1
|
Dubkov S, Overchenko A, Novikov D, Kolmogorov V, Volkova L, Gorelkin P, Erofeev A, Parkhomenko Y. Single-Cell Analysis with Silver-Coated Pipette by Combined SERS and SICM. Cells 2023; 12:2521. [PMID: 37947599 PMCID: PMC10650894 DOI: 10.3390/cells12212521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023] Open
Abstract
The study of individual cell processes that occur both on their surface and inside is highly interesting for the development of new medical drugs, cytology and cell technologies. This work presents an original technique for fabricating the silver-coated pipette and its use for the cell analysis by combination with surface-enhanced Raman spectroscopy (SERS) and scanning ion-conducting microscopy (SICM). Unlike the majority of other designs, the pipette opening in our case remains uncovered, which is important for SICM. SERS-active Ag nanoparticles on the pipette surface are formed by vacuum-thermal evaporation followed by annealing. An array of nanoparticles had a diameter on the order of 36 nm and spacing of 12 nm. A two-particle model based on Laplace equations is used to calculate a theoretical enhancement factor (EF). The surface morphology of the samples is investigated by scanning electron microscopy while SICM is used to reveal the surface topography, to evaluate Young's modulus of living cells and to control an injection of the SERS-active pipettes into them. A Raman microscope-spectrometer was used to collect characteristic SERS spectra of cells and cell components. Local Raman spectra were obtained from the cytoplasm and nucleus of the same HEK-293 cancer cell. The EF of the SERS-active pipette was 7 × 105. As a result, we demonstrate utilizing the silver-coated pipette for both the SICM study and the molecular composition analysis of cytoplasm and the nucleus of living cells by SERS. The probe localization in cells is successfully achieved.
Collapse
Affiliation(s)
- Sergey Dubkov
- Institute of Advanced Materials and Technologies, National Research University of Electronic Technology, 124498 Moscow, Russia
| | - Aleksei Overchenko
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS” (MISIS), 119049 Moscow, Russia (P.G.); (A.E.)
- Molecular Nanophotonics Group, Peter Debye Institute for Soft Matter Physics, Leipzig University, 04109 Leipzig, Germany
| | - Denis Novikov
- Institute of Advanced Materials and Technologies, National Research University of Electronic Technology, 124498 Moscow, Russia
| | - Vasilii Kolmogorov
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS” (MISIS), 119049 Moscow, Russia (P.G.); (A.E.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Lidiya Volkova
- Institute of Nanotechnology of Microelectronics RAS, 115487 Moscow, Russia
| | - Petr Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS” (MISIS), 119049 Moscow, Russia (P.G.); (A.E.)
| | - Alexander Erofeev
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS” (MISIS), 119049 Moscow, Russia (P.G.); (A.E.)
| | - Yuri Parkhomenko
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS” (MISIS), 119049 Moscow, Russia (P.G.); (A.E.)
| |
Collapse
|
2
|
Shigyou K, Sun L, Yajima R, Takigaura S, Tajima M, Furusho H, Kikuchi Y, Miyazawa K, Fukuma T, Taoka A, Ando T, Watanabe S. Geometrical Characterization of Glass Nanopipettes with Sub-10 nm Pore Diameter by Transmission Electron Microscopy. Anal Chem 2020; 92:15388-15393. [PMID: 33205942 DOI: 10.1021/acs.analchem.0c02884] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Glass nanopipettes are widely used for various applications in nanosciences. In most of the applications, it is important to characterize their geometrical parameters, such as the aperture size and the inner cone angle at the tip region. For nanopipettes with sub-10 nm aperture and thin wall thickness, transmission electron microscopy (TEM) must be most instrumental in their precise geometrical measurement. However, this measurement has remained a challenge because heat generated by electron beam irradiation would largely deform sub-10 nm nanopipettes. Here, we provide methods for preparing TEM specimens that do not cause deformation of such tiny nanopipettes.
Collapse
Affiliation(s)
- Kazuki Shigyou
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Linhao Sun
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Riku Yajima
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shohei Takigaura
- Department of Physics, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Masashi Tajima
- College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hirotoshi Furusho
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yousuke Kikuchi
- Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Keisuke Miyazawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Azuma Taoka
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shinji Watanabe
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
6
|
Rheinlaender J, Schäffer TE. An Accurate Model for the Ion Current–Distance Behavior in Scanning Ion Conductance Microscopy Allows for Calibration of Pipet Tip Geometry and Tip–Sample Distance. Anal Chem 2017; 89:11875-11880. [DOI: 10.1021/acs.analchem.7b03871] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Johannes Rheinlaender
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Tilman E. Schäffer
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|