1
|
Ravaioli F, Zampieri M, Morandi L, Pirazzini C, Pellegrini C, De Fanti S, Gensous N, Pirazzoli GL, Sambati L, Ghezzo A, Ciccarone F, Reale A, Monti D, Salvioli S, Caiafa P, Capri M, Bürkle A, Moreno-Villanueva M, Garagnani P, Franceschi C, Bacalini MG. DNA Methylation Analysis of Ribosomal DNA in Adults With Down Syndrome. Front Genet 2022; 13:792165. [PMID: 35571061 PMCID: PMC9094685 DOI: 10.3389/fgene.2022.792165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 03/18/2022] [Indexed: 01/08/2023] Open
Abstract
Control of ribosome biogenesis is a critical aspect of the regulation of cell metabolism. As ribosomal genes (rDNA) are organized in repeated clusters on chromosomes 13, 14, 15, 21, and 22, trisomy of chromosome 21 confers an excess of rDNA copies to persons with Down syndrome (DS). Previous studies showed an alteration of ribosome biogenesis in children with DS, but the epigenetic regulation of rDNA genes has not been investigated in adults with DS so far. In this study, we used a targeted deep-sequencing approach to measure DNA methylation (DNAm) of rDNA units in whole blood from 69 adults with DS and 95 euploid controls. We further evaluated the expression of the precursor of ribosomal RNAs (RNA45S) in peripheral blood mononuclear cells (PBMCs) from the same subjects. We found that the rDNA promoter tends to be hypermethylated in DS concerning the control group. The analysis of epihaplotypes (the combination of methylated and unmethylated CpG sites along the same DNA molecule) showed a significantly lower intra-individual diversity in the DS group, which at the same time was characterized by a higher interindividual variability. Finally, we showed that RNA45S expression is lower in adults with DS. Collectively, our results suggest a rearrangement of the epigenetic profile of rDNA in DS, possibly to compensate for the extranumerary rDNA copies. Future studies should assess whether the regulation of ribosome biogenesis can contribute to the pathogenesis of DS and explain the clinical heterogeneity characteristic of the syndrome.
Collapse
Affiliation(s)
- Francesco Ravaioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Michele Zampieri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Luca Morandi
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara Pirazzini
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Sara De Fanti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy
| | - Noémie Gensous
- Department of Internal Medicine and Clinical Immunology, CHU Bordeaux (Groupe Hospitalier Saint-André), Bordeaux, France
- UMR/CNRS 5164, ImmunoConcEpT, CNRS, University of Bordeaux, Bordeaux, France
| | | | - Luisa Sambati
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, U.O.C. Clinica Neurologica Rete Neurologica Metropolitana (NEUROMET), Bologna, Italy
| | | | - Fabio Ciccarone
- IRCCS San Raffaele Roma, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Anna Reale
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Paola Caiafa
- Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Rome, Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Maria Moreno-Villanueva
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Applied Biomedical Research Center (CRBA), S. Orsola-Malpighi Polyclinic, Bologna, Italy
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”—Unit of Bologna, Bologna, Italy
- Department of Laboratory Medicine, Clinical Chemistry, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging, Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Maria Giulia Bacalini
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
- *Correspondence: Maria Giulia Bacalini,
| |
Collapse
|
3
|
Imamoglu N, Eroz R, Canatan H, Demirtas H, Saatci Ç. Nuclear AgNOR protein enhancement in nucleoplasms of peripheral blood lymphocytes of babies/children with down syndrome. Microsc Res Tech 2016; 79:133-9. [DOI: 10.1002/jemt.22613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/19/2015] [Accepted: 12/04/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Nalan Imamoglu
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy; Erciyes University; Kayseri 38039 Turkey
| | - Recep Eroz
- Department of Medical Genetics, Faculty of Medicine; Duzce University; Duzce Turkey
| | - Halit Canatan
- Department of Medical Biology, Faculty of Medicine; Erciyes University; Kayseri 38039 Turkey
| | - Halil Demirtas
- Department of Medical Biology, Faculty of Medicine; Erciyes University; Kayseri 38039 Turkey
| | - Çetin Saatci
- Department of Medical Genetics, Faculty of Medicine; Erciyes University; Kayseri 38039 Turkey
| |
Collapse
|
4
|
Reduction of the argyrophilic nucleolar organizing region associated protein synthesis with age in buccal epithelial cells of healthy individuals. Aging Clin Exp Res 2015; 27:201-8. [PMID: 25082567 DOI: 10.1007/s40520-014-0263-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 07/22/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Nucleolus organizer regions (NORs) consist of the rRNA coding gene family (rDNA) in the cell nucleus. The argyrophilic proteins are selectively stained with silver nitrate and bind these regions. It was reported that NOR (rDNA) activity decreases in human lymphocytes, fibroblasts and bone marrow with age. However, to our knowledge there have not been any studies related to the NORs in oral epithelial cells of healthy individuals. AIM Our aim is to detect any correlation between age and Total AgNOR area/Total nucleus area (TAA/TNA) values in buccal epithelial cells of healthy individuals. METHODS Oral epithelial cells from 50 healthy individuals (age range of 2-80 years old) were spread onto a clean glass slide, air dried and fixed. Then the AgNOR staining protocol was performed on these cells. TAA/TNA ratio and AgNOR dots were calculated using software. From each person 50 oral epithelial cells were evaluated. RESULTS Statistically significant correlations were found between mean TAA/TNA values and age (Rsq = 0.534, p < 0.001 for linear and Rsq = 0.728, p < 0.0001 for polynominal regression), and between AgNOR number and age (Rsq = 0.621, p < 0.001 for linear and Rsq = 0.693, p < 0.0001 for polynominal regression). CONCLUSION There is a significant correlation between age and AgNOR amount (ribosome biosynthesis rate) in buccal epithelial cells of healthy individuals. AgNORs in buccal epithelial cells may be used for detection of age.
Collapse
|
5
|
Demirtas H. AgNOR status in Down's syndrome infants and a plausible phenotype formation hypothesis. Micron 2009; 40:511-8. [PMID: 19339189 DOI: 10.1016/j.micron.2009.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/25/2009] [Accepted: 02/25/2009] [Indexed: 10/21/2022]
Abstract
Down's syndrome (DS) or trisomy 21 is the most frequent genetic birth defect associated with mental retardation. Although DS has been known for more than a 100 years and its chromosomal basis recognized for half a century (1959), the underlying patho-mechanisms for the phenotype formation remain elusive and cannot be fully explained by simple gene dosage effect. The general consensus is that the extra chromosome 21 genes perturb the global metabolism of the body cells. Our experiments show that the most prominent metabolic perturbation occurs during ribosome biogenesis in the cells of DS babies/infants. In humans, ribosomal RNA (rRNA) gene families or nucleolar organizer regions (NORs) are localized at the secondary constriction (on the satellite stalks) of five pairs of acrocentric chromosomes (13, 14, 15, 21 and 22) and their activities are evaluated specifically either in metaphase or interphase through a procedure known as AgNOR or silver staining. Our successive AgNOR studies, supported by RNA and nuclear protein measurement, show that cells from DS infants produce more ribosomes than expected, accounting for the extra set of active rRNA gene family (1/6-1/11) situated on the extra chromosome 21. Thus, the presence of an extra chromosome 21 stimulates a global increase in ribosome biogenesis in cooperation with other NOR-bearing chromosomes, causing unnecessary rRNA and ribosomal proteins synthesis compared to controls. Following the description of NORs, AgNOR, AgNOR-proteins, AgNOR measurement and our experimental results, we propose that the extra RNA and protein synthesis can cause a fundamental handicap to DS infants, contributing to the formation of DS phenotypes, due to the wasted energy in producing unnecessary macromolecules, including energy (GTP)-dependent transport of the excessive ribosomes from the nucleus to the cytoplasm.
Collapse
Affiliation(s)
- Halil Demirtas
- Erciyes University, Medical Faculty, Medical Biology Department 38039 Kayseri, Turkey.
| |
Collapse
|