1
|
Zhvania MG, Pochkidze N. Neuronal Porosome Complex: Secretory Machinery at the Nerve Terminal. Discoveries (Craiova) 2017; 5:e77. [PMID: 32309595 PMCID: PMC6941571 DOI: 10.15190/d.2017.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 01/07/2023] Open
Abstract
Neuronal porosomes are 15 nm cup-shaped lipoprotein secretory machines composed of nearly 30 proteins present at the presynaptic membrane, that have been investigated using multiple imaging modalities, such as electron microscopy, atomic force microscopy, and solution X-ray. Synaptic vesicles transiently dock and fuse at the base of the porosome cup facing the cytosol, by establishing a fusion pore for neurotransmitter release. Studies on the morphology, dynamics, isolation, composition, and reconstitution of the neuronal porosome complex provide a molecular understanding of its structure and function. In the past twenty years, a large body of evidence has accumulated on the involvement of the neuronal porosome proteins in neurotransmission and various neurological disorders. In light of these findings, this review briefly summarizes our current understanding of the neuronal porosome complex, the secretory nanomachine at the nerve terminal.
Collapse
Affiliation(s)
- Mzia G. Zhvania
- Institute of Chemical Biology, Ilia State University, 3/5 K. Cholokhashvili Avenue, 0162, Tbilisi, Georgia
- Department of Brain Ultrastructure and Nanoarchitecture, I. Beriitashvili Center of Experimental BioMedicine, 14, Gotua Street, 0160 Tbilisi, Georgia
| | - Nino Pochkidze
- Institute of Chemical Biology, Ilia State University, 3/5 K. Cholokhashvili Avenue, 0162, Tbilisi, Georgia
- Department of Brain Ultrastructure and Nanoarchitecture, I. Beriitashvili Center of Experimental BioMedicine, 14, Gotua Street, 0160 Tbilisi, Georgia
| |
Collapse
|
2
|
Abstract
Cup-shaped secretory portals at the cell plasma membrane called porosomes mediate the precision release of intravesicular material from cells. Membrane-bound secretory vesicles transiently dock and fuse at the base of porosomes facing the cytosol to expel pressurized intravesicular contents from the cell during secretion. The structure, isolation, composition, and functional reconstitution of the neuronal porosome complex have greatly progressed, providing a molecular understanding of its function in health and disease. Neuronal porosomes are 15 nm cup-shaped lipoprotein structures composed of nearly 40 proteins, compared to the 120 nm nuclear pore complex composed of >500 protein molecules. Membrane proteins compose the porosome complex, making it practically impossible to solve its atomic structure. However, atomic force microscopy and small-angle X-ray solution scattering studies have provided three-dimensional structural details of the native neuronal porosome at sub-nanometer resolution, providing insights into the molecular mechanism of its function. The participation of several porosome proteins previously implicated in neurotransmission and neurological disorders, further attest to the crosstalk between porosome proteins and their coordinated involvement in release of neurotransmitter at the synapse.
Collapse
Affiliation(s)
- Akshata R Naik
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kenneth T Lewis
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Bhanu P Jena
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
3
|
Electron microscopic morphometry of isolated rat brain porosome complex. Neurosci Res 2015; 100:17-20. [DOI: 10.1016/j.neures.2015.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 11/18/2022]
|
4
|
Zhvania MG, Ksovreli M, Japaridze NJ, Lordkipanidze TG. Ultrastructural changes to rat hippocampus in pentylenetetrazol- and kainic acid-induced status epilepticus: A study using electron microscopy. Micron 2015; 74:22-9. [PMID: 25978010 DOI: 10.1016/j.micron.2015.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023]
Abstract
A pentylenetetrazol (PTZ)-induced status epilepticus model in rats was used in the study. The brains were studied one month after treatment. Ultrastructural observations using electron microscopy performed on the neurons, glial cells, and synapses, in the hippocampal CA1 region of epileptic brains, demonstrated the following major changes over normal control brain tissue. (i) There is ultrastructural alterations in some neurons, glial cells and synapses in the hippocampal CA1 region. (ii) The destruction of cellular organelles and peripheral, partial or even total chromatolysis in some pyramidal cells and in interneurons are observed. Several astrocytes are proliferated or activated. Presynaptic terminals with granular vesicles and degenerated presynaptic profiles are rarely observed. (iii) The alterations observed are found to be dependent on the frequency of seizure activities following the PTZ treatment. It was observed that if seizure episodes are frequent and severe, the ultrastructure of hippocampal area is significantly changed. Interestingly, the ultrastructure of CA1 area is found to be only moderately altered if seizure episodes following the status epilepticus are rare and more superficial; (iv) alterations in mitochondria and dendrites are among the most common ultrastructural changes seen, suggesting cell stress and changes to cellular metabolism. These morphological changes, observed in brain neurons in status epilepticus, are a reflection of epileptic pathophysiology. Further studies at the chemical and molecular level of neurotransmitter release, such as at the level of porosomes (secretory portals) at the presynaptic membrane, will further reveal molecular details of these changes.
Collapse
Affiliation(s)
- Mzia G Zhvania
- Institute of Chemical Biology, Ilia State University, 3/5 K. Cholokhashvili Avenue, 0162 Tbilisi, Georgia; Department of Brain Ultrastructure and Nanoarchitecture, I. Beriitashvili Center of Experimental BioMedicine, 14, Gotua Street, 0160 Tbilisi, Georgia.
| | - Mariam Ksovreli
- Institute of Chemical Biology, Ilia State University, 3/5 K. Cholokhashvili Avenue, 0162 Tbilisi, Georgia.
| | - Nadezhda J Japaridze
- Department of Brain Ultrastructure and Nanoarchitecture, I. Beriitashvili Center of Experimental BioMedicine, 14, Gotua Street, 0160 Tbilisi, Georgia; New Vision University, 1A Evgeni Mikeladze Street, 0158 Tbilisi, Georgia.
| | - Tamar G Lordkipanidze
- Institute of Chemical Biology, Ilia State University, 3/5 K. Cholokhashvili Avenue, 0162 Tbilisi, Georgia; Department of Brain Ultrastructure and Nanoarchitecture, I. Beriitashvili Center of Experimental BioMedicine, 14, Gotua Street, 0160 Tbilisi, Georgia.
| |
Collapse
|
5
|
Jena BP. Neuronal Porosome-The Secretory Portal at the Nerve Terminal: It's Structure-Function, Composition, and Reconstitution. J Mol Struct 2014; 1073:187-195. [PMID: 26412873 PMCID: PMC4580341 DOI: 10.1016/j.molstruc.2014.04.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cup-shaped secretory portals at the cell plasma membrane called porosomes mediate secretion from cells. Membrane bound secretory vesicles transiently dock and fuse at the cytosolic compartment of the porosome base to expel intravesicular contents to the outside during cell secretion. In the past decade, the structure, isolation, composition, and functional reconstitution of the neuronal porosome complex has been accomplished providing a molecular understanding of its structure-function. Neuronal porosomes are 15 nm cup-shaped lipoprotein structures composed of nearly 40 proteins. Being a membrane-associated supramolecular complex has precluded determination of the atomic structure of the porosome. However recent studies using small-angle X-ray solution scattering (SAXS), provide at sub-nanometer resolution, the native 3D structure of the neuronal porosome complex associated with docked synaptic vesicle at the nerve terminal. Additionally, results from the SAXS study and earlier studies using atomic force microscopy, provide the possible molecular mechanism involved in porosome-mediated neurotransmitter release at the nerve terminal.
Collapse
Affiliation(s)
- Bhanu P. Jena
- Wayne State University School of Medicine, Department of Physiology, Detroit, MI, USA
| |
Collapse
|
6
|
Zhvania MG, Bikashvili TZ, Japaridze NJ, Lazrishvili II, Ksovreli M. White noise and neuronal porosome complex: transmission electron microscopic study. Discoveries (Craiova) 2014; 2:e25. [PMID: 32309553 PMCID: PMC6941563 DOI: 10.15190/d.2014.17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In the present electron microscopic study the effect of continuous white noise on the morphology of synapses and neuronal porosome complex (the neurotransmitter-release or secretory machinery) in two subcortical auditory brain regions - colliculus inferior and medial geniculate body in cat, were investigated. Several morphological alterations in some synapses were detected in both subcortical areas. These alterations mainly indicate to the decrease of functional activity of synapses. Rarely important pathological modifications in pre- and post-synaptic regions were detected. In addition to descriptive studies, the morphometric analysis of porosome diameter and depth was performed in colliculus inferior and medial geniculate body. The results revealed that while white noise has no effect on the porosome diameter and depth in colliculus inferior, it provokes significant alterations in the morphology of porosome complex in medial geniculate body. In particular, the significant increase of porosome depth in this nucleus may reflect the alteration in neurotransmission.
Collapse
Affiliation(s)
- Mzia G Zhvania
- Institute of Chemical Biology, Ilia State University, 3/5 K. Cholokashvili Avenue, 0162 Tbilisi, Georgia.,I. Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 0160 Tbilisi, Georgia
| | - Tamar Z Bikashvili
- I. Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 0160 Tbilisi, Georgia
| | - Nadezhda J Japaridze
- I. Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 0160 Tbilisi, Georgia.,New Vision University, 1a, Mikeladze Street, 0159 Tbilisi, Georgia
| | - Ilia I Lazrishvili
- I. Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 0160 Tbilisi, Georgia
| | - Mariam Ksovreli
- Institute of Chemical Biology, Ilia State University, 3/5 K. Cholokashvili Avenue, 0162 Tbilisi, Georgia
| |
Collapse
|
7
|
Craciun C. Porosome in the Exocrine Pancreas: A Detailed EM Study suppressor. Discoveries (Craiova) 2014; 2:e23. [PMID: 32309552 PMCID: PMC6941546 DOI: 10.15190/d.2014.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A major question in cell biology that accumulation of partially empty vesicles in cells following secretion is seen, while it is believed that secretion occurs via the complete merger of secretory vesicles with the cell plasma membrane. This important question was solved nearly two decades ago, with the discovery of the Porosome. Porosomes are cup-shaped lipoprotein structures found at the plasma membrane of all cells. Secretory vesicles dock and transiently fuse at the porosome base to form a continuous channel or fusion pore to release the pressurized vesicle contents to the outside. In a decade-long study by our group, we carefully examined using electron microscopy, the detailed structure of the porosome complex in acinar cells of the exocrine pancreas. Besides conformation of earlier findings, our study provides in much greater detail, the in situ morphology of the porosome complex in the exocrine pancreas. The discovery of the detailed morphology of the exocrine pancreas porosome complex in my laboratory is one of the major highlights of my academic career spanning nearly 50 years. Results from our EM studies, reveal for the first time the presence of tethers or cables, which are likely t-SNAREs, present at the porosome base. These EM studies further demonstrate for the first time the docking of a single secretory vesicle or zymogen granule at the base of more than one porosome complex. Detailed spoke-like elements lining the porosome cup were also observed for the first time in these studies, greatly advancing our understanding of the molecular architecture and physiology of the porosome in the exocrine pancreas.
Collapse
|
8
|
Taatjes DJ, Quinn AS, Rand JH, Jena BP. Atomic force microscopy: High resolution dynamic imaging of cellular and molecular structure in health and disease. J Cell Physiol 2013; 228:1949-55. [PMID: 23526453 DOI: 10.1002/jcp.24363] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 03/05/2013] [Indexed: 12/20/2022]
Abstract
The atomic force microscope (AFM), invented in 1986, and a member of the scanning probe family of microscopes, offers the unprecedented ability to image biological samples unfixed and in a hydrated environment at high resolution. This opens the possibility to investigate biological mechanisms temporally in a heretofore unattainable resolution. We have used AFM to investigate: (1) fundamental issues in cell biology (secretion) and, (2) the pathological basis of a human thrombotic disease, the antiphospholipid syndrome (APS). These studies have incorporated the imaging of live cells at nanometer resolution, leading to discovery of the "porosome," the universal secretory portal in cells, and a molecular understanding of membrane fusion from imaging the interaction and assembly of proteins between opposing lipid membranes. Similarly, the development of an in vitro simulacrum for investigating the molecular interactions between proteins and lipids has helped define an etiological explanation for APS. The prime importance of AFM in the success of these investigations will be presented in this manuscript, as well as a discussion of the limitations of this technique for the study of biomedical samples.
Collapse
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Microscopy Imaging Center, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | | | | | |
Collapse
|
9
|
White matter and SVZ serve as endogenous sources of glial progenitor cells for self-repair in neonatal rats with ischemic PVL. Brain Res 2013; 1535:38-51. [DOI: 10.1016/j.brainres.2013.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 07/31/2013] [Accepted: 08/04/2013] [Indexed: 01/18/2023]
|
10
|
Kotaria N, Kiladze M, Zhvania MG, Japaridze NJ, Bikashvili T, Solomonia RO, Bolkvadze T. The protective effect of myo-inositol on hippocamal cell loss and structural alterations in neurons and synapses triggered by kainic acid-induced status epilepticus. Cell Mol Neurobiol 2013; 33:659-71. [PMID: 23568659 DOI: 10.1007/s10571-013-9930-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/18/2013] [Indexed: 02/02/2023]
Abstract
It is known that myo-inositol pretreatment attenuates the seizure severity and several biochemical changes provoked by experimentally induced status epilepticus. However, it remains unidentified whether such properties of myo-inositol influence the structure of epileptic brain. In the present light and electron microscopic research we elucidate if pretreatment with myo-inositol has positive effect on hippocampal cell loss, and cell and synapses damage provoked by kainic acid-induced status epilepticus. Adult male Wistar rats were treated with (i) saline, (ii) saline + kainic acid, (iii) myo-inositol + kainic acid. Assessment of cell loss at 2, 14, and 30 days after treatment demonstrate cytoprotective effect of myo-inositol in CA1 and CA3 areas. It was strongly expressed in pyramidal layer of CA1, radial and oriental layers of CA3 and in less degree-in other layers of both fields. Ultrastructural alterations were described in CA1, 14 days after treatment. The structure of neurons, synapses, and porosomes are well preserved in the rats pretreated with myo-inositol in comparing with rats treated with only kainic acid.
Collapse
Affiliation(s)
- Nato Kotaria
- I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | | | | | | | | | | | | |
Collapse
|