1
|
Dutrillaux B, Dutrillaux AM, Salazar K, Boucher S. Multiple Chromosome Fissions, Including That of the X Chromosome, in Aulacocyclus tricuspis Kaup (Coleoptera, Passalidae) from New Caledonia: Characterization of a Rare but Recurrent Pathway of Chromosome Evolution in Animals. Genes (Basel) 2023; 14:1487. [PMID: 37510391 PMCID: PMC10379777 DOI: 10.3390/genes14071487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The male karyotype of Aulacocyclus tricuspis Kaup 1868 (Coleoptera, Scarabaeoidea, Passalidae, Aulacocyclinae) from New Caledonia contains an exceptionally high number of chromosomes, almost all of which are acrocentric (53,X1X2Y). Unlike the karyotypes of other species of the pantropical family Passalidae, which are principally composed of metacentric chromosomes, this karyotype is derived by fissions involving almost all the autosomes after breakage in their centromere region. This presupposes the duplication of the centromeres. More surprising is the X chromosome fragmentation. The rarity of X chromosome fission during evolution may be explained by the deleterious effects of alterations to the mechanisms of gene dosage compensation (resulting from the over-expression of the unique X chromosome in male insects). Herein, we propose that its occurrence and persistence were facilitated by (1) the presence of amplified heterochromatin in the X chromosome of Passalidae ancestor, and (2) the capacity of heterochromatin to modulate the regulation of gene expression. In A. tricuspis, we suggest that the portion containing the X proper genes and either a gene-free heterochromatin fragment or a fragment containing a few genes insulated from the peculiar regulation of the X by surrounding heterochromatin were separated by fission. Finally, we show that similar karyotypes with multiple acrocentric autosomes and unusual sex chromosomes rarely occur in species of Coleoptera belonging to the families Vesperidae, Tenebrionidae, and Chrysomelidae. Unlike classical Robertsonian evolution by centric fusion, this pathway of chromosome evolution involving the centric fission of autosomes has rarely been documented in animals.
Collapse
Affiliation(s)
- Bernard Dutrillaux
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 Rue Cuvier, CP 50 Entomologie, CEDEX 05, 75231 Paris, France
| | - Anne-Marie Dutrillaux
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 Rue Cuvier, CP 50 Entomologie, CEDEX 05, 75231 Paris, France
| | - Karen Salazar
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 Rue Cuvier, CP 50 Entomologie, CEDEX 05, 75231 Paris, France
| | - Stéphane Boucher
- Muséum National d'Histoire Naturelle, MECADEV UMR 7179 MNHN/CNRS, CP 50 Entomologie, CEDEX 05, 75231 Paris, France
| |
Collapse
|
2
|
Petitpierre E. A cytogenetic analysis in two species of Cassidinae (Coleoptera, Chrysomelidae). COMPARATIVE CYTOGENETICS 2019; 13:277-281. [PMID: 31579433 PMCID: PMC6736891 DOI: 10.3897/compcytogen.v13i3.36581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Two species of Cassidinae have been chromosomally analyzed, Cassida humeralis Kraatz, 1874 from France, with 2n = 18, 8 + Xyp meioformula and Anacassis fuscata (Klug, 1829) from Uruguay, with 2n = 30, 14 + Xy meioformula. The karyotype of the former is composed of similar meta/submetacentric autosomes, a small X-chromosome and a tiny y-chromosome, as many other Cassida and tribe Cassidini species, whereas that of the latter has four pairs of acro/telocentric autosomes at least and the remaining meta/submetacentrics including the X-chromosome and a tiny y-chromosome, which points out to its probable apomorphic origin by centric fissions, as found in some other species of the tribe Mesomphaliini.
Collapse
Affiliation(s)
- Eduard Petitpierre
- Dept. Biologia, Universitat de les Illes Balears, 07122 Palma de Mallorca, SpainUniversitat de les Illes BalearsPalma de MallorcaSpain
| |
Collapse
|
3
|
Insights into the karyotype evolution and speciation of the beetle Euchroma gigantea (Coleoptera: Buprestidae). Chromosome Res 2018. [PMID: 29524007 DOI: 10.1007/s10577-018-9576-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Euchroma Dejean, 1833 (Buprestidae: Coleoptera) is a monotypic genus comprising the species Euchroma gigantea, with populations presenting a degree of karyotypic variation/polymorphism rarely found within a single taxonomic (specific) unit, as well as drastically incompatible meiotic configurations in populations from extremes of the species range. To better understand the complex karyotypic evolution of E. gigantea, the karyotypes of specimens from five populations in Brazil were investigated using molecular cytogenetics and phylogenetic approaches. Herein, we used FISH with histone genes as well as sequencing of the COI to determine differential distribution of markers and relationships among populations. The analyses revealed new karyotypes, with variability for chromosome number and morphology of multiple sex chromosome mechanisms, occurrence of B chromosome variants (punctiform and large ones), and high dispersion of histone genes in different karyotypes. These data indicate that chromosomal polymorphism in E. gigantea is greater than previously reported, and that the species can be a valuable model for cytogenetic studies. The COI phylogenetic and haplotype analyses highlighted the formation of three groups with chromosomally polymorphic individuals. Finally, we compared the different karyotypes and proposed a model for the chromosomal evolution of this species. The species E. gigantea includes at least three cytogenetically polymorphic lineages. Moreover, in each of these lineages, different chromosomal rearrangements have been fixed. Dispersion of repetitive sequences may have favored the high frequency of these rearrangements, which could be related to both adaptation of the species to different habitats and the speciation process.
Collapse
|
4
|
Şendoğan D, Alpagut-Keskin N. Karyotype and sex chromosome differentiation in two Nalassus species (Coleoptera, Tenebrionidae). COMPARATIVE CYTOGENETICS 2016; 10:371-385. [PMID: 27830047 PMCID: PMC5088350 DOI: 10.3897/compcytogen.v10i3.9504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
Cytogenetic features of Nalassus bozdagus Nabozhenko & Keskin, 2010 and Nalassus plebejus Küster, 1850 were analysed using conventional and differential staining. Mitotic and meiotic chromosomal analysis revealed the diploid number as 2n = 20 (9+Xyp) in both species. Besides the general resemblance of two Nalassus Mulsant, 1854 karyotypes, important differences related to variations in the number of metacentric/submetacentric chromosomes, localization of highly impregnated regions which are considered as NOR and heterochromatin distribution are clearly observed. The most prominent difference between two species is found related to the X chromosome which is clearly larger in Nalassus bozdagus and has a conspicuous secondary constriction on the long arm. As a result of silver staining, the existence of highly impregnated areas associated with Xyp of Nalassus bozdagus in both prophase I and metaphase I, suggests that NORs are seemingly located on sex chromosomes. On the other hand, the potential NORs of Nalassus plebejus were observed only in prophase I nuclei. With the application of fluorescence dye DAPI, the AT rich chromosome regions and Xyp which forms the parachute configuration were shown in both species.
Collapse
Affiliation(s)
- Dirim Şendoğan
- Ege University, Faculty of Science, Department of Zoology, Section of Biology, Bornova, Izmir 35100 TURKEY
| | - Nurşen Alpagut-Keskin
- Ege University, Faculty of Science, Department of Zoology, Section of Biology, Bornova, Izmir 35100 TURKEY
| |
Collapse
|
5
|
Mora P, Vela J, Sanllorente O, Palomeque T, Lorite P. Molecular cytogenetic studies in the ladybird beetle Henosepilachnaargus Geoffroy, 1762 (Coleoptera, Coccinellidae, Epilachninae). COMPARATIVE CYTOGENETICS 2015; 9:423-434. [PMID: 26312131 PMCID: PMC4547035 DOI: 10.3897/compcytogen.v9i3.5263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/17/2015] [Indexed: 06/01/2023]
Abstract
The ladybird Henosepilachnaargus Geoffroy, 1762 has been cytogenetically studied. In addition we have conducted a review of chromosome numbers and the chromosomal system of sex determination available in the literature in species belonging to the genus Henosepilachna and in its closely related genus Epilachna. Chromosome number of Henosepilachnaargus was 2n=18, including the sex chromosome pair, a common diploid chromosome number within the tribe Epilachnini. The study of prophase I meiotic chromosomes showed the typical Xyp "parachute" bivalent as in the majority of species of Coccinellidae. C-banding and fluorescent staining with AT-specific DAPI fluorochrome dye have been carried out for the first time in H. argus. C-banding technique revealed that heterochromatic blocks are pericentromerically located and DAPI staining showed that this heterochromatin is AT rich. Fluorescence in situ hybridizations using rDNA and the telomeric TTAGG sequence as probes have been carried out. FISH using rDNA showed that the nucleolar organizing region is located on the short arm of the X chromosome. FISH with the telomeric sequence revealed that in this species telomeres of chromosomes are composed of the pentanucleotide TTAGG repeats. This is the first study on the telomeric sequences in Coccinellidae.
Collapse
Affiliation(s)
- Pablo Mora
- Departamento de Biología Experimental. Universidad de Jaén. 23071 Jaén. Spain
| | - Jesús Vela
- Departamento de Biología Experimental. Universidad de Jaén. 23071 Jaén. Spain
| | - Olivia Sanllorente
- Departamento de Biología Experimental. Universidad de Jaén. 23071 Jaén. Spain
| | - Teresa Palomeque
- Departamento de Biología Experimental. Universidad de Jaén. 23071 Jaén. Spain
| | - Pedro Lorite
- Departamento de Biología Experimental. Universidad de Jaén. 23071 Jaén. Spain
| |
Collapse
|
6
|
Petitpierre E. Cytogenetics, cytotaxonomy and chromosomal evolution of Chrysomelinae revisited (Coleoptera, Chrysomelidae). Zookeys 2012:67-79. [PMID: 22303104 PMCID: PMC3253643 DOI: 10.3897/zookeys.157.1339] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/07/2011] [Indexed: 11/12/2022] Open
Abstract
Nearly 260 taxa and chromosomal races of subfamily Chrysomelinae have been chromosomally analyzed showing a wide range of diploid numbers from 2n = 12 to 2n = 50, and four types of male sex-chromosome systems. with the parachute-like ones Xy(p) and XY(p) clearly prevailing (79.0%), but with the XO well represented too (19.75%). The modal haploid number for chrysomelines is n = 12 (34.2%) although it is not probably the presumed most plesiomorph for the whole subfamily, because in tribe Timarchini the modal number is n = 10 (53.6%) and in subtribe Chrysomelina n = 17 (65.7%). Some well sampled genera, such as Timarcha, Chrysolina and Cyrtonus, are variable in diploid numbers, whereas others, like Chrysomela, Paropsisterna, Oreina and Leptinotarsa, are conservative and these differences are discussed. The main shifts in the chromosomal evolution of Chrysomelinae seems to be centric fissions and pericentric inversions but other changes as centric fusions are also clearly demonstrated. The biarmed chromosome shape is the prevalent condition, as found in most Coleoptera, although a fair number of species hold a few uniarmed chromosomes at least. A significant negative correlation between the haploid numbers and the asymmetry in size of karyotypes (r = -0.74) has been found from a large sample of 63 checked species of ten different genera. Therefore, the increases in haploid number are generally associated with a higher karyotype symmetry.
Collapse
Affiliation(s)
- Eduard Petitpierre
- Dept. of Biology, University of Balearic Islands, 07122 Palma de Mallorca, Spain
| |
Collapse
|