1
|
Srivatsav AT, Kapoor S. Biophysical Interaction Landscape of Mycobacterial Mycolic Acids and Phenolic Glycolipids with Host Macrophage Membranes. ACS APPLIED BIO MATERIALS 2023; 6:5555-5562. [PMID: 38015441 DOI: 10.1021/acsabm.3c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Lipidic adjuvant formulations consisting of immunomodulatory mycobacterial cell wall lipids interact with host cells following administration. The impact of this cross-talk on the host membrane's structure and function is rarely given enough consideration but is imperative to rule out nonspecific perturbation underlying the adjuvant. In this work, we investigated changes in the plasma membranes of live mammalian cells after exposure to mycobacterial mycolic acid (MA) and phenolic glycolipids, two strong candidates for lipidic adjuvant therapy. We found that phenolic glycolipid 1 softened the plasma membrane, lowering membrane tension and stiffness, but MA did not significantly change the membrane characteristics. Further, phenolic glycolipid 1 had a fluidizing impact on the host plasma membrane, increasing the fluidity and the abundance of fluid-ordered-disordered coexisting lipid domains. Notably, lipid diffusion was not impacted. Overall, MA and, to a lesser extent, phenolic glycolipid 1, due to minor disruption of host cell membranes, may serve as appropriate lipids in adjuvant formulations.
Collapse
Affiliation(s)
- Aswin T Srivatsav
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
2
|
RNA Microarray-Based Comparison of Innate Immune Phenotypes between Human THP-1 Macrophages Stimulated with Two BCG Strains. Int J Mol Sci 2022; 23:ijms23094525. [PMID: 35562916 PMCID: PMC9103163 DOI: 10.3390/ijms23094525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 12/10/2022] Open
Abstract
Currently, the only available vaccine against tuberculosis is Mycobacterium bovis Bacille Calmette-Guérin (BCG). Pulmonary tuberculosis protection provided by the vaccine varies depending on the strain, the patient’s age and the evaluated population. Although the adaptive immune responses induced by different BCG strains have been widely studied, little conclusive data is available regarding innate immune responses, especially in macrophages. Here, we aimed to characterize the innate immune responses of human THP-1-derived macrophages at the transcriptional level following a challenge with either the BCG Mexico (M.BCG) or Phipps (P.BCG) strains. After a brief in vitro characterization of the bacterial strains and the innate immune responses, including nitric oxide production and cytokine profiles, we analyzed the mRNA expression patterns and performed pathway enrichment analysis using RNA microarrays. Our results showed that multiple biological processes were enriched, especially those associated with innate inflammatory and antimicrobial responses, including tumor necrosis factor (TNF)-α, type I interferon (IFN-I) and IFN-γ. However, four DEGs were identified in macrophages infected with M.BCG compared to P. BCG. These findings indicated the proinflammatory stimulation of macrophages induced by both BCG strains, at the cytokine level and in terms of gene expression, suggesting a differential expression pattern of innate immune transcripts depending on the mycobacterial strain.
Collapse
|
3
|
Kubota M, Iizasa E, Chuuma Y, Kiyohara H, Hara H, Yoshida H. Adjuvant activity of Mycobacteria-derived mycolic acids. Heliyon 2020; 6:e04064. [PMID: 32490252 PMCID: PMC7260583 DOI: 10.1016/j.heliyon.2020.e04064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/29/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022] Open
Abstract
Successful vaccination, especially with safe vaccines such as component/subunit vaccines, requires proper activation of innate immunity and, for this purpose, adjuvant is used. For clinical use, alum is frequently used while, for experimental use, CFA, containing Mycobacterial components, was often used. In this report, we demonstrated that mycolic acids (MA), major and essential lipid components of the bacterial cell wall of the genus Mycobacterium, has adjuvant activity. MA plus model antigen-immunization induced sufficient humoral response, which was largely comparable to conventional CFA plus antigen-immunization. Importantly, while CFA plus antigen-immunization induced Th17-biased severe and destructive inflammatory responses at the injected site, MA plus antigen-immunization induced Th1-biased mild inflammation at the site. MA induced dendritic cell activation by co-stimulatory molecule induction as well as inflammatory cytokine/chemokine induction. MA plus antigen-immunization successfully protected mice from tumor progression both in prevention and in therapy models. We thus submit that MA is a promising adjuvant candidate material for clinical purposes and for experimental purposes from a perspective of animal welfare.
Collapse
Affiliation(s)
- Mio Kubota
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
- Saga-ken Medical Center Koseikan, Saga, 840-8571, Japan
| | - Ei'ichi Iizasa
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, 890-8544, Japan
| | - Yasushi Chuuma
- Research and Development Department, Japan BCG Laboratory, Kiyose, Tokyo, 204-0022, Japan
| | - Hideyasu Kiyohara
- Research and Development Department, Japan BCG Laboratory, Kiyose, Tokyo, 204-0022, Japan
| | - Hiromitsu Hara
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, 890-8544, Japan
| | - Hiroki Yoshida
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
- Corresponding author.
| |
Collapse
|
4
|
Crick PJ, Guan XL. Lipid metabolism in mycobacteria--Insights using mass spectrometry-based lipidomics. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:60-67. [PMID: 26515252 DOI: 10.1016/j.bbalip.2015.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/14/2015] [Accepted: 10/23/2015] [Indexed: 11/18/2022]
Abstract
Diseases including tuberculosis and leprosy are caused by species of the Mycobacterium genus and are a huge burden on global health, aggravated by the emergence of drug resistant strains. Mycobacteria have a high lipid content and complex lipid profile including several unique classes of lipid. Recent years have seen a growth in research focused on lipid structures, metabolism and biological functions driven by advances in mass spectrometry techniques and instrumentation, particularly the use of electrospray ionization. Here we review the contributions of lipidomics towards the advancement of our knowledge of lipid metabolism in mycobacterial species.
Collapse
Affiliation(s)
- Peter J Crick
- Swiss Tropical and Public Health Institute, CH-4051 Basel, Switzerland; University of Basel, CH-4000 Basel, Switzerland
| | - Xue Li Guan
- Swiss Tropical and Public Health Institute, CH-4051 Basel, Switzerland; University of Basel, CH-4000 Basel, Switzerland; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| |
Collapse
|