1
|
Gorshkov AP, Kusakin PG, Borisov YG, Tsyganova AV, Tsyganov VE. Effect of Triazole Fungicides Titul Duo and Vintage on the Development of Pea ( Pisum sativum L.) Symbiotic Nodules. Int J Mol Sci 2023; 24:8646. [PMID: 37240010 PMCID: PMC10217885 DOI: 10.3390/ijms24108646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Triazole fungicides are widely used in agricultural production for plant protection, including pea (Pisum sativum L.). The use of fungicides can negatively affect the legume-Rhizobium symbiosis. In this study, the effects of triazole fungicides Vintage and Titul Duo on nodule formation and, in particular, on nodule morphology, were studied. Both fungicides at the highest concentration decreased the nodule number and dry weight of the roots 20 days after inoculation. Transmission electron microscopy revealed the following ultrastructural changes in nodules: modifications in the cell walls (their clearing and thinning), thickening of the infection thread walls with the formation of outgrowths, accumulation of poly-β-hydroxybutyrates in bacteroids, expansion of the peribacteroid space, and fusion of symbiosomes. Fungicides Vintage and Titul Duo negatively affect the composition of cell walls, leading to a decrease in the activity of synthesis of cellulose microfibrils and an increase in the number of matrix polysaccharides of cell walls. The results obtained coincide well with the data of transcriptomic analysis, which revealed an increase in the expression levels of genes that control cell wall modification and defense reactions. The data obtained indicate the need for further research on the effects of pesticides on the legume-Rhizobium symbiosis in order to optimize their use.
Collapse
Affiliation(s)
- Artemii P. Gorshkov
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg 196608, Russia; (A.P.G.); (P.G.K.); (A.V.T.)
| | - Pyotr G. Kusakin
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg 196608, Russia; (A.P.G.); (P.G.K.); (A.V.T.)
| | - Yaroslav G. Borisov
- Research Resource Centre “Molecular and Cell Technologies”, Saint Petersburg State University, Saint Petersburg 199034, Russia;
| | - Anna V. Tsyganova
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg 196608, Russia; (A.P.G.); (P.G.K.); (A.V.T.)
| | - Viktor E. Tsyganov
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg 196608, Russia; (A.P.G.); (P.G.K.); (A.V.T.)
- Saint Petersburg Scientific Center RAS, Universitetskaya Embankment 5, Saint Petersburg 199034, Russia
| |
Collapse
|
2
|
Involvement of Diamine Oxidase in Modification of Plasma Membrane Proton Pump Activity in Cucumis sativus L. Seedlings under Cadmium Stress. Int J Mol Sci 2022; 24:ijms24010262. [PMID: 36613704 PMCID: PMC9820736 DOI: 10.3390/ijms24010262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Cucumber (Cucumis sativus L.) is a crop plant being the third most-produced vegetable developed as a new model plant. Heavy metal pollution is a serious global problem that affects crop production. An industrial activity has led to high emissions of Cd into the environment. Plants realize adaptive strategies to diminish the toxic effects of Cd. They can remove excess toxic ions of heavy metals from the cytoplasm to the outside of cells using the metal/proton antiport. The proton gradient needed for the action of the antiporter is generated by the plasma membrane (PM) H+-ATPase (EC 3.6.3.14). We have shown that treatment of cucumber plants with Cd stimulated the diamine oxidase (DAO, EC 1.4.3.6) activity in roots. Under cadmium stress, the PM H+-ATPase activity also increased in cucumber seedlings. The stimulating effect of Cd on the PM H+-ATPase activity and expression of three genes encoding this enzyme (CsHA2, CsHA4, CsHA8) was reduced by aminoguanidine (AG, a DAO inhibitor). Moreover, we have observed that H2O2 produced by DAO promotes the formation of NO in the roots of seedlings. The results presented in this work showed that DAO may be an element of the signal transduction pathway, leading to enhanced PM H+-ATPase activity under cadmium stress.
Collapse
|
3
|
Structure and Development of the Legume-Rhizobial Symbiotic Interface in Infection Threads. Cells 2021; 10:cells10051050. [PMID: 33946779 PMCID: PMC8146911 DOI: 10.3390/cells10051050] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
The intracellular infection thread initiated in a root hair cell is a unique structure associated with Rhizobium-legume symbiosis. It is characterized by inverted tip growth of the plant cell wall, resulting in a tunnel that allows invasion of host cells by bacteria during the formation of the nitrogen-fixing root nodule. Regulation of the plant-microbial interface is essential for infection thread growth. This involves targeted deposition of the cell wall and extracellular matrix and tight control of cell wall remodeling. This review describes the potential role of different actors such as transcription factors, receptors, and enzymes in the rearrangement of the plant-microbial interface and control of polar infection thread growth. It also focuses on the composition of the main polymers of the infection thread wall and matrix and the participation of reactive oxygen species (ROS) in the development of the infection thread. Mutant analysis has helped to gain insight into the development of host defense reactions. The available data raise many new questions about the structure, function, and development of infection threads.
Collapse
|
4
|
Yu Y, Zhou W, Zhou K, Liu W, Liang X, Chen Y, Sun D, Lin X. Polyamines modulate aluminum-induced oxidative stress differently by inducing or reducing H 2O 2 production in wheat. CHEMOSPHERE 2018; 212:645-653. [PMID: 30173111 DOI: 10.1016/j.chemosphere.2018.08.133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/21/2018] [Accepted: 08/26/2018] [Indexed: 05/08/2023]
Abstract
Polyamines are important bioactive molecules involved in regulating H2O2 homeostasis, which is recognized as a major stimulus of oxidative stress under aluminum (Al) exposure. In this study, we investigated the involvement of spermidine oxidation in Al-induced oxidative stress, and its modulation by exogenous putrescine (Put) in two wheat genotypes differing in Al tolerance. Aluminum caused more severe oxidative damage at the root apexes in the Al-sensitive genotype Yangmai-5 than in the tolerant Xi Aimai-1, but these effects were significantly reversed by exogenous Put and polyamine oxidase (PAO) inhibitors. Aluminum caused a more significant increase in cell wall-bound PAO (CW-PAO) activity in Yangmai-5 than in Xi Aimai-1. Inhibiting of CW-PAO reduced H2O2 accumulation, restored Spd decline in both genotypes, indicating its potential role in Al-induced H2O2 production through catalyzing Spd oxidation. Additionally, Al significantly increased the activity of plasma membrane-NADPH oxidase, another H2O2 generator, in wheat roots. Put application significantly inhibited the activity of CW-PAO and plasma membrane-NADPH oxidase, and reduced H2O2 accumulation in Al-stressed wheat roots. Antioxidant enzymes were significantly stimulated by Al, but not Put. Overall, Put may protect wheat roots against Al-induced oxidative stress through regulating H2O2 production by inhibiting CW-PAO and plasma membrane-NADPH oxidase.
Collapse
Affiliation(s)
- Yan Yu
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China; MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Weiwei Zhou
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Kejin Zhou
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China
| | - Wenjing Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Xin Liang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yao Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Dasheng Sun
- College of Resources and Environment, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China; Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
5
|
Aluminum-Induced Changes on DNA Damage, DNA Methylation and LTR Retrotransposon Polymorphism in Maize. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/s13369-017-2697-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Smirnov OE. Response of phenolic metabolism induced by aluminium toxicity in Fagopyrum esculentum Moench. plants. UKRAINIAN BIOCHEMICAL JOURNAL 2015. [DOI: 10.15407/ubj87.06.129] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Sujkowska-Rybkowska M, Borucki W. Pectins esterification in the apoplast of aluminum-treated pea root nodules. JOURNAL OF PLANT PHYSIOLOGY 2015; 184:1-7. [PMID: 26151130 DOI: 10.1016/j.jplph.2015.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/11/2015] [Accepted: 05/11/2015] [Indexed: 06/04/2023]
Abstract
Aiming to elucidate the possible involvement of pectins in aluminum-mediated growth inhibition the distribution of pectins in the apoplast of root nodules was investigated. Experiments were performed on the pea (Pisum sativum L.) root nodules treated with aluminum (50 μM AlCl3, for 2 or 24h). For histochemical acidic pectin localization we used ruthenium red staining. Immunolabeling techniques with monoclonal antibodies specific to high methyl-esterified pectin (JIM7), low methyl-esterified pectin (JIM5) and calcium cross-linked pectin (2F4) were used to re-examine the pattern of pectin esterification and distribution. After immunolabeling the samples were observed using a fluorescent and transmission electron microscope. Ruthenium red staining showed that acid pectin content increased in the apoplast of Al-treated nodules and immunolocalization of pectin epitopes revealed that the fraction of de-esterified pectins increased significantly under Al stress. JIM5 and 2F4 epitopes were located on the inner surface of the primary cell wall with higher intensity at cell corners lining the intercellular spaces and at infection threads (ITs) walls. By contrast, JIM 7 labels all walls uniformly throughout the nodule. In the presence of Al, the increase of JIM5 and 2F4 labeling in thick plant and IT walls, together with a decrease of JIM7 labeling was observed. These results indicate a specific role for pectin de-esterification in the process of wall thickening and growth inhibition. In particular, Al-dependent increase in pectin content and their low methyl esterification degree correlate with wall thickness and higher rigidity, and in this way, may affect IT and nodules growth.
Collapse
Affiliation(s)
| | - Wojciech Borucki
- Department of Botany, Warsaw University of Life Sciences, Poland
| |
Collapse
|
8
|
Sujkowska-Rybkowska M, Borucki W. Accumulation and localization of extensin protein in apoplast of pea root nodule under aluminum stress. Micron 2014; 67:10-19. [PMID: 25004847 DOI: 10.1016/j.micron.2014.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 11/20/2022]
Abstract
Cell wall components such as hydroxyproline-rich glycoproteins (HRGPs, extensins) have been proposed to be involved in aluminum (Al) resistance mechanisms in plants. We have characterized the distribution of extensin in pea (Pisum sativum L.) root nodules apoplast under short (for 2 and 24h) Al stress. Monoclonal antibodie LM1 have been used to locate extensin protein epitope by immunofluorescence and immunogold labeling. The nodules were shown to respond to Al stress by thickening of plant and infection thread (IT) walls and disturbances in threads growth and bacteria endocytosis. Immunoblot results indicated the presence of a 17-kDa band specific for LM1. Irrespective of the time of Al stress, extensin content increased in root nodules. Further observation utilizing fluorescence and transmission electron microscope showed that LM1 epitope was localized in walls and intercellular spaces of nodule cortex tissues and in the infection threads matrix. Al stress in nodules appears to be associated with higher extensin accumulation in matrix of enlarged thick-walled ITs. In addition to ITs, thickened walls and intercellular spaces of nodule cortex were also associated with intense extensin accumulation. These data suggest that Al-induced extensin accumulation in plant cell walls and ITs matrix may have influence on the process of IT growth and tissue and cell colonization by Rhizobium bacteria.
Collapse
Affiliation(s)
| | - Wojciech Borucki
- Department of Botany, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|