1
|
Pimentel Neto J, Batista RD, Rocha-Braga LC, Chacur M, Camargo PO, Ciena AP. The telocytes relationship with satellite cells: Extracellular vesicles mediate the myotendinous junction remodeling. Microsc Res Tech 2024; 87:1733-1741. [PMID: 38501548 DOI: 10.1002/jemt.24549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
The peripheral nerve injury (PNI) affects the morphology of the whole locomotor apparatus, which can reach the myotendinous junction (MTJ) interface. In the injury condition, the skeletal muscle satellite cells (SC) are triggered, activated, and proliferated to repair their structure, and in the MTJ, the telocytes (TC) are associated to support the interface with the need for remodeling; in that way, these cells can be associated with SC. The study aimed to describe the SC and TC relationship after PNI at the MTJ. Sixteen adult Wistar rats were divided into Control Group (C, n = 8) and PNI Group (PNI, n = 8), PNI was performed by the constriction of the sciatic nerve. The samples were processed for transmission electron microscopy and immunostaining analysis. In the C group was evidenced the arrangement of sarcoplasmic evaginations and invaginations, the support collagen layer with a TC inside it, and an SC through vesicles internally and externally to then. In the PNI group were observed the disarrangement of invaginations and evaginations and sarcomeres degradation at MTJ, as the disposition of telopodes adjacent and in contact to the SC with extracellular vesicles and exosomes in a characterized paracrine activity. These findings can determine a link between the TCs and the SCs at the MTJ remodeling. RESEARCH HIGHLIGHTS: Peripheral nerve injury promotes the myotendinous junction (MTJ) remodeling. The telocytes (TC) and the satellite cells (SC) are present at the myotendinous interface. TC mediated the SC activity at MTJ.
Collapse
Affiliation(s)
- Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Rodrigo Daniel Batista
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Lara Caetano Rocha-Braga
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Marucia Chacur
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Paula Oliveira Camargo
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Adriano Polican Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| |
Collapse
|
2
|
Majchrzak K, Hentschel E, Hönzke K, Geithe C, von Maltzahn J. We need to talk-how muscle stem cells communicate. Front Cell Dev Biol 2024; 12:1378548. [PMID: 39050890 PMCID: PMC11266305 DOI: 10.3389/fcell.2024.1378548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Skeletal muscle is one of the tissues with the highest ability to regenerate, a finely controlled process which is critically depending on muscle stem cells. Muscle stem cell functionality depends on intrinsic signaling pathways and interaction with their immediate niche. Upon injury quiescent muscle stem cells get activated, proliferate and fuse to form new myofibers, a process involving the interaction of multiple cell types in regenerating skeletal muscle. Receptors in muscle stem cells receive the respective signals through direct cell-cell interaction, signaling via secreted factors or cell-matrix interactions thereby regulating responses of muscle stem cells to external stimuli. Here, we discuss how muscle stem cells interact with their immediate niche focusing on how this controls their quiescence, activation and self-renewal and how these processes are altered in age and disease.
Collapse
Affiliation(s)
- Karolina Majchrzak
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Erik Hentschel
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Katja Hönzke
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Christiane Geithe
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Julia von Maltzahn
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Faculty for Environment and Natural Sciences, Brandenburg University of Technology Cottbus—Senftenberg, Senftenberg, Germany
| |
Collapse
|
3
|
Tong S, Sun Y, Kuang B, Wang M, Chen Z, Zhang W, Chen J. A Comprehensive Review of Muscle-Tendon Junction: Structure, Function, Injury and Repair. Biomedicines 2024; 12:423. [PMID: 38398025 PMCID: PMC10886980 DOI: 10.3390/biomedicines12020423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The muscle-tendon junction (MTJ) is a highly specific tissue interface where the muscle's fascia intersects with the extracellular matrix of the tendon. The MTJ functions as the particular structure facilitating the transmission of force from contractive muscle fibers to the skeletal system, enabling movement. Considering that the MTJ is continuously exposed to constant mechanical forces during physical activity, it is susceptible to injuries. Ruptures at the MTJ often accompany damage to both tendon and muscle tissues. In this review, we attempt to provide a precise definition of the MTJ, describe its subtle structure in detail, and introduce therapeutic approaches related to MTJ tissue engineering. We hope that our detailed illustration of the MTJ and summary of the representative research achievements will help researchers gain a deeper understanding of the MTJ and inspire fresh insights and breakthroughs for future research.
Collapse
Affiliation(s)
- Siqi Tong
- School of Medicine, Southeast University, Nanjing 210009, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing 210009, China
| | - Yuzhi Sun
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing 210009, China
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Baian Kuang
- School of Medicine, Southeast University, Nanjing 210009, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing 210009, China
| | - Mingyue Wang
- School of Medicine, Southeast University, Nanjing 210009, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing 210009, China
| | - Zhixuan Chen
- School of Medicine, Southeast University, Nanjing 210009, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing 210009, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210096, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| | - Jialin Chen
- School of Medicine, Southeast University, Nanjing 210009, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210096, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| |
Collapse
|
4
|
Lloyd EM, Hepburn MS, Li J, Mowla A, Hwang Y, Choi YS, Grounds MD, Kennedy BF. Three-dimensional mechanical characterization of murine skeletal muscle using quantitative micro-elastography. BIOMEDICAL OPTICS EXPRESS 2022; 13:5879-5899. [PMID: 36733728 PMCID: PMC9872891 DOI: 10.1364/boe.471062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 06/18/2023]
Abstract
Skeletal muscle function is governed by both the mechanical and structural properties of its constituent tissues, which are both modified by disease. Characterizing the mechanical properties of skeletal muscle tissue at an intermediate scale, i.e., between that of cells and organs, can provide insight into diseases such as muscular dystrophies. In this study, we use quantitative micro-elastography (QME) to characterize the micro-scale elasticity of ex vivo murine skeletal muscle in three-dimensions in whole muscles. To address the challenge of achieving high QME image quality with samples featuring uneven surfaces and geometry, we encapsulate the muscles in transparent hydrogels with flat surfaces. Using this method, we study aging and disease in quadriceps tissue by comparing normal wild-type (C57BL/6J) mice with dysferlin-deficient BLAJ mice, a model for the muscular dystrophy dysferlinopathy, at 3, 10, and 24 months of age (sample size of three per group). We observe a 77% decrease in elasticity at 24 months in dysferlin-deficient quadriceps compared to wild-type quadriceps.
Collapse
Affiliation(s)
- Erin M. Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia
- These authors contributed equally to this work
| | - Matt S. Hepburn
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
- These authors contributed equally to this work
| | - Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Alireza Mowla
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea
| | - Yu Suk Choi
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia
| | - Miranda D. Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia
| | - Brendan F. Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| |
Collapse
|
5
|
Jacob CDS, Barbosa GK, Rodrigues MP, Pimentel Neto J, Rocha-Braga LC, de Oliveira CG, Chacur M, Ciena AP. Ultrastructural and Molecular Development of the Myotendinous Junction Triggered by Stretching Prior to Resistance Exercise. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-6. [PMID: 35258447 DOI: 10.1017/s1431927622000186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The myotendinous junction (MTJ) is a highly specialized region of the locomotor apparatus. Here, we investigated the ultrastructural and molecular effects in the MTJ region after static stretching prior to the ladder-based resistance training. Thirty-two male, 60-day old Wistar rats were divided into four groups: Sedentary, Resistance Training, Stretching, and Stretching-Resistance Training. The gastrocnemius muscle was processed for transmission electron microscopy techniques and Western blot assay. We observed that the static stretching prior to the ladder-based resistance training increased the MTJ components, the fibroblast growth factor (FGF)-2 and FGF-6 protein expression. Also, we demonstrated the lower transforming growth factor expression and no difference in the lysyl oxidase expression after combined training. The MTJ alterations in response to combined training demonstrate adaptive mechanisms which can be used for the prescription or development of methods to reduce or prevent injuries in humans and promote the myotendinous interface benefit.
Collapse
Affiliation(s)
- Carolina Dos S Jacob
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Gabriela K Barbosa
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Mariana P Rodrigues
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Lara C Rocha-Braga
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Camilla G de Oliveira
- Laboratory of Functional Neuroanatomy of Pain (LAND), Department of Anatomy, Universidade de Sao Paulo (USP), São Paulo, SP, Brazil
| | - Marucia Chacur
- Laboratory of Functional Neuroanatomy of Pain (LAND), Department of Anatomy, Universidade de Sao Paulo (USP), São Paulo, SP, Brazil
| | - Adriano P Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| |
Collapse
|
6
|
Myotendinous Junction: Exercise Protocols Can Positively Influence Their Development in Rats. Biomedicines 2022; 10:biomedicines10020480. [PMID: 35203688 PMCID: PMC8962292 DOI: 10.3390/biomedicines10020480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
The myotendinous junction (MTJ) is an interface that different stimuli alter their morphology. One of the main stimuli to promote alterations in the MTJ morphology is physical exercise. The present study aimed to investigate the morphology and molecular MTJ adaptations of biceps brachii muscle in adult Wistar rats submitted to different ladder-based protocols. Forty Wistar rats (90 days old) were divided into four groups: Sedentary (S), Climbing (C), Overload Climbing (OC), Climbing, and Overload Climbing (COC). The results of light microscopy demonstrated the cell and collagen tissue reorganization in the experimental groups. The sarcomeres lengths of different regions showed a particular development according to the specific protocols. The sarcoplasmic invaginations and evaginations demonstrated positive increases that promoted the myotendinous interface development. In the extracellular matrix, the structures presented an increase principally in the COC group. Finally, the immunofluorescence analysis showed the telocytes disposition adjacent to the MTJ region in all experimental groups, revealing their network organization. Thus, we concluded that the different protocols contributed to the morphological adaptations with beneficial effects in distinct ways of tissue and cellular development and can be used as a model for MTJ remodeling to future proteomic and genetic analysis.
Collapse
|
7
|
Rocha LC, Barbosa GK, Pimentel Neto J, Jacob CDS, Knudsen AB, Watanabe IS, Ciena AP. Aquatic Training after Joint Immobilization in Rats Promotes Adaptations in Myotendinous Junctions. Int J Mol Sci 2021; 22:ijms22136983. [PMID: 34209663 PMCID: PMC8267653 DOI: 10.3390/ijms22136983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
The myotendinous junction (MTJ) is the muscle-tendon interface and constitutes an integrated mechanical unit to force transmission. Joint immobilization promotes muscle atrophy via disuse, while physical exercise can be used as an adaptative stimulus. In this study, we aimed to investigate the components of the MTJ and their adaptations and the associated elements triggered with aquatic training after joint immobilization. Forty-four male Wistar rats were divided into sedentary (SD), aquatic training (AT), immobilization (IM), and immobilization/aquatic training (IMAT) groups. The samples were processed to measure fiber area, nuclear fractal dimension, MTJ nuclear density, identification of telocytes, sarcomeres, and MTJ perimeter length. In the AT group, the maintenance of ultrastructure and elements in the MTJ region were observed; the IM group presented muscle atrophy effects with reduced MTJ perimeter; the IMAT group demonstrated that aquatic training after joint immobilization promotes benefits in the muscle fiber area and fractal dimension, in the MTJ region shows longer sarcomeres and MTJ perimeter. We identified the presence of telocytes in the MTJ region in all experimental groups. We concluded that aquatic training is an effective rehabilitation method after joint immobilization due to reduced muscle atrophy and regeneration effects on MTJ in rats.
Collapse
Affiliation(s)
- Lara Caetano Rocha
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil; (L.C.R.); (G.K.B.); (J.P.N.); (C.d.S.J.)
| | - Gabriela Klein Barbosa
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil; (L.C.R.); (G.K.B.); (J.P.N.); (C.d.S.J.)
| | - Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil; (L.C.R.); (G.K.B.); (J.P.N.); (C.d.S.J.)
| | - Carolina dos Santos Jacob
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil; (L.C.R.); (G.K.B.); (J.P.N.); (C.d.S.J.)
| | - Andreas B. Knudsen
- Department of Sports Traumatology M51, Bispebjerg and Frederiksberg Hospital, IOC Copenhagen Research Center, 1050 Copenhagen, Denmark;
| | - Ii-Sei Watanabe
- Department of Anatomy, Institute of Biomedical Science III, University of São Paulo-USP, São Paulo 05508-000, SP, Brazil;
| | - Adriano Polican Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil; (L.C.R.); (G.K.B.); (J.P.N.); (C.d.S.J.)
- Correspondence: ; Tel.: +55-193-526-4346
| |
Collapse
|
8
|
Grillo BAC, Rocha LC, Martinez GZ, Pimentel Neto J, Jacob CDS, Watanabe IS, Ciena AP. Myotendinous Junction Components of Different Skeletal Muscles Present Morphological Changes in Obese Rats. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-6. [PMID: 33879277 DOI: 10.1017/s1431927621000313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Obesity is characterized by excess adipose tissue and chronic inflammation and promotes extensive changes that can compromise skeletal muscles’ structural and functional integrity. Obesity can seriously impact the force transmission region between the muscle and the tendon, the myotendinous junction (MTJ). The present study aimed to investigate the plasticity of muscle fibers and MTJ regions in high-fat diet-induced obesity in rat tibialis anterior (TA) and soleus (SO) muscles. Wistar rats were divided into control and obese groups (induced by a high-fat diet). The samples of TA and SO muscles were prepared for histochemical and ultrastructural analysis (sarcomeres and MTJ projection). In the muscle fiber, similar adaptations were observed between the muscles of the smaller fiber (types I and IIa) in the obesity results. The MTJ region demonstrated different adaptations between the analyzed muscles. The TA–MTJ region has shorter ultrastructures, while in the SO–MTJ region, the ultrastructures were larger. We conclude that obesity induced by a high-fat diet promotes similar adaptation in the muscle fibers; however, in the MTJ region, the sarcoplasmatic projections and adjacent sarcomere demonstrate different adaptations according to distinct muscle phenotypes.
Collapse
Affiliation(s)
- Bruna Aléxia Cristofoletti Grillo
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, SP13506-900, Brazil
| | - Lara C Rocha
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, SP13506-900, Brazil
| | - Giovana Z Martinez
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, SP13506-900, Brazil
| | - Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, SP13506-900, Brazil
| | - Carolina Dos Santos Jacob
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, SP13506-900, Brazil
| | - Ii-Sei Watanabe
- Department of Anatomy, Institute of Biomedical Sciences -ICB III, University of São Paulo (USP), São Paulo, SP05508-900, Brazil
| | - Adriano P Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, SP13506-900, Brazil
| |
Collapse
|
9
|
B. Knudsen A, Mackey AL, Jakobsen JR, Krogsgaard MR. No demonstrable ultrastructural adaptation of the human myotendinous junction to immobilization or 4 weeks of heavy resistance training. TRANSLATIONAL SPORTS MEDICINE 2021. [DOI: 10.1002/tsm2.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andreas B. Knudsen
- Department of Sports Traumatology M51 Bispebjerg and Frederiksberg HospitalIOC Research Center Copenhagen Copenhagen Denmark
| | - Abigail Louise Mackey
- Institute of Sports Medicine Department of Orthopedic Surgery M Bispebjerg and Frederiksberg HospitalIOC Research Center Copenhagen Copenhagen Denmark
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Jens Rithamer Jakobsen
- Department of Sports Traumatology M51 Bispebjerg and Frederiksberg HospitalIOC Research Center Copenhagen Copenhagen Denmark
| | - Michael Rindom Krogsgaard
- Department of Sports Traumatology M51 Bispebjerg and Frederiksberg HospitalIOC Research Center Copenhagen Copenhagen Denmark
| |
Collapse
|
10
|
May CA, Bramke S. In the human, true myocutaneous junctions of skeletal muscle fibers are limited to the face. J Anat 2021; 239:445-450. [PMID: 33641167 PMCID: PMC8273604 DOI: 10.1111/joa.13419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/22/2021] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
Within the panniculus carnosus‐associated skeletal muscles in the human, the palmaris brevis and the platysma showed myotendinous/myofascial junctions with clear distance to the corium and the specific connection collagen type XXII. The orbicularis oris muscle, in contrast, contained bundles of striated muscle fibers reaching the corium at two distinct levels: the predominant inner ending was connected to the elastic network of the inner corium and the outer ending was within the more superficial collagen network. At both locations, the striated muscle fibers showed brush‐like cytoplasmic protrusions connecting a network which was not oriented toward the muscle fibers. Collagen type XXII was not present.
Collapse
Affiliation(s)
| | - Silvia Bramke
- Department of Anatomy, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
11
|
Minafra P, Alviti F, Giovagnorio R, Cantisani V, Mazzoni G. Shear Wave Elastographic Study of the Myotendinous Junction of the Medial Gastrocnemius: Normal Patterns and Dynamic Evaluation. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:2195-2200. [PMID: 32391612 DOI: 10.1002/jum.15330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/25/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVES The myotendinous junction (MTJ) represents a specialized anatomic region through which the contractile strength is transmitted from the muscle to the tendon. The integrity of this region is essential to permit force transmission and to optimize energy expenditure during walking, running, and globally for human movement. We evaluated the MTJ with shear wave elastography to assess its elasticity variation during a functional test. METHODS Forty professional soccer players were enrolled in the study. Shear wave elastography was performed at the level of the medial gastrocnemius MTJ both in a resting position and during a standing calf rise position to assess functional contraction. RESULTS All 40 participants were male, aged between 18 and 38 years (mean age, 25 years). The results of the elastographic study showed mean stiffness values ± SD of 4.19 ± 0.86 m/s for the right medial gastrocnemius and 4.20 ± 0.87 m/s for the left medial gastrocnemius with the muscle relaxed. During contraction, the stiffness values were 8.33 ± 0.5 m/s for the right medial gastrocnemius and 8.30 ± 0.48 m/s for the left medial gastrocnemius. CONCLUSIONS Our study showed an increase of stiffness at the level of the MTJ during muscle contraction. This result is in line with the physiologic stiffening of the MTJ to resist the high level of force applied during muscle contraction. Shear wave elastography could be a useful method to assess the characteristics of the MTJ under both physiologic and pathologic conditions.
Collapse
Affiliation(s)
- Paolo Minafra
- Società Polisportiva Ars et Labor Football Club, Ferrara, Italy
| | - Federica Alviti
- Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Board of Physical Medicine and Rehabilitation
| | | | - Vito Cantisani
- Department of Radiology, Sapienza University of Rome, Rome, Italy
| | - Gianni Mazzoni
- Centro Studi Attività Motorie e Sportive, University of Ferrara, Ferrara, Italy
| |
Collapse
|
12
|
Myotendinous junction adaptations to ladder-based resistance training: identification of a new telocyte niche. Sci Rep 2020; 10:14124. [PMID: 32839490 PMCID: PMC7445244 DOI: 10.1038/s41598-020-70971-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 08/04/2020] [Indexed: 12/31/2022] Open
Abstract
The present study shows chronic adjustments in the myotendinous junction (MTJ) in response to different ladder-based resistance training (LRT) protocols. Thirty adult male Wistar rats were divided into groups: sedentary (S), calisthenics (LRT without additional load [C]), and resistance-trained (LRT with extra weight [R]). We demonstrated longer lengths of sarcoplasmatic invaginations in the trained groups; however, evaginations were seen mainly in group R. We showed a greater thickness of sarcoplasmatic invaginations in groups C and R, in addition to greater evaginations in R. We also observed thinner basal lamina in trained groups. The support collagen layer (SCL) adjacent to the MTJ and the diameters of the transverse fibrils were larger in R. We also discovered a niche of telocytes in the MTJ with electron micrographs of the plantar muscle and with immunostaining with CD34+ in the gastrocnemius muscle near the blood vessels and pericytes. We concluded that the continuous adjustments in the MTJ ultrastructure were the result of tissue plasticity induced by LRT, which is causally related to muscle hypertrophy and, consequently, to the remodeling of the contact interface. Also, we reveal the existence of a collagen layer adjacent to MTJ and discover a new micro anatomic location of telocytes.
Collapse
|
13
|
Rocha LC, Pimentel Neto J, de Sant'Ana JS, Jacob CDS, Barbosa GK, Krause Neto W, Watanabe IS, Ciena AP. Repercussions on sarcomeres of the myotendinous junction and the myofibrillar type adaptations in response to different trainings on vertical ladder. Microsc Res Tech 2020; 83:1190-1197. [PMID: 32500573 DOI: 10.1002/jemt.23510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/25/2022]
Abstract
The myofibrillary types establish to the skeletal muscle functional and adaptive properties that influence the sarcomeric arrangement during muscle contraction and may have repercussions on an important related force transmission region of the locomotor apparatus, the myotendinous junction (MTJ). This study aimed to describe changes in myofibrillary type and sarcomeric lengths in the belly muscle and MTJ of the soleus and plantaris muscles associated with training protocols in vertical ladder. Thirty adults male Wistar rats were divided into three groups (n = 10): Control (CTR), No-load Training (NLT), and Load Training (LT). Morphoquantitative analysis of different fibers types and sarcomere lengths were performed in distinct regions of plantaris and soleus muscles. In the plantaris muscle with both trainings, there was an increase in the cross-sectional area (CSA) in Type I and II fibers (p < .0001) while sarcomeric lengths revealed greater lengths in the proximal and distal sarcomeres of NLT, although in the LT we found greater lengths in the belly and MTJ sarcomeres. The soleus muscle showed an increase in CSA muscle fiber only in the NLT (p < .0001) and revealed alterations in belly and MTJ sarcomere lengths with training. We concluded that plantaris muscle has an adaptive effect directly associated with training load, with hypertrophy in both trainings and sarcomere length inverse from belly and MTJ, in LT associated with increased force generation and transmission at the MTJ, although soleus muscle has a lower adaptive response to training stimuli with variation in the belly and distal sarcomere of the MTJ.
Collapse
Affiliation(s)
- Lara Caetano Rocha
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Jossei Soares de Sant'Ana
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Carolina Dos Santos Jacob
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Gabriela Klein Barbosa
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Walter Krause Neto
- Department of Physical Education, Laboratory of Morphoquantitative Studies and Immunohistochemistry, São Judas Tadeu University, São Paulo, Brazil
| | - Ii-Sei Watanabe
- Department of Anatomy, Institute of Biomedical Sciences-III, University of São Paulo (USP), São Paulo, Brazil
| | - Adriano Polican Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
14
|
Mechanism of muscle–tendon–bone complex development in the head. Anat Sci Int 2020; 95:165-173. [DOI: 10.1007/s12565-019-00523-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022]
|
15
|
Jacob CDS, Rocha LC, Neto JP, Watanabe IS, Ciena AP. Effects of physical training on sarcomere lengths and muscle-tendon interface of the cervical region in an experimental model of menopause. Eur J Histochem 2019; 63:3038. [PMID: 31455072 PMCID: PMC6712362 DOI: 10.4081/ejh.2019.3038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/05/2019] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to describe the structural and ultrastructural aspects of the myotendinous junction (MTJ) and the proximal and distal sarcomeres of the sternomastoid of aged Wistar rats subjected to an experimental model of menopause and swimming training. A total of 20 female elderly rats were divided into the following four groups (n=5 in each group): sedentary/no-menopausal (SNM), trained/no-menopausal (TNM), sedentary/menopausal (SM), and trained/menopausal (TM). The MTJ samples were dissected and analyzed using transmission electron microscopy. We showed that the TNM Group rats exhibited changes in morphological characteristics as a consequence of physical exercise, which included an increase of 36.60% (P<0.001) in the evagination length of the MTJ and a reduction in the length of the distal (77.38%) (P<0.0001) and proximal (68.15%) (P<0.0001) sarcomeres. The SM Group exhibited a reduction of about 275.93% (P<0.001) in the muscle-tendon interface and in the lengths of distal sarcomeres (55.87%) (P<0.0001) compared with SNM Group. Our results suggest that the swimming training under experimental model of menopause promoted tissue reorganization and increased muscle-tendon interaction with a drastic development in the length and thickness of the sarcoplasmatic invaginations and evaginations. In addition, the sarcomeres exhibited different lengths and a reduction in both groups subjected to swimming training.
Collapse
Affiliation(s)
- Carolina Dos Santos Jacob
- Department of Physical Education, Laboratory of Morphology and Physical Activity, São Paulo State University "Julio de Mesquita Filho", Rio Claro.
| | | | | | | | | |
Collapse
|
16
|
Rissatto Sierra L, Fávaro G, Cerri BR, Rocha LC, de Yokomizo de Almeida SR, Watanabe IS, Ciena AP. Myotendinous junction plasticity in aged ovariectomized rats submitted to aquatic training. Microsc Res Tech 2018; 81:816-822. [PMID: 29689628 DOI: 10.1002/jemt.23040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/16/2018] [Accepted: 04/02/2018] [Indexed: 12/12/2022]
Abstract
The study aims to describe the tissue plasticity of MTJ through the morphological analysis of MTJ soleus in ovariectomized aged female Wistar rats submitted to aquatic training. Forty aged Wistar rats, 1 year and 2 months of age, were divided into four groups: sedentary (S), trained (T), ovariectomized (O), and trained/ovariectomized (OT). Employing the transmission electron microscopy, the ultrastructural and morphometric elements were revealed. In the S group, changes in morphological characteristics as a consequence of the aging process were seen, demonstrated by the conical shape of the muscle cell extremity, a large area with collagen deposit, and misalignment of sarcomeres in series. The T group presented ample adjustments when revealed the organization of MTJ, through the increase of the contact area and greater lengths of sarcoplasmatic invaginations and evaginations. The O group revealed extensive tissue disorganization with muscle atrophy, reduction of MTJ contact area, and consequently, changes in sarcoplasmatic invaginations and evaginations. The OT group demonstrated extensive remodeling with restructuring MTJ through the increase of tissue contact area, extensive organization, parallel arrangement, and increased length of sarcoplasmatic invaginations and evaginations. The distal sarcomeres presented higher lengths compared to the proximal sarcomeres in both the groups. We conclude that aquatic training was effective in the organization and structural remodeling of the myotendinous interface of ovariectomized aged rats. There was a greater area of contact, and consequently, greater resistance in the myotendinous interface promoting a lower predisposition to injuries.
Collapse
Affiliation(s)
- Luan Rissatto Sierra
- Department of Physical Education, Laboratory of Morphology and Physical Activity-"LAMAF", University State of São Paulo "Júlio de Mesquita Filho"-UNESP, Rio Claro, SP, Brasil
| | - Gabriel Fávaro
- Department of Physical Education, Laboratory of Morphology and Physical Activity-"LAMAF", University State of São Paulo "Júlio de Mesquita Filho"-UNESP, Rio Claro, SP, Brasil
| | - Bruno Rubin Cerri
- Department of Physical Education, Laboratory of Morphology and Physical Activity-"LAMAF", University State of São Paulo "Júlio de Mesquita Filho"-UNESP, Rio Claro, SP, Brasil
| | - Lara Caetano Rocha
- Department of Physical Education, Laboratory of Morphology and Physical Activity-"LAMAF", University State of São Paulo "Júlio de Mesquita Filho"-UNESP, Rio Claro, SP, Brasil
| | | | - Ii-Sei Watanabe
- Department of Anatomy, ICB-III, University of São Paulo-USP, São Paulo, SP, Brasil
| | - Adriano Polican Ciena
- Department of Physical Education, Laboratory of Morphology and Physical Activity-"LAMAF", University State of São Paulo "Júlio de Mesquita Filho"-UNESP, Rio Claro, SP, Brasil
| |
Collapse
|
17
|
Curzi D. Ultrastructural study of myotendinous junction plasticity: from disuse to exercise. SPORT SCIENCES FOR HEALTH 2016. [DOI: 10.1007/s11332-016-0301-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Vieira CP, De Oliveira LP, Da Ré Guerra F, Marcondes MCC, Pimentel ER. Green Tea and Glycine Modulate the Activity of Metalloproteinases and Collagen in the Tendinitis of the Myotendinous Junction of the Achilles Tendon. Anat Rec (Hoboken) 2016; 299:918-28. [DOI: 10.1002/ar.23361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 03/11/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Cristiano Pedrozo Vieira
- Department of Pharmacology; State University of Campinas; 13083-863 CP 6109 Campinas São Paulo Brazil
| | - LetÍCia Prado De Oliveira
- Structural and Functional Biology; Institute of Biology, State University of Campinas; 13083-863 CP 6109 Campinas São Paulo Brazil
| | - Flávia Da Ré Guerra
- Institute of Biological Sciences; Federal University of Alfenas; Alfenas Minas Gerais Brazil
| | - Maria Cristina Cintra Marcondes
- Structural and Functional Biology; Institute of Biology, State University of Campinas; 13083-863 CP 6109 Campinas São Paulo Brazil
| | - Edson Rosa Pimentel
- Structural and Functional Biology; Institute of Biology, State University of Campinas; 13083-863 CP 6109 Campinas São Paulo Brazil
| |
Collapse
|
19
|
Collagen Homeostasis and Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 920:11-25. [DOI: 10.1007/978-3-319-33943-6_2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Exercise and Regulation of Bone and Collagen Tissue Biology. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 135:259-91. [DOI: 10.1016/bs.pmbts.2015.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Knudsen AB, Larsen M, Mackey AL, Hjort M, Hansen KK, Qvortrup K, Kjaer M, Krogsgaard MR. The human myotendinous junction: an ultrastructural and 3D analysis study. Scand J Med Sci Sports 2014; 25:e116-23. [PMID: 24716465 DOI: 10.1111/sms.12221] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2014] [Indexed: 11/27/2022]
Abstract
The myotendinous junction (MTJ) is a specialized structure in the musculotendinous system, where force is transmitted from muscle to tendon. Animal models have shown that the MTJ takes form of tendon finger-like processes merging with muscle tissue. The human MTJ is largely unknown and has never been described in three dimensions (3D). The aim of this study was to describe the ultrastructure of the human MTJ and render 3D reconstructions. Fourteen subjects (age 25 ± 3 years) with isolated injury of the anterior cruciate ligament (ACL), scheduled for reconstruction with a semitendinosus/gracilis graft were included. Semitendinosus and gracilis tendons were stripped as grafts for the ACL reconstruction. The MTJ was isolated from the grafts and prepared for transmission electron microscopy (TEM) and focused ion beam/scanning electron microscopy. It was possible to isolate recognizable MTJ tissue from all 14 patients. TEM images displayed similarities to observations in animals: Sarcolemmal evaginations observed as finger-like processes from the tendon and endomysium surrounding the muscle fibers, with myofilaments extending from the final Z-line of the muscle fiber merging with the tendon tissue. The 3D reconstruction revealed that tendon made ridge-like protrusions, which interdigitiated with groove-like indentations in the muscle cell.
Collapse
Affiliation(s)
- A B Knudsen
- Department of Sports Traumatology M51, Bispebjerg University Hospital, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ciena AP, de Sousa Bolina C, de Almeida SRY, Rici REG, de Oliveira MF, da Silva MCP, Miglino MA, Watanabe IS. Structural and ultrastructural features of the agouti tongue (Dasyprocta aguti Linnaeus, 1766). J Anat 2013; 223:152-8. [PMID: 23701183 DOI: 10.1111/joa.12065] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2013] [Indexed: 11/26/2022] Open
Abstract
The agouti (Dasyprocta aguti Linnaeus, 1766) is a wild rodent belonging to the family Dasyproctidae that is found throughout Brazil and feeds on fruits and seeds. The aim of the present study was to describe the following features of the tongue of agouti: its morphological structures, the three-dimensional characteristics of the lingual papillae surface, the connective tissue cores (CTCs) and the epithelial cell ultrastructure. Four types of papillae were observed on the dorsal surface of the tongue with a triangular shape: filiform, fungiform, foliate and vallate. Filiform papillae were distributed throughout the tongue surface, and removal of the epithelial surface revealed conical CTCs and multifilaments. Fungiform papillae were observed in the rostral and middle regions, whereas foliate papillae developed in pairs on the lateral margin of the caudal region. Removal of the epithelium in these regions revealed CTCs with parallel laminar conformation. Vallate papillae were arranged in a V-shape in the caudal region, and their CTCs ranged in shape from elongate to ovoid. The ultrastructural components of the dorsal epithelium were the basal, spinous, granular and keratinised layers. A broad area with cytoplasmic projections was identified in the interface region between the lamina propria and the basal layer. Flattened cells with intermediate filaments were observed in the transitional region between spinous and granular layers. The keratinised layer was composed of superimposed epithelial cells where desmosomes and cell-surface microridges were observed. These structural features, including the three-dimensional aspects of the lingual papillae, the CTCs and the epithelial ultrastructure, indicate that when compared with other animals, particularly other rodent species, the morphological features of the tongue of agouti are relatively well developed, especially regarding foliate and vallate papillae.
Collapse
Affiliation(s)
- Adriano Polican Ciena
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Duro CC, Ciena AP, De Almeida SRY, Righetti MMDS, Grisolia DDF, Issa JPM, Da Silva MCP, Watanabe IS. Qualitative study of young, adult, and aged Wistar rats temporomandibular synovial membrane employing light, scanning, and transmission electron microscopy. Microsc Res Tech 2012; 75:1522-7. [PMID: 22791633 DOI: 10.1002/jemt.22095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 06/11/2012] [Indexed: 11/11/2022]
Abstract
The aim of this study was to analyze the rat temporomandibular joint (TMJ) synovial membrane at different ages using light, scanning, and transmission electron microscopy. Under light microscopic analysis, the TMJ structures were observed such as condyle, capsule, disk, the synovial membrane collagen type, and cells distribution. In the scanning electron microscopy, the synovial membrane surface exhibited a smooth aspect in young animals and there was an increase with ageing in the number of folds. The transmission electron microscopic analysis showed more synoviocytes in the synovial layer in the young group and still a great number of vesicles and cisterns dilation of rough endoplasmic reticulum in the aged group. In the three groups, a dense layer of collagen fibers in the synovial layer and cytoplasmic extensions were clearly seen. It was possible to conclude that synovial membrane structures in aged group showed alterations contributing to the decrease in joint lubrication and in the sliding between disk and joint surfaces. These characteristic will reflect in biomechanics of chewing, and may cause the TMJ disorders, currently observed in clinical processes.
Collapse
Affiliation(s)
- Christiano Cony Duro
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Polican Ciena A, Yokomizo De Almeida SR, De Sousa Bolina C, De Sousa Bolina-Matos R, Grassi Rici RE, Pereira Da Silva MC, Miglino MA, Watanabe IS. Ultrastructural features of the myotendinous junction of the sternomastoid muscle in Wistar rats: from newborn to aging. Microsc Res Tech 2012; 75:1292-6. [PMID: 22522658 DOI: 10.1002/jemt.22063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 03/22/2012] [Indexed: 11/08/2022]
Abstract
The myotendinous junction (MTJ) is a major area for transmitting force from the skeletal muscle system and acts in joint position and stabilization. This study aimed to use transmission electron microscopy to describe the ultrastructural features of the MTJ of the sternomastoid muscle in Wistar rats from newborn to formation during adulthood and possible changes with aging. Ultrastructural features of the MTJ from the newborn group revealed pattern during development with interactions between muscle cells and extracellular matrix elements with thin folds in the sarcolemma and high cellular activity evidenced through numerous oval mitochondria groupings. The adult group had classical morphological features of the MTJ, with folds in the sarcolemma forming long projections called "finger-like processes" and sarcoplasmic invaginations. Sarcomeres were aligned in series, showing mitochondria near the Z line in groupings between collagen fiber bundles. The old group had altered "finger-like processes," thickened in both levels of sarcoplasmic invaginations and in central connections with the lateral junctions. We conclude that the MTJ undergoes intense activity from newborn to its formation during adulthood. With increasing age, changes to the MTJ were observed in the shapes of the invaginations and "finger-like processes" due to hypoactivity, potentially compromising force transmission and joint stability.
Collapse
Affiliation(s)
- Adriano Polican Ciena
- Department of Anatomy, Institute of Biomedical Sciences-ICB III, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ciena AP, de Almeida SRY, Dias FJ, Bolina CDS, Issa JPM, Iyomasa MM, Ogawa K, Watanabe IS. Fine structure of myotendinous junction between the anterior belly of the digastric muscle and intermediate tendon in adults rats. Micron 2011; 43:258-62. [PMID: 21967838 DOI: 10.1016/j.micron.2011.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/16/2011] [Accepted: 08/17/2011] [Indexed: 10/17/2022]
Abstract
This study analyzed the ultrastructural characteristics of the myotendinous junction (MTJ) between anterior belly of digastrics muscle and the intermediate tendon in adult rats. Six male Wistar rats were used and were anesthetized with an overdose of urethane and sacrificed by intracardiac perfusion with modified Karnovsky solution, postfixed in 1% osmium tetroxide, dehydrated in increasing series of alcohols and embedded in Spurr resin for transmission electron microscopic analysis. Ultrastructural analysis showed conical shape of the fiber extremity in MTJ region, highlighting the presence of numerous mitochondria arranged in groups in the subsarcolemmal and intermyofibrillary regions. Atypical MTJ characteristics were seen interspersed with bundles of collagen fibers. Classic characteristics such as finger-like processes by means of sarcoplasmic projections were observed among interdigitations. Terminals and periphericals bundles of myofibrils showed close relationship with the adjacent muscle fiber's endomysium through lateral junctions. In the distal portion, it was observed that the communication region of microtendons forming the intermediate tendon of digastric muscle, and it can highlight the columns disposition of tenocytes. In conclusion, the MTJ ultrastructure between the anterior belly of digastric muscle and intermediate tendon of adult rats showed classical morphologic descriptions and presented an atypical region revealed by the subspecialization between the myofibrils bundles and collagen fibers in the MTJ region.
Collapse
Affiliation(s)
- Adriano Polican Ciena
- Department of Anatomy, Institute of Biomedical Sciences-ICB, University of São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|