prostatic part was restricted from the internal urethral orifice to the region of seminal colliculus. 5-HT-immunoreactive endocrine cells were also observed in the ductal epithelial layers of coagulating glands, prostatic glands, and seminal vesicles. 5-HT-immunoreactive endocrine cells were triangular or flask in shape and possessed an apical projection extending toward the urethral lumen, and basal or lateral protrusions intruding between other epithelial cells were also detected in some cells. Double immunolabeling for 5-HT and CGRP revealed that CGRP-immunoreactive nerve fibers attached to urethral endocrine cells with 5-HT immunoreactivity in the prostatic part. These results suggest that urethral endocrine cells may release 5-HT in response to luminal stimuli, and that these cells and CGRP-immunoreactive nerves may regulate each other by an axon reflex mechanism.
Collapse