1
|
Salbreiter M, Wagenhaus A, Rösch P, Popp J. Unveiling Microbial Diversity: Raman Spectroscopy's Discrimination of Clostridium and Related Genera. Anal Chem 2024; 96:15702-15710. [PMID: 39292759 PMCID: PMC11447666 DOI: 10.1021/acs.analchem.4c03280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
In the clinical environment, the identification of phylogenetic closely related genera and species like Clostridium and Bacillus spp. is challenging. Both genera contain representatives of pathogenic and nonpathogenic species that need to be distinguished for a proper diagnostic read-out. Therefore, reliable and accurate detection methods must be employed for the correct identification of these genera and species. Despite their high pathogenicity, clostridial infections and food contaminations present significant challenges due to their unique cultivation conditions and developmental needs. Therefore, in many diagnostic protocols, the toxins are used for microbiological documentation. However, the applied laboratory methods suffer in accuracy, sometimes require large bacterial loads to provide reliable results, and cannot differentiate pathogenic from nonpathogenic strains. Here, Raman spectroscopy was employed to create an extensive Raman database consisting of pathogenic and nonpathogenic Bacillus and Clostridium species. These genera, as well as representatives of Paraclostridium and Clostridioides were specifically selected for their phylogenetic relation, cultivation conditions, and metabolic activity. A chemometric evaluation of the Raman spectra of single vegetative cells revealed a high discriminating power at the genus level. However, bacilli are considerably easier to classify at the species level than clostridia. The discrimination between the genera and species was based on their phylogeny and not their aerobic and anaerobic cultivation conditions. These encouraging results demonstrated that Raman spectroscopy coupled with chemometrics is a robust and helpful method for differentiating Clostridium species from Bacillus, Clostridioides, and Paraclostridium species. This approach has the potential to be a valuable tool in clinical diagnostics.
Collapse
Affiliation(s)
- Markus Salbreiter
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, Jena D-07743, Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, Jena D-07743, Germany
| | - Annette Wagenhaus
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, Jena D-07743, Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, Jena D-07743, Germany
| | - Petra Rösch
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, Jena D-07743, Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, Jena D-07743, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, Jena D-07743, Germany
- Leibniz Institute of Photonic Technology Jena - Member of the Research Alliance, Leibniz Health Technologies, Albert-Einstein-Str. 9, Jena D-07745, Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, Jena D-07743, Germany
| |
Collapse
|
2
|
Liu Y, Wu H, Shu Y, Hua Y, Fu P. Symbiodiniaceae and Ruegeria sp. Co-Cultivation to Enhance Nutrient Exchanges in Coral Holobiont. Microorganisms 2024; 12:1217. [PMID: 38930599 PMCID: PMC11205819 DOI: 10.3390/microorganisms12061217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The symbiotic relationship between corals and their associated microorganisms is crucial for the health of coral reef eco-environmental systems. Recently, there has been a growing interest in unraveling how the manipulation of symbiont nutrient cycling affects the stress tolerance in the holobiont of coral reefs. However, most studies have primarily focused on coral-Symbiodiniaceae-bacterial interactions as a whole, neglecting the interactions between Symbiodiniaceae and bacteria, which remain largely unexplored. In this study, we proposed a hypothesis that there exists an inner symbiotic loop of Symbiodiniaceae and bacteria within the coral symbiotic loop. We conducted experiments to demonstrate how metabolic exchanges between Symbiodiniaceae and bacteria facilitate the nutritional supply necessary for cellular growth. It was seen that the beneficial bacterium, Ruegeria sp., supplied a nitrogen source to the Symbiodiniaceae strain Durusdinium sp., allowing this dinoflagellate to thrive in a nitrogen-free medium. The Ruegeria sp.-Durusdinium sp. interaction was confirmed through 15N-stable isotope probing-single cell Raman spectroscopy, in which 15N infiltrated into the bacterial cells for intracellular metabolism, and eventually the labeled nitrogen source was traced within the macromolecules of Symbiodiniaceae cells. The investigation into Symbiodiniaceae loop interactions validates our hypothesis and contributes to a comprehensive understanding of the intricate coral holobiont. These findings have the potential to enhance the health of coral reefs in the face of global climate change.
Collapse
Affiliation(s)
| | | | | | | | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; (Y.L.); (H.W.); (Y.S.); (Y.H.)
| |
Collapse
|
3
|
Tang X, Wu Q, Shang L, Liu K, Ge Y, Liang P, Li B. Raman cell sorting for single-cell research. Front Bioeng Biotechnol 2024; 12:1389143. [PMID: 38832129 PMCID: PMC11145634 DOI: 10.3389/fbioe.2024.1389143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/08/2024] [Indexed: 06/05/2024] Open
Abstract
Cells constitute the fundamental units of living organisms. Investigating individual differences at the single-cell level facilitates an understanding of cell differentiation, development, gene expression, and cellular characteristics, unveiling the underlying laws governing life activities in depth. In recent years, the integration of single-cell manipulation and recognition technologies into detection and sorting systems has emerged as a powerful tool for advancing single-cell research. Raman cell sorting technology has garnered attention owing to its non-labeling, non-destructive detection features and the capability to analyze samples containing water. In addition, this technology can provide live cells for subsequent genomics analysis and gene sequencing. This paper emphasizes the importance of single-cell research, describes the single-cell research methods that currently exist, including single-cell manipulation and single-cell identification techniques, and highlights the advantages of Raman spectroscopy in the field of single-cell analysis by comparing it with the fluorescence-activated cell sorting (FACS) technique. It describes various existing Raman cell sorting techniques and introduces their respective advantages and disadvantages. The above techniques were compared and analyzed, considering a variety of factors. The current bottlenecks include weak single-cell spontaneous Raman signals and the requirement for a prolonged total cell exposure time, significantly constraining Raman cell sorting technology's detection speed, efficiency, and throughput. This paper provides an overview of current methods for enhancing weak spontaneous Raman signals and their associated advantages and disadvantages. Finally, the paper outlines the detailed information related to the Raman cell sorting technology mentioned in this paper and discusses the development trends and direction of Raman cell sorting.
Collapse
Affiliation(s)
- Xusheng Tang
- Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingyi Wu
- Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lindong Shang
- Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kunxiang Liu
- Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Ge
- Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Liang
- Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
- Hooke Instruments Ltd., Changchun, China
| | - Bei Li
- Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
- Hooke Instruments Ltd., Changchun, China
| |
Collapse
|
4
|
Zhang Y, Young P, Traini D, Li M, Ong HX, Cheng S. Challenges and current advances in in vitro biofilm characterization. Biotechnol J 2023; 18:e2300074. [PMID: 37477959 DOI: 10.1002/biot.202300074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
Biofilms are structured communities of bacterial cells encased in a self-produced polymeric matrix, which develop over time and exhibit temporal responses to stimuli from internal biological processes or external environmental changes. They can be detrimental, threatening public health and causing economic loss, while they also play beneficial roles in ecosystem health, biotechnology processes, and industrial settings. Biofilms express extreme heterogeneity in their physical properties and structural composition, resulting in critical challenges in understanding them comprehensively. The lack of detailed knowledge of biofilms and their phenotypes has deterred significant progress in developing strategies to control their negative impacts and take advantage of their beneficial applications. A range of in vitro models and characterization tools have been developed and used to study biofilm growth and, specifically, to investigate the impact of environmental and growth factors on their development. This review article discusses the existing knowledge of biofilm properties and explains how external factors, such as flow condition, surface, interface, and host factor, may impact biofilm growth. The limitations of current tools, techniques, and in vitro models that are currently used for biofilms are also presented.
Collapse
Affiliation(s)
- Ye Zhang
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
| | - Paul Young
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
- Department of Marketing, Macquarie Business School, Macquarie University, Sydney, New South Wales, Australia
| | - Daniela Traini
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Ming Li
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Hui Xin Ong
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Shaokoon Cheng
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Zhu Y, You M, Shi Y, Huang H, Wei Z, He T, Xiong S, Wang Z, Cheng X. Optofluidic Tweezers: Efficient and Versatile Micro/Nano-Manipulation Tools. MICROMACHINES 2023; 14:1326. [PMID: 37512637 PMCID: PMC10384111 DOI: 10.3390/mi14071326] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Optical tweezers (OTs) can transfer light momentum to particles, achieving the precise manipulation of particles through optical forces. Due to the properties of non-contact and precise control, OTs have provided a gateway for exploring the mysteries behind nonlinear optics, soft-condensed-matter physics, molecular biology, and analytical chemistry. In recent years, OTs have been combined with microfluidic chips to overcome their limitations in, for instance, speed and efficiency, creating a technology known as "optofluidic tweezers." This paper describes static OTs briefly first. Next, we overview recent developments in optofluidic tweezers, summarizing advancements in capture, manipulation, sorting, and measurement based on different technologies. The focus is on various kinds of optofluidic tweezers, such as holographic optical tweezers, photonic-crystal optical tweezers, and waveguide optical tweezers. Moreover, there is a continuing trend of combining optofluidic tweezers with other techniques to achieve greater functionality, such as antigen-antibody interactions and Raman tweezers. We conclude by summarizing the main challenges and future directions in this research field.
Collapse
Affiliation(s)
- Yuchen Zhu
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Minmin You
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Haiyang Huang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Zeyong Wei
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Tao He
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Sha Xiong
- School of Automation, Central South University, Changsha 410083, China
| | - Zhanshan Wang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Xinbin Cheng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| |
Collapse
|
6
|
Zhang B, Shi S, Tang R, Qiao C, Yang M, You Z, Shao S, Wu D, Yu H, Zhang J, Cao Y, Li F, Song H. Recent advances in enrichment, isolation, and bio-electrochemical activity evaluation of exoelectrogenic microorganisms. Biotechnol Adv 2023; 66:108175. [PMID: 37187358 DOI: 10.1016/j.biotechadv.2023.108175] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
Exoelectrogenic microorganisms (EEMs) catalyzed the conversion of chemical energy to electrical energy via extracellular electron transfer (EET) mechanisms, which underlay diverse bio-electrochemical systems (BES) applications in clean energy development, environment and health monitoring, wearable/implantable devices powering, and sustainable chemicals production, thereby attracting increasing attentions from academic and industrial communities in the recent decades. However, knowledge of EEMs is still in its infancy as only ~100 EEMs of bacteria, archaea, and eukaryotes have been identified, motivating the screening and capture of new EEMs. This review presents a systematic summarization on EEM screening technologies in terms of enrichment, isolation, and bio-electrochemical activity evaluation. We first generalize the distribution characteristics of known EEMs, which provide a basis for EEM screening. Then, we summarize EET mechanisms and the principles underlying various technological approaches to the enrichment, isolation, and bio-electrochemical activity of EEMs, in which a comprehensive analysis of the applicability, accuracy, and efficiency of each technology is reviewed. Finally, we provide a future perspective on EEM screening and bio-electrochemical activity evaluation by focusing on (i) novel EET mechanisms for developing the next-generation EEM screening technologies, and (ii) integration of meta-omics approaches and bioinformatics analyses to explore nonculturable EEMs. This review promotes the development of advanced technologies to capture new EEMs.
Collapse
Affiliation(s)
- Baocai Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Sicheng Shi
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Rui Tang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chunxiao Qiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Meiyi Yang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zixuan You
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shulin Shao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Deguang Wu
- Department of Brewing Engineering, Moutai Institute, Luban Ave, Renhuai 564507, Guizhou, PR China
| | - Huan Yu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Junqi Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Feng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
7
|
Davison PA, Tu W, Xu J, Della Valle S, Thompson IP, Hunter CN, Huang WE. Engineering a Rhodopsin-Based Photo-Electrosynthetic System in Bacteria for CO 2 Fixation. ACS Synth Biol 2022; 11:3805-3816. [PMID: 36264158 PMCID: PMC9680020 DOI: 10.1021/acssynbio.2c00397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A key goal of synthetic biology is to engineer organisms that can use solar energy to convert CO2 to biomass, chemicals, and fuels. We engineered a light-dependent electron transfer chain by integrating rhodopsin and an electron donor to form a closed redox loop, which drives rhodopsin-dependent CO2 fixation. A light-driven proton pump comprising Gloeobacter rhodopsin (GR) and its cofactor retinal have been assembled in Ralstonia eutropha (Cupriavidus necator) H16. In the presence of light, this strain fixed inorganic carbon (or bicarbonate) leading to 20% growth enhancement, when formate was used as an electron donor. We found that an electrode from a solar panel can replace organic compounds to serve as the electron donor, mediated by the electron shuttle molecule riboflavin. In this new autotrophic and photo-electrosynthetic system, GR is augmented by an external photocell for reductive CO2 fixation. We demonstrated that this hybrid photo-electrosynthetic pathway can drive the engineered R. eutropha strain to grow using CO2 as the sole carbon source. In this system, a bioreactor with only two inputs, light and CO2, enables the R. eutropha strain to perform a rhodopsin-dependent autotrophic growth. Light energy alone, supplied by a solar panel, can drive the conversion of CO2 into biomass with a maximum electron transfer efficiency of 20%.
Collapse
Affiliation(s)
- Paul A. Davison
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Weiming Tu
- Department
of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - Jiabao Xu
- Department
of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - Simona Della Valle
- Department
of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - Ian P. Thompson
- Department
of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - C. Neil Hunter
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Wei E. Huang
- Department
of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom,. Tel: +44 1865 283786
| |
Collapse
|
8
|
Ren ZQ, Hong HF, Li GF, Du XN, Zhang LG, Huang BC, Fan NS, Jin RC. A review on characterizing the metabolite property of anammox sludge by spectroscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153065. [PMID: 35031359 DOI: 10.1016/j.scitotenv.2022.153065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
As one of the most promising autotrophic biological nitrogen removal technology, anaerobic ammonia oxidation (anammox) has gained intense attention for the past decades and several full-scale facilities have been implemented worldwide. However, anammox bacteria are easily affected by disturbed external environmental factors, which commonly leads to the fluctuations in reactor performance. The response of anammox sludge to external stress results in changes in components and structural characteristics of intracellular and extracellular polymer substances. Real-time and convenient spectral analysis of anammox sludge metabolites can give early warning of performance deterioration under external stresses, which is of great significance to the stable operation of bioreactor. This review summarized the research progress on characterizing the intracellular and extracellular metabolites of anammox sludge through spectroscopic techniques. The correlation between anammox sludge activity and its key metabolites was analyzed. Also, the limitations and future prospects of applying spectral analytical techniques for anammox bioreactor monitoring were discussed and outlooked. This review may provide valuable information for both scientific study and engineering application of anammox based nitrogen removal technology.
Collapse
Affiliation(s)
- Zhi-Qi Ren
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - He-Fang Hong
- Taizhou Municipal Ecology and Environment Bureau Linhai Branch, Taizhou 317000, China
| | - Gui-Feng Li
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xue-Ning Du
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Li-Ge Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Bao-Cheng Huang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Si Fan
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ren-Cun Jin
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
9
|
Nazeer Z, Fernando EY. A novel growth and isolation medium for exoelectrogenic bacteria. Enzyme Microb Technol 2022; 155:109995. [DOI: 10.1016/j.enzmictec.2022.109995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 01/16/2023]
|
10
|
Mehta M, Liu Y, Waterland M, Holmes G. Monitoring the mode of action of synthetic and natural biocides against Aeromonas hydrophila by Raman spectroscopy and chemometrics. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-021-00062-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
We have investigated the mode of action of synthetic biocides, (2-(thiocyanomethylthio) benzothiazole(TCMTB), dichlorophen, (commonly used in leather industry for preservation) and natural biocides, oregano and eucalyptus oils, on Aeromonas hydrophila using Raman spectroscopy in collaboration with multivariate analysis and 2D correlation spectroscopy to evaluate whether Raman spectra acquired contained valuable information to study the action of biocides on bacterial cells. The growth of A. hydrophila in clear and outer edge zone of inhibition differ in their reaction with different biocides, which allows us to highlight the differences as a characteristic of two kinds of bacteria. Such classification helps identify oregano oil as the most effective biocide by altering clear and outer edge zone of bacteria. Standard disk diffusion assay method was used for screening biocide bacteria interactions and later analysed by Raman spectroscopy. The paper also presents the introduction of TCMTB and oregano oil into leather processing stages to examine and determine the antimicrobial effect as an application to real-world setting. Therefore, we conclude that Raman spectroscopy with appropriate computational tools constitutes a powerful approach for screening biocides, which provide solutions to all the industries using biocides including leather industry, considering the potentially harmful effect of biocides to humans and the environment.
Graphical abstract
Collapse
|
11
|
Benzerara K, Bolzoni R, Monteil C, Beyssac O, Forni O, Alonso B, Asta MP, Lefevre C. The gammaproteobacterium Achromatium forms intracellular amorphous calcium carbonate and not (crystalline) calcite. GEOBIOLOGY 2021; 19:199-213. [PMID: 33347698 DOI: 10.1111/gbi.12424] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/21/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Achromatium is a long known uncultured giant gammaproteobacterium forming intracellular CaCO3 that impacts C and S geochemical cycles functioning in some anoxic sediments and at oxic-anoxic boundaries. While intracellular CaCO3 granules have first been described as Ca oxalate then colloidal CaCO3 more than one century ago, they have often been referred to as crystalline solids and more specifically calcite over the last 25 years. Such a crystallographic distinction is important since the respective chemical reactivities of amorphous calcium carbonate (ACC) and calcite, hence their potential physiological role and conditions of formation, are significantly different. Here, we analyzed the intracellular CaCO3 granules of Achromatium cells from Lake Pavin using a combination of Raman microspectroscopy and scanning electron microscopy. Granules in intact Achromatium cells were unequivocally composed of ACC. Moreover, ACC spontaneously transformed into calcite when irradiated at high laser irradiance during Raman analyses. Few ACC granules also transformed spontaneously into calcite in lysed cells upon cell death and/or sample preparation. Overall, the present study supports the original claims that intracellular Ca-carbonates in Achromatium are amorphous and not crystalline. In that sense, Achromatium is similar to a diverse group of Cyanobacteria and a recently discovered magnetotactic alphaproteobacterium, which all form intracellular ACC. The implications for the physiology and ecology of Achromatium are discussed. Whether the mechanisms responsible for the preservation of such unstable compounds in these bacteria are similar to those involved in numerous ACC-forming eukaryotes remains to be discovered. Last, we recommend to future studies addressing the crystallinity of CaCO3 granules in Achromatium cells recovered from diverse environments all over the world to take care of the potential pitfalls evidenced by the present study.
Collapse
Affiliation(s)
- Karim Benzerara
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR CNRS 7590, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Romain Bolzoni
- CEA Cadarache, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA, CNRS, Aix-Marseille University, Saint-Paul-lez-Durance, France
| | - Caroline Monteil
- CEA Cadarache, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA, CNRS, Aix-Marseille University, Saint-Paul-lez-Durance, France
| | - Olivier Beyssac
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR CNRS 7590, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Olivier Forni
- Institut de Recherche en Astrophysique et Planétologie (CNRS, Univ. Toulouse, CNES), Toulouse, France
| | - Béatrice Alonso
- CEA Cadarache, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA, CNRS, Aix-Marseille University, Saint-Paul-lez-Durance, France
| | - Maria P Asta
- IFSTTAR, CNRS, University Grenoble Alpes, Grenoble, France
| | - Christopher Lefevre
- CEA Cadarache, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA, CNRS, Aix-Marseille University, Saint-Paul-lez-Durance, France
| |
Collapse
|
12
|
Optofluidic Raman-activated cell sorting for targeted genome retrieval or cultivation of microbial cells with specific functions. Nat Protoc 2020; 16:634-676. [PMID: 33311714 DOI: 10.1038/s41596-020-00427-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022]
Abstract
Stable isotope labeling of microbial taxa of interest and their sorting provide an efficient and direct way to answer the question "who does what?" in complex microbial communities when coupled with fluorescence in situ hybridization or downstream 'omics' analyses. We have developed a platform for automated Raman-based sorting in which optical tweezers and microfluidics are used to sort individual cells of interest from microbial communities on the basis of their Raman spectra. This sorting of cells and their downstream DNA analysis, such as by mini-metagenomics or single-cell genomics, or cultivation permits a direct link to be made between the metabolic roles and the genomes of microbial cells within complex microbial communities, as well as targeted isolation of novel microbes with a specific physiology of interest. We describe a protocol from sample preparation through Raman-activated live cell sorting. Subsequent cultivation of sorted cells is described, whereas downstream DNA analysis involves well-established approaches with abundant methods available in the literature. Compared with manual sorting, this technique provides a substantially higher throughput (up to 500 cells per h). Furthermore, the platform has very high sorting accuracy (98.3 ± 1.7%) and is fully automated, thus avoiding user biases that might accompany manual sorting. We anticipate that this protocol will empower in particular environmental and host-associated microbiome research with a versatile tool to elucidate the metabolic contributions of microbial taxa within their complex communities. After a 1-d preparation of cells, sorting takes on the order of 4 h, depending on the number of cells required.
Collapse
|
13
|
Ng CK, Xu J, Cai Z, Yang L, Thompson IP, Huang WE, Cao B. Elevated intracellular cyclic-di-GMP level in Shewanella oneidensis increases expression of c-type cytochromes. Microb Biotechnol 2020; 13:1904-1916. [PMID: 32729223 PMCID: PMC7533324 DOI: 10.1111/1751-7915.13636] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/03/2020] [Accepted: 07/07/2020] [Indexed: 11/29/2022] Open
Abstract
Electrochemically active biofilms are capable of exchanging electrons with solid electron acceptors and have many energy and environmental applications such as bioelectricity generation and environmental remediation. The performance of electrochemically active biofilms is usually dependent on c-type cytochromes, while biofilm development is controlled by a signal cascade mediated by the intracellular secondary messenger bis-(3'-5') cyclic dimeric guanosine monophosphate (c-di-GMP). However, it is unclear whether there are any links between the c-di-GMP regulatory system and the expression of c-type cytochromes. In this study, we constructed a S. oneidensis MR-1 strain with a higher cytoplasmic c-di-GMP level by constitutively expressing a c-di-GMP synthase and it exhibited expected c-di-GMP-influenced traits, such as lowered motility and increased biofilm formation. Compared to MR-1 wild-type strain, the high c-di-GMP strain had a higher Fe(III) reduction rate (21.58 vs 11.88 pM of Fe(III)/h cell) and greater expression of genes that code for the proteins involved in the Mtr pathway, including CymA, MtrA, MtrB, MtrC and OmcA. Furthermore, single-cell Raman microspectroscopy (SCRM) revealed a great increase of c-type cytochromes in the high c-di-GMP strain as compared to MR-1 wild-type strain. Our results reveal for the first time that the c-di-GMP regulation system indirectly or directly positively regulates the expression of cytochromes involved in the extracellular electron transport (EET) in S. oneidensis, which would help to understand the regulatory mechanism of c-di-GMP on electricity production in bacteria.
Collapse
Affiliation(s)
- Chun Kiat Ng
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore City, Singapore
| | - Jiabao Xu
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Zhao Cai
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore City, Singapore
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore City, Singapore
| | - Ian P Thompson
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore City, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore City, Singapore
| |
Collapse
|
14
|
A New Approach for Evaluating Electron Transfer Dynamics by Using In Situ Resonance Raman Microscopy and Chronoamperometry in Conjunction with a Dynamic Model. Appl Environ Microbiol 2020; 86:AEM.01535-20. [PMID: 32826217 PMCID: PMC7531965 DOI: 10.1128/aem.01535-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/09/2020] [Indexed: 01/30/2023] Open
Abstract
Bioelectrochemical systems can fill a vast array of application niches, due to the control of redox reactions that it offers. Although native microorganisms are preferred for applications such as bioremediation, more control is required for applications such as biosensors or biocomputing. The development of a chassis organism, in which the EET is well defined and readily controllable, is therefore essential. The combined approach in this work offers a unique way of monitoring and describing the reaction kinetics of a G. sulfurreducens biofilm, as well as offering a dynamic model that can be used in conjunction with applications such as biosensors. Geobacter sulfurreducens is a good candidate as a chassis organism due to its ability to form thick, conductive biofilms, enabling long-distance extracellular electron transfer (EET). Due to the complexity of EET pathways in G. sulfurreducens, a dynamic approach is required to study genetically modified EET rates in the biofilm. By coupling online resonance Raman microscopy with chronoamperometry, we were able to observe the dynamic discharge response in the biofilm’s cytochromes to an increase in anode voltage. Measuring the heme redox state alongside the current allows for the fitting of a dynamic model using the current response and a subsequent validation of the model via the value of a reduced cytochrome c Raman peak. The modeled reduced cytochromes closely fitted the Raman response data from the G. sulfurreducens wild-type strain, showing the oxidation of heme groups in cytochromes until a new steady state was achieved. Furthermore, the use of a dynamic model also allows for the calculation of internal rates, such as acetate and NADH consumption rates. The Raman response of a mutant lacking OmcS showed a higher initial oxidation rate than predicted, followed by an almost linear decrease of the reduced mediators. The increased initial rate could be attributed to an increase in biofilm conductivity, previously observed in biofilms lacking OmcS. One explanation for this is that OmcS acts as a conduit between cytochromes; therefore, deleting the gene restricts the rate of electron transfer to the extracellular matrix. This could, however, be modeled assuming a linear oxidation rate of intercellular mediators. IMPORTANCE Bioelectrochemical systems can fill a vast array of application niches, due to the control of redox reactions that it offers. Although native microorganisms are preferred for applications such as bioremediation, more control is required for applications such as biosensors or biocomputing. The development of a chassis organism, in which the EET is well defined and readily controllable, is therefore essential. The combined approach in this work offers a unique way of monitoring and describing the reaction kinetics of a G. sulfurreducens biofilm, as well as offering a dynamic model that can be used in conjunction with applications such as biosensors.
Collapse
|
15
|
Pilát Z, Jonáš A, Pilátová J, Klementová T, Bernatová S, Šiler M, Maňka T, Kizovský M, Růžička F, Pantůček R, Neugebauer U, Samek O, Zemánek P. Analysis of Bacteriophage-Host Interaction by Raman Tweezers. Anal Chem 2020; 92:12304-12311. [PMID: 32815709 DOI: 10.1021/acs.analchem.0c01963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteriophages, or "phages" for short, are viruses that replicate in bacteria. The therapeutic and biotechnological potential of phages and their lytic enzymes is of interest for their ability to selectively destroy pathogenic bacteria, including antibiotic-resistant strains. Introduction of phage preparations into medicine, biotechnology, and food industry requires a thorough characterization of phage-host interaction on a molecular level. We employed Raman tweezers to analyze the phage-host interaction of Staphylococcus aureus strain FS159 with a virulent phage JK2 (=812K1/420) of the Myoviridae family and a temperate phage 80α of the Siphoviridae family. We analyzed the timeline of phage-induced molecular changes in infected host cells. We reliably detected the presence of replicating phages in bacterial cells within 5 min after infection. Our results lay the foundations for building a Raman-based diagnostic instrument capable of real-time, in vivo, in situ, nondestructive characterization of the phage-host relationship on the level of individual cells, which has the potential of importantly contributing to the development of phage therapy and enzybiotics.
Collapse
Affiliation(s)
- Zdeněk Pilát
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Alexandr Jonáš
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Jana Pilátová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Tereza Klementová
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Silvie Bernatová
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Martin Šiler
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Tadeáš Maňka
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Martin Kizovský
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Filip Růžička
- Department of Microbiology, Faculty of Medicine, Masaryk University and St. Anne's Faculty Hospital, Pekařská 53, 656 91 Brno, Czech Republic
| | - Roman Pantůček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Ute Neugebauer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany.,Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Str. 9, D-07745 Jena, Germany
| | - Ota Samek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Pavel Zemánek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| |
Collapse
|
16
|
Mehta M, Liu Y, Waterland M, Holmes G. Characterization of the Degradation of Sheepskin by Monitoring Cytochrome c of Bacteria by Raman Spectroscopy. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1792476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Megha Mehta
- New Zealand Leather and Shoe Research Association (LASRA®), Palmerston North, New Zealand
| | - Yang Liu
- New Zealand Leather and Shoe Research Association (LASRA®), Palmerston North, New Zealand
| | - Mark Waterland
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Geoff Holmes
- New Zealand Leather and Shoe Research Association (LASRA®), Palmerston North, New Zealand
| |
Collapse
|
17
|
Non-destructive Monitoring of Staphylococcus aureus Biofilm by Surface-Enhanced Raman Scattering Spectroscopy. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01792-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Hatzenpichler R, Krukenberg V, Spietz RL, Jay ZJ. Next-generation physiology approaches to study microbiome function at single cell level. Nat Rev Microbiol 2020; 18:241-256. [PMID: 32055027 DOI: 10.1038/s41579-020-0323-1] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2020] [Indexed: 12/14/2022]
Abstract
The function of cells in their native habitat often cannot be reliably predicted from genomic data or from physiology studies of isolates. Traditional experimental approaches to study the function of taxonomically and metabolically diverse microbiomes are limited by their destructive nature, low spatial resolution or low throughput. Recently developed technologies can offer new insights into cellular function in natural and human-made systems and how microorganisms interact with and shape the environments that they inhabit. In this Review, we provide an overview of these next-generation physiology approaches and discuss how the non-destructive analysis of cellular phenotypes, in combination with the separation of the target cells for downstream analyses, provide powerful new, complementary ways to study microbiome function. We anticipate that the widespread application of next-generation physiology approaches will transform the field of microbial ecology and dramatically improve our understanding of how microorganisms function in their native environment.
Collapse
Affiliation(s)
- Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA.
| | - Viola Krukenberg
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Rachel L Spietz
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Zackary J Jay
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| |
Collapse
|
19
|
Lee KS, Palatinszky M, Pereira FC, Nguyen J, Fernandez VI, Mueller AJ, Menolascina F, Daims H, Berry D, Wagner M, Stocker R. An automated Raman-based platform for the sorting of live cells by functional properties. Nat Microbiol 2019; 4:1035-1048. [PMID: 30886359 DOI: 10.1038/s41564-019-0394-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/30/2019] [Indexed: 12/22/2022]
Abstract
Stable-isotope probing is widely used to study the function of microbial taxa in their natural environment, but sorting of isotopically labelled microbial cells from complex samples for subsequent genomic analysis or cultivation is still in its early infancy. Here, we introduce an optofluidic platform for automated sorting of stable-isotope-probing-labelled microbial cells, combining microfluidics, optical tweezing and Raman microspectroscopy, which yields live cells suitable for subsequent single-cell genomics, mini-metagenomics or cultivation. We describe the design and optimization of this Raman-activated cell-sorting approach, illustrate its operation with four model bacteria (two intestinal, one soil and one marine) and demonstrate its high sorting accuracy (98.3 ± 1.7%), throughput (200-500 cells h-1; 3.3-8.3 cells min-1) and compatibility with cultivation. Application of this sorting approach for the metagenomic characterization of bacteria involved in mucin degradation in the mouse colon revealed a diverse consortium of bacteria, including several members of the underexplored family Muribaculaceae, highlighting both the complexity of this niche and the potential of Raman-activated cell sorting for identifying key players in targeted processes.
Collapse
Affiliation(s)
- Kang Soo Lee
- Ralph M. Parsons Laboratory for Environmental Science and Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Márton Palatinszky
- Center of Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Fátima C Pereira
- Center of Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Jen Nguyen
- Ralph M. Parsons Laboratory for Environmental Science and Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Vicente I Fernandez
- Ralph M. Parsons Laboratory for Environmental Science and Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Anna J Mueller
- Center of Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Filippo Menolascina
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, UK
| | - Holger Daims
- Center of Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.,The Comammox Research Platform, University of Vienna, Vienna, Austria
| | - David Berry
- Center of Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Michael Wagner
- Center of Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.,The Comammox Research Platform, University of Vienna, Vienna, Austria
| | - Roman Stocker
- Ralph M. Parsons Laboratory for Environmental Science and Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
20
|
On-Line Raman Spectroscopic Study of Cytochromes' Redox State of Biofilms in Microbial Fuel Cells. Molecules 2019; 24:molecules24030646. [PMID: 30759821 PMCID: PMC6384720 DOI: 10.3390/molecules24030646] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 11/17/2022] Open
Abstract
Bio-electrochemical systems such as microbial fuel cells and microbial electrosynthesis cells depend on efficient electron transfer between the microorganisms and the electrodes. Understanding the mechanisms and dynamics of the electron transfer is important in order to design more efficient reactors, as well as modifying microorganisms for enhanced electricity production. Geobacter are well known for their ability to form thick biofilms and transfer electrons to the surfaces of electrodes. Currently, there are not many “on-line” systems for monitoring the activity of the biofilm and the electron transfer process without harming the biofilm. Raman microscopy was shown to be capable of providing biochemical information, i.e., the redox state of C-type cytochromes, which is integral to external electron transfer, without harming the biofilm. In the current study, a custom 3D printed flow-through cuvette was used in order to analyze the oxidation state of the C-type cytochromes of suspended cultures of three Geobacter sulfurreducens strains (PCA, KN400 and ΔpilA). It was found that the oxidation state is a good indicator of the metabolic state of the cells. Furthermore, an anaerobic fluidic system enabling in situ Raman measurements was designed and applied successfully to monitor and characterize G. sulfurreducens biofilms during electricity generation, for both a wild strain, PCA, and a mutant, ΔS. The cytochrome redox state, monitored by the Raman peak areas, could be modulated by applying different poise voltages to the electrodes. This also correlated with the modulation of current transferred from the cytochromes to the electrode. The Raman peak area changed in a predictable and reversible manner, indicating that the system could be used for analyzing the oxidation state of the proteins responsible for the electron transfer process and the kinetics thereof in-situ.
Collapse
|
21
|
Taylor GT. Windows into Microbial Seascapes: Advances in Nanoscale Imaging and Application to Marine Sciences. ANNUAL REVIEW OF MARINE SCIENCE 2019; 11:465-490. [PMID: 30134123 DOI: 10.1146/annurev-marine-121916-063612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Geochemical cycles of all nonconservative elements are mediated by microorganisms over nanometer spatial scales. The pelagic seascape is known to possess microstructure imposed by heterogeneous distributions of particles, polymeric gels, biologically important chemicals, and microbes. While indispensable, most traditional oceanographic observational approaches overlook this heterogeneity and ignore subtleties, such as activity hot spots, symbioses, niche partitioning, and intrapopulation phenotypic variations, that can provide a deeper mechanistic understanding of planktonic ecosystem function. As part of the movement toward cultivation-independent tools in microbial oceanography, techniques to examine the ecophysiology of individual populations and their role in chemical transformations at spatial scales relevant to microorganisms have been developed. This review presents technologies that enable geochemical and microbiological interrogations at spatial scales ranging from 0.02 to a few hundred micrometers, particularly focusing on atomic force microscopy, nanoscale secondary ion mass spectrometry, and confocal Raman microspectroscopy and introducing promising approaches for future applications in marine sciences.
Collapse
Affiliation(s)
- Gordon T Taylor
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794, USA;
| |
Collapse
|
22
|
Zhou GW, Yang XR, Su JQ, Zheng BX, Zhu YG. Bacillus ferrooxidans sp. nov., an iron(II)-oxidizing bacterium isolated from paddy soil. J Microbiol 2018; 56:472-477. [PMID: 29948824 DOI: 10.1007/s12275-018-7543-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 10/14/2022]
Abstract
An endospore-forming bacterium, designated YT-3T, was isolated from a paddy soil in Yingtan, Jiangxi, China. Cells of strain YT-3T were Gram-positive, rod-shaped, facultative anaerobic, catalase, and oxidase positive. The optimum growth temperature and pH were 30°C (ranged from 15 to 50°C) and 6.5-7.0 (ranged from 3 to 11), respectively. Analysis of the 16S rRNA gene sequence showed that strain YT-3T was affiliated to the genus Bacillus and displayed the highest similarity to that of Bacillus drentensis JCM 21707T (98.3%), followed by B. ginsengisoli JCM 17335T (97.8%) and B. fumarioli JCM 21708T (97.0%). The similarity of rpoB gene sequence between strain YT-3T and B. drentensis JCM 21707T, B. ginsengisoli JCM 17335T and B. fumarioli JCM 21708T was 80.4%, 81.5%, and 82.1%, respectively. The genomic DNA G + C content was 44.9 mol%. The predominant respiratory quinone was Menaquinone-7, and meso-diaminopimelic acid was present in the peptidoglycan layer of cell wall. The major fatty acids were C15:0 anteiso (36.2%), C14:0 iso (19.6%), C15:0 iso (17.4%), and C16:0 iso (9.8%). The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phospholipids, and ammoniac phospholipids. The DNA-DNA hybridization values between isolate YT-3T and B. drentensis (JCM 21707T), B. ginsengisoli (JCM 17335T), and B. fumarioli (JCM 21708T) were 36.3%, 30.3%, and 25.3%, respectively. On the basis of physiological, genetic and biochemical data, strain YT-3T represented a novel species of the genus Bacillus, for which the name Bacillus ferrooxidans sp. nov was proposed. The type strain is YT-3T (= KCTC 33875T = CCTCC AB 2017049T).
Collapse
Affiliation(s)
- Guo-Wei Zhou
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China.,Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | - Xiao-Ru Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P. R. China.
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | - Bang-Xiao Zheng
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China.,Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| |
Collapse
|
23
|
Cui L, Yang K, Li HZ, Zhang H, Su JQ, Paraskevaidi M, Martin FL, Ren B, Zhu YG. Functional Single-Cell Approach to Probing Nitrogen-Fixing Bacteria in Soil Communities by Resonance Raman Spectroscopy with 15N 2 Labeling. Anal Chem 2018; 90:5082-5089. [PMID: 29557648 DOI: 10.1021/acs.analchem.7b05080] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nitrogen (N) fixation is the conversion of inert nitrogen gas (N2) to bioavailable N essential for all forms of life. N2-fixing microorganisms (diazotrophs), which play a key role in global N cycling, remain largely obscure because a large majority are uncultured. Direct probing of active diazotrophs in the environment is still a major challenge. Herein, a novel culture-independent single-cell approach combining resonance Raman (RR) spectroscopy with 15N2 stable isotope probing (SIP) was developed to discern N2-fixing bacteria in a complex soil community. Strong RR signals of cytochrome c (Cyt c, frequently present in diverse N2-fixing bacteria), along with a marked 15N2-induced Cyt c band shift, generated a highly distinguishable biomarker for N2 fixation. 15N2-induced shift was consistent well with 15N abundance in cell determined by isotope ratio mass spectroscopy. By applying this biomarker and Raman imaging, N2-fixing bacteria in both artificial and complex soil communities were discerned and imaged at the single-cell level. The linear band shift of Cyt c versus 15N2 percentage allowed quantification of N2 fixation extent of diverse soil bacteria. This single-cell approach will advance the exploration of hitherto uncultured diazotrophs in diverse ecosystems.
Collapse
Affiliation(s)
- Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen 361021 , China
| | - Kai Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen 361021 , China.,University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Hong-Zhe Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen 361021 , China.,University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Han Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen 361021 , China
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen 361021 , China
| | - Maria Paraskevaidi
- School of Pharmacy and Biomedical Sciences , University of Central Lancashire , Preston PR1 2HE , U.K
| | - Francis L Martin
- School of Pharmacy and Biomedical Sciences , University of Central Lancashire , Preston PR1 2HE , U.K
| | - Bin Ren
- Department of Chemistry , Xiamen University , Xiamen 361005 , China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen 361021 , China.,State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| |
Collapse
|
24
|
Abstract
Biofilms are a communal way of living for microorganisms in which microorganism cells are surrounded by extracellular polymeric substances (EPS). Most microorganisms can live in biofilm form. Since microorganisms are everywhere, understanding biofilm structure and composition is crucial for making the world a better place to live, not only for humans but also for other living creatures. Raman spectroscopy is a nondestructive technique and provides fingerprint information about an analyte of interest. Surface-enhanced Raman spectroscopy is a form of this technique and provides enhanced scattering of the analyte that is in close vicinity of a nanostructured noble metal surface such as silver or gold. In this review, the applications of both techniques and their combination with other biofilm analysis techniques for characterization of composition and structure of biofilms are discussed.
Collapse
|
25
|
Xu J, Webb I, Poole P, Huang WE. Label-Free Discrimination of Rhizobial Bacteroids and Mutants by Single-Cell Raman Microspectroscopy. Anal Chem 2017; 89:6336-6340. [PMID: 28541039 DOI: 10.1021/acs.analchem.7b01160] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Symbiotic rhizobia in legumes account for a large portion of nitrogen fixation in the biosphere. Nitrogen fixation is an energy-demanding process requiring tight control of metabolism and redox state. It is of great interest to understand the bacteroid differentiation process and the roles of energy storage molecules, such as glycogen and polyhydroxybutyrate (PHB), in maintaining the Rhizobium-legume symbioses. Traditional biochemical assays for checking phenotypic changes of mutants require a large volume of starting materials, which is difficult for unculturable, terminally differentiated bacteroids. Here we present a label-free technique that allows the identification and characterization of phenotypic changes of bacteria at the single-cell level. This work demonstrates the application of single-cell Raman spectra (SCRS) to differentiate Rhizobium leguminosarum bv. viciae wild-type and mutants under different conditions. We found symbiotically differentiated bacteroids and free-living bacteria differed primarily at a Raman biomarker, cytochrome c, corresponding to a bacteroid-specific terminal oxidase. We demonstrated that, for the first time, SCRS were able to link phenotypic changes and specific genetic mutants, in this case, single and double mutations in synthesis of carbon storage molecules glycogen and polyhydroxybutyrate (PHB). By analyzing SCRS of these mutants, it provides insights into metabolite production and carbon regulatory network of rhizobia.
Collapse
Affiliation(s)
- Jiabao Xu
- Department of Engineering Science, University of Oxford , Parks Road, Oxford, OX1 3PJ, United Kingdom
| | - Isabel Webb
- Department of Plant Sciences, University of Oxford , South Parks Road, Oxford OX1 3RB, United Kingdom
| | - Philip Poole
- Department of Plant Sciences, University of Oxford , South Parks Road, Oxford OX1 3RB, United Kingdom
| | - Wei E Huang
- Department of Engineering Science, University of Oxford , Parks Road, Oxford, OX1 3PJ, United Kingdom
| |
Collapse
|
26
|
Cultivation-Free Raman Spectroscopic Investigations of Bacteria. Trends Microbiol 2017; 25:413-424. [DOI: 10.1016/j.tim.2017.01.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 01/22/2023]
|
27
|
Raman microspectroscopy, surface-enhanced Raman scattering microspectroscopy, and stable-isotope Raman microspectroscopy for biofilm characterization. Anal Bioanal Chem 2017; 409:4353-4375. [DOI: 10.1007/s00216-017-0303-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/31/2017] [Accepted: 03/08/2017] [Indexed: 12/27/2022]
|
28
|
Crosstalk between sugarcane and a plant-growth promoting Burkholderia species. Sci Rep 2016; 6:37389. [PMID: 27869215 PMCID: PMC5116747 DOI: 10.1038/srep37389] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/27/2016] [Indexed: 12/03/2022] Open
Abstract
Bacterial species in the plant-beneficial-environmental clade of Burkholderia represent a substantial component of rhizosphere microbes in many plant species. To better understand the molecular mechanisms of the interaction, we combined functional studies with high-resolution dual transcriptome analysis of sugarcane and root-associated diazotrophic Burkholderia strain Q208. We show that Burkholderia Q208 forms a biofilm at the root surface and suppresses the virulence factors that typically trigger immune response in plants. Up-regulation of bd-type cytochromes in Burkholderia Q208 suggests an increased energy production and creates the microaerobic conditions suitable for BNF. In this environment, a series of metabolic pathways are activated in Burkholderia Q208 implicated in oxalotrophy, microaerobic respiration, and formation of PHB granules, enabling energy production under microaerobic conditions. In the plant, genes involved in hypoxia survival are up-regulated and through increased ethylene production, larger aerenchyma is produced in roots which in turn facilitates diffusion of oxygen within the cortex. The detected changes in gene expression, physiology and morphology in the partnership are evidence of a sophisticated interplay between sugarcane and a plant-growth promoting Burkholderia species that advance our understanding of the mutually beneficial processes occurring in the rhizosphere.
Collapse
|
29
|
Wang Y, Huang WE, Cui L, Wagner M. Single cell stable isotope probing in microbiology using Raman microspectroscopy. Curr Opin Biotechnol 2016; 41:34-42. [PMID: 27149160 DOI: 10.1016/j.copbio.2016.04.018] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/17/2016] [Accepted: 04/19/2016] [Indexed: 12/14/2022]
Abstract
Microbial communities are essential for most ecosystem processes and interact in highly complex ways with virtually all eukaryotes. Thus, a detailed understanding of the function of such communities is a fundamental prerequisite for microbial ecologists, applied microbiologists and microbiome researchers. Using single cell Raman microspectroscopy, biochemical fingerprints of individual microbial cells can be obtained in an externally label-free and non-destructive manner. If combined with stable isotope probing (SIP), Raman spectroscopy can directly reveal functions of single microorganisms in their natural habitat. This review provides an update on various SIP-approaches suitable for combination with different Raman scattering techniques and illustrates how single cell Raman SIP can be directly combined with the omics-centric analysis pipelines to investigate microbial communities.
Collapse
Affiliation(s)
- Yun Wang
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics and Single Cell Center, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom.
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Michael Wagner
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network 'Chemistry Meets Microbiology', University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
30
|
Song Y, Yin H, Huang WE. Raman activated cell sorting. Curr Opin Chem Biol 2016; 33:1-8. [PMID: 27100046 DOI: 10.1016/j.cbpa.2016.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/03/2016] [Indexed: 10/21/2022]
Abstract
Single cell Raman spectra (SCRS) are intrinsic biochemical profiles and 'chemical images' of single cells which can be used to characterise phenotypic changes, physiological states and functions of cells. On the base of SCRS, Raman activated cell sorting (RACS) provides a label-free cell sorting approach, which can link single cells to their chemical or phenotypic profiles. Overcoming naturally weak Raman signals, establishing Raman biomarker as sorting criteria to RACS and improving specific sorting technology are three challenges of developing RACS. Advances on Raman spectroscopy such as stimulated Raman scattering (SRS) and pre-screening helped to increase RACS sorting speed. Entire SCRS can be characterised using pattern recognition methods, and specific Raman bands can be extracted as biomarkers for RACS. Recent advances on cell sorting technologies based on microfluidic device and surface-ejection enable accurate and reliable single cell sorting from complex samples. A high throughput RACS will be achievable in near future by integrating fast Raman detection system such as SRS with microfluidic RACS and Raman activated cell ejection (RACE).
Collapse
Affiliation(s)
- Yizhi Song
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Huabing Yin
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK.
| |
Collapse
|
31
|
Abstract
Bacteria have traditionally been studied as single-cell organisms. In laboratory settings, aerobic bacteria are usually cultured in aerated flasks, where the cells are considered essentially homogenous. However, in many natural environments, bacteria and other microorganisms grow in mixed communities, often associated with surfaces. Biofilms are comprised of surface-associated microorganisms, their extracellular matrix material, and environmental chemicals that have adsorbed to the bacteria or their matrix material. While this definition of a biofilm is fairly simple, biofilms are complex and dynamic. Our understanding of the activities of individual biofilm cells and whole biofilm systems has developed rapidly, due in part to advances in molecular, analytical, and imaging tools and the miniaturization of tools designed to characterize biofilms at the enzyme level, cellular level, and systems level.
Collapse
|
32
|
In Situ Analysis of a Silver Nanoparticle-Precipitating Shewanella Biofilm by Surface Enhanced Confocal Raman Microscopy. PLoS One 2015; 10:e0145871. [PMID: 26709923 PMCID: PMC4692441 DOI: 10.1371/journal.pone.0145871] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/09/2015] [Indexed: 11/19/2022] Open
Abstract
Shewanella oneidensis MR-1 is an electroactive bacterium, capable of reducing extracellular insoluble electron acceptors, making it important for both nutrient cycling in nature and microbial electrochemical technologies, such as microbial fuel cells and microbial electrosynthesis. When allowed to anaerobically colonize an Ag/AgCl solid interface, S. oneidensis has precipitated silver nanoparticles (AgNp), thus providing the means for a surface enhanced confocal Raman microscopy (SECRaM) investigation of its biofilm. The result is the in-situ chemical mapping of the biofilm as it developed over time, where the distribution of cytochromes, reduced and oxidized flavins, polysaccharides and phosphate in the undisturbed biofilm is monitored. Utilizing AgNp bio-produced by the bacteria colonizing the Ag/AgCl interface, we could perform SECRaM while avoiding the use of a patterned or roughened support or the introduction of noble metal salts and reducing agents. This new method will allow a spatially and temporally resolved chemical investigation not only of Shewanella biofilms at an insoluble electron acceptor, but also of other noble metal nanoparticle-precipitating bacteria in laboratory cultures or in complex microbial communities in their natural habitats.
Collapse
|
33
|
Nozhevnikova AN, Botchkova EA, Plakunov VK. Multi-species biofilms in ecology, medicine, and biotechnology. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715060107] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
34
|
Eichorst SA, Strasser F, Woyke T, Schintlmeister A, Wagner M, Woebken D. Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils. FEMS Microbiol Ecol 2015; 91:fiv106. [PMID: 26324854 PMCID: PMC4629873 DOI: 10.1093/femsec/fiv106] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/04/2015] [Accepted: 08/24/2015] [Indexed: 11/15/2022] Open
Abstract
The combined approach of incubating environmental samples with stable isotope-labeled substrates followed by single-cell analyses through high-resolution secondary ion mass spectrometry (NanoSIMS) or Raman microspectroscopy provides insights into the in situ function of microorganisms. This approach has found limited application in soils presumably due to the dispersal of microbial cells in a large background of particles. We developed a pipeline for the efficient preparation of cell extracts from soils for subsequent single-cell methods by combining cell detachment with separation of cells and soil particles followed by cell concentration. The procedure was evaluated by examining its influence on cell recoveries and microbial community composition across two soils. This approach generated a cell fraction with considerably reduced soil particle load and of sufficient small size to allow single-cell analysis by NanoSIMS, as shown when detecting active N2-fixing and cellulose-responsive microorganisms via (15)N2 and (13)C-UL-cellulose incubations, respectively. The same procedure was also applicable for Raman microspectroscopic analyses of soil microorganisms, assessed via microcosm incubations with a (13)C-labeled carbon source and deuterium oxide (D2O, a general activity marker). The described sample preparation procedure enables single-cell analysis of soil microorganisms using NanoSIMS and Raman microspectroscopy, but should also facilitate single-cell sorting and sequencing.
Collapse
Affiliation(s)
- Stephanie A Eichorst
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research network 'Chemistry meets Microbiology', University of Vienna, Vienna 1090 Austria
| | - Florian Strasser
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research network 'Chemistry meets Microbiology', University of Vienna, Vienna 1090 Austria
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Arno Schintlmeister
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research network 'Chemistry meets Microbiology', University of Vienna, Vienna 1090 Austria Large-Instrument Facility for Advanced Isotope Research, University of Vienna, Vienna 1090 Austria
| | - Michael Wagner
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research network 'Chemistry meets Microbiology', University of Vienna, Vienna 1090 Austria Large-Instrument Facility for Advanced Isotope Research, University of Vienna, Vienna 1090 Austria
| | - Dagmar Woebken
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research network 'Chemistry meets Microbiology', University of Vienna, Vienna 1090 Austria
| |
Collapse
|
35
|
Kubryk P, Kölschbach JS, Marozava S, Lueders T, Meckenstock RU, Niessner R, Ivleva NP. Exploring the Potential of Stable Isotope (Resonance) Raman Microspectroscopy and Surface-Enhanced Raman Scattering for the Analysis of Microorganisms at Single Cell Level. Anal Chem 2015; 87:6622-30. [DOI: 10.1021/acs.analchem.5b00673] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Patrick Kubryk
- Technische Universität München, Institute
of Hydrochemistry, Chair for Analytical Chemistry, Marchioninistr. 17, 81377 Munich, Germany
| | - Janina S. Kölschbach
- Helmholtz Zentrum München, Institute of Groundwater
Ecology, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Sviatlana Marozava
- Helmholtz Zentrum München, Institute of Groundwater
Ecology, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Tillmann Lueders
- Helmholtz Zentrum München, Institute of Groundwater
Ecology, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Rainer U. Meckenstock
- Helmholtz Zentrum München, Institute of Groundwater
Ecology, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Reinhard Niessner
- Technische Universität München, Institute
of Hydrochemistry, Chair for Analytical Chemistry, Marchioninistr. 17, 81377 Munich, Germany
| | - Natalia P. Ivleva
- Technische Universität München, Institute
of Hydrochemistry, Chair for Analytical Chemistry, Marchioninistr. 17, 81377 Munich, Germany
| |
Collapse
|
36
|
Fahs A, Quilès F, Jamal D, Humbert F, Francius G. In Situ Analysis of Bacterial Extracellular Polymeric Substances from a Pseudomonas fluorescens Biofilm by Combined Vibrational and Single Molecule Force Spectroscopies. J Phys Chem B 2014; 118:6702-13. [DOI: 10.1021/jp5030872] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ahmad Fahs
- Université de Lorraine, Laboratoire de Chimie Physique
et Microbiologie pour l’Environnement, UMR 7564, Villers-lès-Nancy, F-54600, France
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour
l’Environnement, UMR 7564, Villers-lès-Nancy, F-54600, France
| | - Fabienne Quilès
- Université de Lorraine, Laboratoire de Chimie Physique
et Microbiologie pour l’Environnement, UMR 7564, Villers-lès-Nancy, F-54600, France
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour
l’Environnement, UMR 7564, Villers-lès-Nancy, F-54600, France
| | - Dima Jamal
- Université de Lorraine, Laboratoire de Chimie Physique
et Microbiologie pour l’Environnement, UMR 7564, Villers-lès-Nancy, F-54600, France
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour
l’Environnement, UMR 7564, Villers-lès-Nancy, F-54600, France
| | - François Humbert
- Université de Lorraine, Laboratoire de Chimie Physique
et Microbiologie pour l’Environnement, UMR 7564, Villers-lès-Nancy, F-54600, France
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour
l’Environnement, UMR 7564, Villers-lès-Nancy, F-54600, France
| | - Grégory Francius
- Université de Lorraine, Laboratoire de Chimie Physique
et Microbiologie pour l’Environnement, UMR 7564, Villers-lès-Nancy, F-54600, France
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour
l’Environnement, UMR 7564, Villers-lès-Nancy, F-54600, France
| |
Collapse
|
37
|
Berg JS, Schwedt A, Kreutzmann AC, Kuypers MMM, Milucka J. Polysulfides as intermediates in the oxidation of sulfide to sulfate by Beggiatoa spp. Appl Environ Microbiol 2014; 80:629-36. [PMID: 24212585 PMCID: PMC3911116 DOI: 10.1128/aem.02852-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/04/2013] [Indexed: 11/20/2022] Open
Abstract
Zero-valent sulfur is a key intermediate in the microbial oxidation of sulfide to sulfate. Many sulfide-oxidizing bacteria produce and store large amounts of sulfur intra- or extracellularly. It is still not understood how the stored sulfur is metabolized, as the most stable form of S(0) under standard biological conditions, orthorhombic α-sulfur, is most likely inaccessible to bacterial enzymes. Here we analyzed the speciation of sulfur in single cells of living sulfide-oxidizing bacteria via Raman spectroscopy. Our results showed that under various ecological and physiological conditions, all three investigated Beggiatoa strains stored sulfur as a combination of cyclooctasulfur (S8) and inorganic polysulfides (Sn(2-)). Linear sulfur chains were detected during both the oxidation and reduction of stored sulfur, suggesting that Sn(2-) species represent a universal pool of bioavailable sulfur. Formation of polysulfides due to the cleavage of sulfur rings could occur biologically by thiol-containing enzymes or chemically by the strong nucleophile HS(-) as Beggiatoa migrates vertically between oxic and sulfidic zones in the environment. Most Beggiatoa spp. thus far studied can oxidize sulfur further to sulfate. Our results suggest that the ratio of produced sulfur and sulfate varies depending on the sulfide flux. Almost all of the sulfide was oxidized directly to sulfate under low-sulfide-flux conditions, whereas only 50% was oxidized to sulfate under high-sulfide-flux conditions leading to S(0) deposition. With Raman spectroscopy we could show that sulfate accumulated in Beggiatoa filaments, reaching intracellular concentrations of 0.72 to 1.73 M.
Collapse
Affiliation(s)
- Jasmine S. Berg
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Anne Schwedt
- Department of Microbiology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | - Marcel M. M. Kuypers
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Jana Milucka
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
38
|
Kloß S, Kampe B, Sachse S, Rösch P, Straube E, Pfister W, Kiehntopf M, Popp J. Culture Independent Raman Spectroscopic Identification of Urinary Tract Infection Pathogens: A Proof of Principle Study. Anal Chem 2013; 85:9610-6. [DOI: 10.1021/ac401806f] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Sandra Kloß
- Institute of Physical
Chemistry and Abbe Center of Photonics, University of Jena, Helmholtzweg 4, D-07743 Jena, Germany
| | - Bernd Kampe
- Institute of Physical
Chemistry and Abbe Center of Photonics, University of Jena, Helmholtzweg 4, D-07743 Jena, Germany
| | - Svea Sachse
- Institute of Medical
Microbiology, Jena University Hospital, Erlanger Allee 101, D-07747 Jena, Germany
| | - Petra Rösch
- Institute of Physical
Chemistry and Abbe Center of Photonics, University of Jena, Helmholtzweg 4, D-07743 Jena, Germany
| | - Eberhard Straube
- Institute of Medical
Microbiology, Jena University Hospital, Erlanger Allee 101, D-07747 Jena, Germany
| | - Wolfgang Pfister
- Institute of Medical
Microbiology, Jena University Hospital, Erlanger Allee 101, D-07747 Jena, Germany
| | - Michael Kiehntopf
- Institute
of Clinical
Chemistry and Laboratory Diagnostics, Jena University Hospital, Erlanger Allee
101, D-07747 Jena, Germany
| | - Jürgen Popp
- Institute of Physical
Chemistry and Abbe Center of Photonics, University of Jena, Helmholtzweg 4, D-07743 Jena, Germany
- Institute of Photonic Technology, Albert-Einstein-Straße
9, D-07745 Jena, Germany
| |
Collapse
|
39
|
Microbial relevant fouling in membrane bioreactors: influencing factors, characterization, and fouling control. MEMBRANES 2012; 2:565-84. [PMID: 24958297 PMCID: PMC4021913 DOI: 10.3390/membranes2030565] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/20/2012] [Accepted: 08/09/2012] [Indexed: 11/17/2022]
Abstract
Microorganisms in membrane bioreactors (MBRs) play important roles on degradation of organic/inorganic substances in wastewaters, while microbial deposition/growth and microbial product accumulation on membranes potentially induce membrane fouling. Generally, there is a need to characterize membrane foulants and to determine their relations to the evolution of membrane fouling in order to identify a suitable fouling control approach in MBRs. This review summarized the factors in MBRs that influence microbial behaviors (community compositions, physical properties, and microbial products). The state-of-the-art techniques to characterize biofoulants in MBRs were reported. The strategies for controlling microbial relevant fouling were discussed and the future studies on membrane fouling mechanisms in MBRs were proposed.
Collapse
|
40
|
Raman spectroscopy as a potential tool for detection of Brucella spp. in milk. Appl Environ Microbiol 2012; 78:5575-83. [PMID: 22660699 DOI: 10.1128/aem.00637-12] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Detection of Brucella, causing brucellosis, is very challenging, since the applied techniques are mostly time-demanding and not standardized. While the common detection system relies on the cultivation of the bacteria, further classical typing up to the biotype level is mostly based on phenotypic or genotypic characteristics. The results of genotyping do not always fit the existing taxonomy, and misidentifications between genetically closely related genera cannot be avoided. This situation gets even worse, when detection from complex matrices, such as milk, is necessary. For these reasons, the availability of a method that allows early and reliable identification of possible Brucella isolates for both clinical and epidemiological reasons would be extremely useful. We evaluated micro-Raman spectroscopy in combination with chemometric analysis to identify Brucella from agar plates and directly from milk: prior to these studies, the samples were inactivated via formaldehyde treatment to ensure a higher working safety. The single-cell Raman spectra of different Brucella, Escherichia, Ochrobactrum, Pseudomonas, and Yersinia spp. were measured to create two independent databases for detection in media and milk. Identification accuracies of 92% for Brucella from medium and 94% for Brucella from milk were obtained while analyzing the single-cell Raman spectra via support vector machine. Even the identification of the other genera yielded sufficient results, with accuracies of >90%. In summary, micro-Raman spectroscopy is a promising alternative for detecting Brucella. The measurements we performed at the single-cell level thus allow fast identification within a few hours without a demanding process for sample preparation.
Collapse
|
41
|
Meng F, Liao B, Liang S, Yang F, Zhang H, Song L. Morphological visualization, componential characterization and microbiological identification of membrane fouling in membrane bioreactors (MBRs). J Memb Sci 2010. [DOI: 10.1016/j.memsci.2010.06.006] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
42
|
The influence of intracellular storage material on bacterial identification by means of Raman spectroscopy. Anal Bioanal Chem 2010; 397:2929-37. [DOI: 10.1007/s00216-010-3895-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 05/05/2010] [Accepted: 05/30/2010] [Indexed: 10/19/2022]
|
43
|
Haider S, Wagner M, Schmid MC, Sixt BS, Christian JG, Häcker G, Pichler P, Mechtler K, Müller A, Baranyi C, Toenshoff ER, Montanaro J, Horn M. Raman microspectroscopy reveals long-term extracellular activity of Chlamydiae. Mol Microbiol 2010; 77:687-700. [PMID: 20545842 DOI: 10.1111/j.1365-2958.2010.07241.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The phylum Chlamydiae consists exclusively of obligate intracellular bacteria. Some of them are formidable pathogens of humans, while others occur as symbionts of amoebae. These genetically intractable bacteria possess a developmental cycle consisting of replicative reticulate bodies and infectious elementary bodies, which are believed to be physiologically inactive. Confocal Raman microspectroscopy was applied to differentiate between reticulate bodies and elementary bodies of Protochlamydia amoebophila and to demonstrate in situ the labelling of this amoeba symbiont after addition of isotope-labelled phenylalanine. Unexpectedly, uptake of this amino acid was also observed for both developmental stages for up to 3 weeks, if incubated extracellularly with labelled phenylalanine, and P. amoebophila remained infective during this period. Furthermore, P. amoebophila energizes its membrane and performs protein synthesis outside of its host. Importantly, amino acid uptake and protein synthesis after extended extracellular incubation could also be demonstrated for the human pathogen Chlamydia trachomatis, which synthesizes stress-related proteins under these conditions as shown by 2-D gel electrophoresis and MALDI-TOF/TOF mass spectrometry. These findings change our perception of chlamydial biology and reveal that host-free analyses possess a previously not recognized potential for direct experimental access to these elusive microorganisms.
Collapse
Affiliation(s)
- Susanne Haider
- Department of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Huang WE, Li M, Jarvis RM, Goodacre R, Banwart SA. Shining light on the microbial world the application of Raman microspectroscopy. ADVANCES IN APPLIED MICROBIOLOGY 2010; 70:153-86. [PMID: 20359457 DOI: 10.1016/s0065-2164(10)70005-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Raman microspectroscopy is a noninvasive, label-free, and single-cell technology for biochemical analysis of individual mammalian cells, organelles, bacteria, viruses, and nanoparticles. Chemical information derived from a Raman spectrum provides comprehensive and intrinsic information (e.g., nucleic acids, protein, carbohydrates, and lipids) of single cells without the need of any external labeling. A Raman spectrum functions as a molecular "fingerprint" of single cells, which enables the differentiation of cell types, physiological states, nutrient condition, and variable phenotypes. Raman microspectroscopy combined with stable isotope probing, fluorescent in situ hybridization, and optical tweezers offers a culture-independent approach to study the functions and physiology of unculturable microorganisms in the ecosystem. Here, we review the application of Raman microspectroscopy to microbiology research with particular emphasis on single bacterial cells.
Collapse
Affiliation(s)
- Wei E Huang
- Department of Civil and Structural Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom.
| | | | | | | | | |
Collapse
|
45
|
Wagner M. Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu Rev Microbiol 2009; 63:411-29. [PMID: 19514853 DOI: 10.1146/annurev.micro.091208.073233] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An astonishing diversity of microorganisms thrives on our planet and their activities are fundamental for the functioning of all ecosystems including the human body. Consequently, detailed insights into the functions performed by microorganisms in their natural environment are required to understand human biology and the biology of the world around us and to lay the foundations for targeted manipulation of microbial communities. Isotope-labeling techniques combined with molecular detection tools are frequently used by microbial ecologists to directly link structure and function of microbial communities and to monitor metabolic properties of uncultured microbes at the single-cell level. However, only the recent combination of such techniques with Raman microspectroscopy or secondary ion mass spectrometry enables functional studies of microbes on a single-cell level by using stable isotopes as labels. This review provides an overview of these new techniques and their applications in microbial ecology, which allow us to investigate the ecophysiology of uncultured microbes to an extent that was unimaginable just a few years ago.
Collapse
Affiliation(s)
- Michael Wagner
- University of Vienna, Department of Microbial Ecology, Vienna 1090, Austria.
| |
Collapse
|
46
|
Jetten MSM, Niftrik LV, Strous M, Kartal B, Keltjens JT, Op den Camp HJM. Biochemistry and molecular biology of anammox bacteria. Crit Rev Biochem Mol Biol 2009; 44:65-84. [DOI: 10.1080/10409230902722783] [Citation(s) in RCA: 310] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
47
|
Harz M, Rösch P, Popp J. Vibrational spectroscopy--a powerful tool for the rapid identification of microbial cells at the single-cell level. Cytometry A 2009; 75:104-13. [PMID: 19156822 DOI: 10.1002/cyto.a.20682] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rapid microbial detection and identification with a high grade of sensitivity and selectivity is a great and challenging issue in many fields, primarily in clinical diagnosis, pharmaceutical, or food processing technology. The tedious and time-consuming processes of current microbiological approaches call for faster ideally on-line identification techniques. The vibrational spectroscopic techniques IR absorption and Raman spectroscopy are noninvasive methods yielding molecular fingerprint information; thus, allowing for a fast and reliable analysis of complex biological systems such as bacterial or yeast cells. In this short review, we discuss recent vibrational spectroscopic advances in microbial identification of yeast and bacterial cells for bulk environment and single-cell analysis. IR absorption spectroscopy enables a bulk analysis whereas micro-Raman-spectroscopy with excitation in the near infrared or visible range has the potential for the analysis of single bacterial and yeast cells. The inherently weak Raman signal can be increased up to several orders of magnitude by applying Raman signal enhancement methods such as UV-resonance Raman spectroscopy with excitation in the deep UV region, surface enhanced Raman scattering, or tip-enhanced Raman scattering.
Collapse
Affiliation(s)
- M Harz
- Institute of Physical Chemistry, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, Jena 07743, Germany
| | | | | |
Collapse
|
48
|
Krafft C, Dietzek B, Popp J. Raman and CARS microspectroscopy of cells and tissues. Analyst 2009; 134:1046-57. [DOI: 10.1039/b822354h] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|