1
|
Fu X, Ning J, Zhong Z, Ambrose Z, Charles Watkins S, Zhang P. AutoCLEM: An Automated Workflow for Correlative Live-Cell Fluorescence Microscopy and Cryo-Electron Tomography. Sci Rep 2019; 9:19207. [PMID: 31844138 PMCID: PMC6915765 DOI: 10.1038/s41598-019-55766-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/02/2019] [Indexed: 01/06/2023] Open
Abstract
Correlative light and electron microscopy (CLEM) combines the strengths of both light and electron imaging modalities and enables linking of biological spatiotemporal information from live-cell fluorescence light microscopy (fLM) to high-resolution cellular ultra-structures from cryo-electron microscopy and tomography (cryoEM/ET). This has been previously achieved by using fLM signals to localize the regions of interest under cryogenic conditions. The correlation process, however, is often tedious and time-consuming with low throughput and limited accuracy, because multiple correlation steps at different length scales are largely carried out manually. Here, we present an experimental workflow, AutoCLEM, which overcomes the existing limitations and improves the performance and throughput of CLEM methods, and associated software. The AutoCLEM system encompasses a high-speed confocal live-cell imaging module to acquire an automated fLM grid atlas that is linked to the cryoEM grid atlas, followed by cryofLM imaging after freezing. The fLM coordinates of the targeted areas are automatically converted to cryoEM/ET and refined using fluorescent fiducial beads. This AutoCLEM workflow significantly accelerates the correlation efficiency between live-cell fluorescence imaging and cryoEM/ET structural analysis, as demonstrated by visualizing human immunodeficiency virus type 1 (HIV-1) interacting with host cells.
Collapse
Affiliation(s)
- Xiaofeng Fu
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Jiying Ning
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Zhou Zhong
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Zandrea Ambrose
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Simon Charles Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA. .,Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK. .,Electron Bio-Imaging Centre, Diamond Light Sources, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
| |
Collapse
|
2
|
Michel J, Nolin F, Wortham L, Lalun N, Tchelidze P, Banchet V, Terryn C, Ploton D. Various Nucleolar Stress Inducers Result in Highly Distinct Changes in Water, Dry Mass and Elemental Content in Cancerous Cell Compartments: Investigation Using a Nano-Analytical Approach. Nanotheranostics 2019; 3:179-195. [PMID: 31183313 PMCID: PMC6536780 DOI: 10.7150/ntno.31878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/20/2019] [Indexed: 01/10/2023] Open
Abstract
Rationale: Numerous chemotherapeutic drugs that affect ribosome biogenesis in the nucleolus induce nucleolar stress. Improving our understanding of the effects of these drugs will require uncovering and comparing their impact on several biophysical parameters of the major cell compartments. Here, we quantified the water content and dry mass of cancerous cells treated with CX-5461, DRB or DAM to calculate macromolecular crowding and the volume occupied by free water, as well as elemental content. Methods: HeLa-H2B-GFP cells were treated with CX-5461, DRB or DAM. Water content and dry mass were measured in numerous regions of interest of ultrathin cryo-sections by quantitative scanning transmission electron microscope dark-field imaging and the elements quantified by energy dispersive X-ray spectrometry. The data were used to calculate macromolecular crowding and the volume occupied by free water in all cell compartments of control and treated cells. Hydrophobic and unfolded proteins were revealed by 8-Anilinonaphtalene-1-sulfonic acid (ANS) staining and imaging by two-photon microscopy. Immunolabeling of UBF, pNBS1 and pNF-κB was carried out and the images acquired with a confocal microscope for 3D imaging to address whether the localization of these proteins changes in treated cells. Results: Treatment with CX-5461, DRB or DAM induced completely different changes in macromolecular crowding and elemental content. Macromolecular crowding and elemental content were much higher in CX-5461-treated, moderately higher in DRB-treated, and much lower in DAM-treated cells than control cells. None of the drugs alone induced nucleolar ANS staining but it was induced by heat-shock of control cells and cells previously treated with DAM. UBF and pNBS1 were systematically co-localized in the nucleolus of CX-5461- and DAM-treated cells. pNF-κB only localized to the nucleolar caps of pre-apoptotic DAM-treated cells. Conclusion: We directly quantified water and ion content in cell compartments using cryo-correlative electron microscopy. We show that different chemotherapeutic nucleolar stress inducers result in distinctive, thus far-unrecognized changes in macromolecular crowding and elemental content which are known to modify cell metabolism. Moreover we were able to correlate these changes to the sensitivity of treated cells to heat-shock and the behavior of nucleolar pNBS1 and pNF-κB.
Collapse
Affiliation(s)
- Jean Michel
- UMR-S 1250 INSERM, Université de Reims Champagne Ardenne
| | | | - Laurence Wortham
- Platform of Cell and Tissue Imaging (PICT), Université de Reims Champagne Ardenne
| | - Nathalie Lalun
- UMR-S 1250 INSERM, Université de Reims Champagne Ardenne
| | - Pavel Tchelidze
- Faculty of Exact and Life Sciences, Department of Morphology, Tbilisi State University, Tbilisi, Georgia
| | | | - Christine Terryn
- Platform of Cell and Tissue Imaging (PICT), Université de Reims Champagne Ardenne
| | | |
Collapse
|
3
|
Li S, Raychaudhuri S, Watanabe S. Flash-and-Freeze: A Novel Technique to Capture Membrane Dynamics with Electron Microscopy. J Vis Exp 2017. [PMID: 28518090 PMCID: PMC5565139 DOI: 10.3791/55664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cells constantly change their membrane architecture and protein distribution, but it is extremely difficult to visualize these events at a temporal and spatial resolution on the order of ms and nm, respectively. We have developed a time-resolved electron microscopy technique, "flash-and-freeze," that induces cellular events with optogenetics and visualizes the resulting membrane dynamics by freezing cells at defined time points after stimulation. To demonstrate this technique, we expressed channelrhodopsin, a light-sensitive cation channel, in mouse hippocampal neurons. A flash of light stimulates neuronal activity and induces neurotransmitter release from synaptic terminals through the fusion of synaptic vesicles. The optogenetic stimulation of neurons is coupled with high-pressure freezing to follow morphological changes during synaptic transmission. Using a commercial instrument, we captured the fusion of synaptic vesicles and the recovery of the synaptic vesicle membrane. To visualize the sequence of events, large datasets were generated and analyzed blindly, since morphological changes were followed in different cells over time. Nevertheless, flash-and-freeze allows the visualization of membrane dynamics in electron micrographs with ms temporal resolution.
Collapse
Affiliation(s)
- Shuo Li
- Department of Cell Biology, Johns Hopkins School of Medicine; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health
| | | | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins School of Medicine; Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine;
| |
Collapse
|
4
|
Hémonnot CYJ, Ranke C, Saldanha O, Graceffa R, Hagemann J, Köster S. Following DNA Compaction During the Cell Cycle by X-ray Nanodiffraction. ACS NANO 2016; 10:10661-10670. [PMID: 28024349 DOI: 10.1021/acsnano.6b05034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
X-ray imaging of intact biological cells is emerging as a complementary method to visible light or electron microscopy. Owing to the high penetration depth and small wavelength of X-rays, it is possible to resolve subcellular structures at a resolution of a few nanometers. Here, we apply scanning X-ray nanodiffraction in combination with time-lapse bright-field microscopy to nuclei of 3T3 fibroblasts and thus relate the observed structures to specific phases in the cell division cycle. We scan the sample at a step size of 250 nm and analyze the individual diffraction patterns according to a generalized Porod's law. Thus, we obtain information on the aggregation state of the nuclear DNA at a real space resolution on the order of the step size and in parallel structural information on the order of few nanometers. We are able to distinguish nucleoli, heterochromatin, and euchromatin in the nuclei and follow the compaction and decompaction during the cell division cycle.
Collapse
Affiliation(s)
- Clément Y J Hémonnot
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, Göttingen 37077, Germany
| | - Christiane Ranke
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, Göttingen 37077, Germany
| | - Oliva Saldanha
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, Göttingen 37077, Germany
| | - Rita Graceffa
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, Göttingen 37077, Germany
| | - Johannes Hagemann
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, Göttingen 37077, Germany
| | - Sarah Köster
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, Göttingen 37077, Germany
| |
Collapse
|