1
|
Thomas J, Frugoli J. Mutation of BAM2 rescues the sunn hypernodulation phenotype in Medicago truncatula, suggesting that a signaling pathway like CLV1/BAM in Arabidopsis affects nodule number. FRONTIERS IN PLANT SCIENCE 2024; 14:1334190. [PMID: 38273950 PMCID: PMC10808729 DOI: 10.3389/fpls.2023.1334190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
The unique evolutionary adaptation of legumes for nitrogen-fixing symbiosis leading to nodulation is tightly regulated by the host plant. The autoregulation of nodulation (AON) pathway negatively regulates the number of nodules formed in response to the carbon/nitrogen metabolic status of the shoot and root by long-distance signaling to and from the shoot and root. Central to AON signaling in the shoots of Medicago truncatula is SUNN, a leucine-rich repeat receptor-like kinase with high sequence similarity with CLAVATA1 (CLV1), part of a class of receptors in Arabidopsis involved in regulating stem cell populations in the root and shoot. This class of receptors in Arabidopsis includes the BARELY ANY MERISTEM family, which, like CLV1, binds to CLE peptides and interacts with CLV1 to regulate meristem development. M. truncatula contains five members of the BAM family, but only MtBAM1 and MtBAM2 are highly expressed in the nodules 48 hours after inoculation. Plants carry mutations in individual MtBAMs, and several double BAM mutant combinations all displayed wild-type nodule number phenotypes. However, Mtbam2 suppressed the sunn-5 hypernodulation phenotype and partially rescued the short root length phenotype of sunn-5 when present in a sunn-5 background. Grafting determined that bam2 suppresses supernodulation from the roots, regardless of the SUNN status of the root. Overexpression of MtBAM2 in wild-type plants increases nodule numbers, while overexpression of MtBAM2 in some sunn mutants rescues the hypernodulation phenotype, but not the hypernodulation phenotypes of AON mutant rdn1-2 or crn. Relative expression measurements of the nodule transcription factor MtWOX5 downstream of the putative bam2 sunn-5 complex revealed disruption of meristem signaling; while both bam2 and bam2 sunn-5 influence MtWOX5 expression, the expression changes are in different directions. We propose a genetic model wherein the specific root interactions of BAM2/SUNN are critical for signaling in nodule meristem cell homeostasis in M. truncatula.
Collapse
Affiliation(s)
| | - Julia Frugoli
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
| |
Collapse
|
2
|
Liu W, Jiang P, Song T, Yang K, Yuan F, Gao T, Liu Z, Li C, Guo R, Xiao S, Tian Y, Zhou D. A Recombinant Chimera Vaccine Composed of LTB and Mycoplasma hyopneumoniae Antigens P97R1, mhp390 and P46 Elicits Cellular Immunologic Response in Mice. Vaccines (Basel) 2023; 11:1291. [PMID: 37631860 PMCID: PMC10457768 DOI: 10.3390/vaccines11081291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Mycoplasma hyopneumoniae is the etiological agent of porcine enzootic pneumonia (EP), leading to a mild and chronic pneumonia in swine. Relative control has been attained through active vaccination programs, but porcine enzootic pneumonia remains a significant economic challenge in the swine industry. Cellular immunity plays a key role in the prevention and control of porcine enzootic pneumonia. Therefore, the development of a more efficient vaccine that confers a strong immunity against M. hyopneumoniae is necessary. In this study, a multi-antigen chimera (L9m6) was constructed by combining the heat-labile enterotoxin B subunit (LTB) with three antigens of M. hyopneumoniae (P97R1, mhp390, and P46), and its immunogenic and antigenic properties were assessed in a murine model. In addition, we compared the effect of individual administration and multiple-fusion of these antigens. The chimeric multi-fusion vaccine induced significant cellular immune responses and high production of IgG and IgM antibodies against M. hyopneumoniae. Collectively, our data suggested that rL9m6 chimera exhibits potential as a viable vaccine candidate for the prevention and control of porcine enzootic pneumonia.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Peizhao Jiang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;
| | - Tao Song
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Chang Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| |
Collapse
|
3
|
T211K substitution in Pseudomonas putida phenylserine aldolase improves catalytic efficiency towards l-threo-4-nitrophenylserine with reversed stereoselectivity. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Maes D, Boyen F, Devriendt B, Kuhnert P, Summerfield A, Haesebrouck F. Perspectives for improvement of Mycoplasma hyopneumoniae vaccines in pigs. Vet Res 2021; 52:67. [PMID: 33964969 PMCID: PMC8106180 DOI: 10.1186/s13567-021-00941-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022] Open
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) is one of the primary agents involved in the porcine respiratory disease complex, economically one of the most important diseases in pigs worldwide. The pathogen adheres to the ciliated epithelium of the trachea, bronchi, and bronchioles, causes damage to the mucosal clearance system, modulates the immune system and renders the animal more susceptible to other respiratory infections. The pathogenesis is very complex and not yet fully understood. Cell-mediated and likely also mucosal humoral responses are considered important for protection, although infected animals are not able to rapidly clear the pathogen from the respiratory tract. Vaccination is frequently practiced worldwide to control M. hyopneumoniae infections and the associated performance losses, animal welfare issues, and treatment costs. Commercial vaccines are mostly bacterins that are administered intramuscularly. However, the commercial vaccines provide only partial protection, they do not prevent infection and have a limited effect on transmission. Therefore, there is a need for novel vaccines that confer a better protection. The present paper gives a short overview of the pathogenesis and immune responses following M. hyopneumoniae infection, outlines the major limitations of the commercial vaccines and reviews the different experimental M. hyopneumoniae vaccines that have been developed and tested in mice and pigs. Most experimental subunit, DNA and vector vaccines are based on the P97 adhesin or other factors that are important for pathogen survival and pathogenesis. Other studies focused on bacterins combined with novel adjuvants. Very few efforts have been directed towards the development of attenuated vaccines, although such vaccines may have great potential. As cell-mediated and likely also humoral mucosal responses are important for protection, new vaccines should aim to target these arms of the immune response. The selection of proper antigens, administration route and type of adjuvant and carrier molecule is essential for success. Also practical aspects, such as cost of the vaccine, ease of production, transport and administration, and possible combination with vaccines against other porcine pathogens, are important. Possible avenues for further research to develop better vaccines and to achieve a more sustainable control of M. hyopneumoniae infections are discussed.
Collapse
Affiliation(s)
- Dominiek Maes
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Filip Boyen
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Peter Kuhnert
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Sensemattstrasse 293, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | |
Collapse
|
5
|
Ning Y, Zhou Y, Wang Z, Wen Y, Xu Z, Tian Y, Yang M, Wang X, Yang Y, Ding H. Elevated Mhp462 antibody induced by natural infection but not in vitro culture of Mycoplasma hyopneumoniae. Heliyon 2020; 6:e04832. [PMID: 32923730 PMCID: PMC7476235 DOI: 10.1016/j.heliyon.2020.e04832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/10/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022] Open
Abstract
Mycoplasma hyopneumoniae is the respiratory pathogen of porcine enzootic pneumonia, a chronic respiratory infectious disease that causes substantial pecuniary losses to pig husbandry worldwide. Commercial bacterins only provide incomplete protection and do not prevent the colonization and transmission of M. hyopneumoniae. Identification of new protective antigens is a key imperative for the development of more effective novel vaccine. The objective of this study was to evaluate antibody responses of 27 recombinant proteins in convalescent sera obtained from pigs that were naturally infected with M. hyopneumoniae. Fifteen proteins were identified as serological immunodominant antigens, while 3 proteins were not recognized by any convalescent serum. Moreover, Mhp462, a leucine aminopeptidase, was found to be a discriminative serological immunodominant antigen which reacted with convalescent sera but not with hyperimmune sera. The serological immunodominant proteins were antigenic and were expressed during infection; this suggests that these proteins (especially the discriminative one) are potential candidate antigens for the development of next generation vaccines against M. hyopneumoniae.
Collapse
Affiliation(s)
- Yaru Ning
- Laboratory of Veterinary Infectious Diseases, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yaoqin Zhou
- College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Zhaodi Wang
- Laboratory of Veterinary Infectious Diseases, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yukang Wen
- Laboratory of Veterinary Infectious Diseases, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zuobo Xu
- Laboratory of Veterinary Infectious Diseases, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yaqin Tian
- Laboratory of Veterinary Infectious Diseases, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Mei Yang
- Laboratory of Veterinary Infectious Diseases, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xudong Wang
- Laboratory of Veterinary Infectious Diseases, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yujiao Yang
- Laboratory of Veterinary Infectious Diseases, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Honglei Ding
- Laboratory of Veterinary Infectious Diseases, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
McDonald MG, Henderson LM, Ray S, Yeung CK, Johnson AL, Kowalski JP, Hanenberg H, Wiek C, Thummel KE, Rettie AE. Heterologous Expression and Functional Characterization of Novel CYP2C9 Variants Identified in the Alaska Native People. J Pharmacol Exp Ther 2020; 374:233-240. [PMID: 32423989 DOI: 10.1124/jpet.120.265850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/12/2020] [Indexed: 01/27/2023] Open
Abstract
CYP2C9 is a major form of human liver cytochrome P450 that is responsible for the oxidative metabolism of several widely used low-therapeutic index drugs, including (S)-warfarin and phenytoin. In a cohort of Alaska Native people, ultrarare or novel CYP2C9 protein variants, M1L (rs114071557), N218I (rs780801862), and P279T (rs182132442, CYP2C9*29), are expressed with higher frequencies than the well characterized CYP2C9*2 and CYP2C9*3 alleles. We report here on their relative expression in lentivirus-infected HepG2 cells and the functional characterization of purified reconstituted enzyme variants expressed in Escherichia coli toward (S)-warfarin, phenytoin, flurbiprofen, and (S)-naproxen. In the infected HepG2 cells, robust mRNA and protein expression were obtained for wild-type, N218I, and P279T variants, but as expected, the M1L variant protein was not translated in this liver-derived cell line. His-tagged wild-type protein and the N218I and P279T variants, but not M1L, expressed well in E. coli and were highly purified after affinity chromatography. Upon reconstitution with cytochrome P450 oxidoreductase and cytochrome b5, the N218I and P279T protein variants metabolized (S)-warfarin, phenytoin, flurbiprofen, and (S)-naproxen to the expected monohydroxylated or O-demethylated metabolites. Steady-state kinetic analyses revealed that the relative catalytic efficiency ratios of (S)-warfarin metabolism by the P279T and N218I variants were 87% and 24%, respectively, of wild-type CYP2C9 protein. A similar rank ordering was observed for metabolism of phenytoin, flurbiprofen, and (S)-naproxen. We conclude that carriers of the variant N218I and, especially, the M1L alleles would be at risk of exacerbated therapeutic effects from drugs that rely on CYP2C9 for their metabolic clearance. SIGNIFICANCE STATEMENT: Novel gene variants of CYP2C9-M1L, and N218I, along with P279T (CYP2C9*29)-are expressed in Alaska Native people at relatively high frequencies. In vitro characterization of their functional effects revealed that each variant confers reduced catalytic efficiency toward several substrates, including the low-therapeutic index drugs (S)-warfarin and phenytoin. These data provide the first functional information for new, common CYP2C9 variants in this understudied population. The data may help guide dose adjustments in allele carriers, thus mitigating potential healthcare disparities.
Collapse
Affiliation(s)
- Matthew G McDonald
- Departments of Medicinal Chemistry (M.G.M., S.R., A.L.J., J.P.K., A.E.R.), Pharmaceutics (L.M.H., K.E.T.), and Pharmacy (C.K.Y.), University of Washington, Seattle, Washington; Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, Düsseldorf, Germany (H.H., C.W.); and Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany (H.H.)
| | - Lindsay M Henderson
- Departments of Medicinal Chemistry (M.G.M., S.R., A.L.J., J.P.K., A.E.R.), Pharmaceutics (L.M.H., K.E.T.), and Pharmacy (C.K.Y.), University of Washington, Seattle, Washington; Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, Düsseldorf, Germany (H.H., C.W.); and Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany (H.H.)
| | - Sutapa Ray
- Departments of Medicinal Chemistry (M.G.M., S.R., A.L.J., J.P.K., A.E.R.), Pharmaceutics (L.M.H., K.E.T.), and Pharmacy (C.K.Y.), University of Washington, Seattle, Washington; Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, Düsseldorf, Germany (H.H., C.W.); and Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany (H.H.)
| | - Catherine K Yeung
- Departments of Medicinal Chemistry (M.G.M., S.R., A.L.J., J.P.K., A.E.R.), Pharmaceutics (L.M.H., K.E.T.), and Pharmacy (C.K.Y.), University of Washington, Seattle, Washington; Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, Düsseldorf, Germany (H.H., C.W.); and Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany (H.H.)
| | - Amanda L Johnson
- Departments of Medicinal Chemistry (M.G.M., S.R., A.L.J., J.P.K., A.E.R.), Pharmaceutics (L.M.H., K.E.T.), and Pharmacy (C.K.Y.), University of Washington, Seattle, Washington; Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, Düsseldorf, Germany (H.H., C.W.); and Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany (H.H.)
| | - John P Kowalski
- Departments of Medicinal Chemistry (M.G.M., S.R., A.L.J., J.P.K., A.E.R.), Pharmaceutics (L.M.H., K.E.T.), and Pharmacy (C.K.Y.), University of Washington, Seattle, Washington; Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, Düsseldorf, Germany (H.H., C.W.); and Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany (H.H.)
| | - Helmut Hanenberg
- Departments of Medicinal Chemistry (M.G.M., S.R., A.L.J., J.P.K., A.E.R.), Pharmaceutics (L.M.H., K.E.T.), and Pharmacy (C.K.Y.), University of Washington, Seattle, Washington; Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, Düsseldorf, Germany (H.H., C.W.); and Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany (H.H.)
| | - Constanze Wiek
- Departments of Medicinal Chemistry (M.G.M., S.R., A.L.J., J.P.K., A.E.R.), Pharmaceutics (L.M.H., K.E.T.), and Pharmacy (C.K.Y.), University of Washington, Seattle, Washington; Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, Düsseldorf, Germany (H.H., C.W.); and Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany (H.H.)
| | - Kenneth E Thummel
- Departments of Medicinal Chemistry (M.G.M., S.R., A.L.J., J.P.K., A.E.R.), Pharmaceutics (L.M.H., K.E.T.), and Pharmacy (C.K.Y.), University of Washington, Seattle, Washington; Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, Düsseldorf, Germany (H.H., C.W.); and Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany (H.H.)
| | - Allan E Rettie
- Departments of Medicinal Chemistry (M.G.M., S.R., A.L.J., J.P.K., A.E.R.), Pharmaceutics (L.M.H., K.E.T.), and Pharmacy (C.K.Y.), University of Washington, Seattle, Washington; Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, Düsseldorf, Germany (H.H., C.W.); and Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany (H.H.)
| |
Collapse
|
7
|
The role of enzyme adsorption in the enzymatic degradation of an aliphatic polyester. Enzyme Microb Technol 2019; 120:110-116. [DOI: 10.1016/j.enzmictec.2018.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 11/19/2022]
|
8
|
Liu W, Zhou D, Yuan F, Liu Z, Duan Z, Yang K, Guo R, Li M, Li S, Fang L, Xiao S, Tian Y. Surface proteins mhp390 (P68) contributes to cilium adherence and mediates inflammation and apoptosis in Mycoplasma hyopneumoniae. Microb Pathog 2018; 126:92-100. [PMID: 30385395 DOI: 10.1016/j.micpath.2018.10.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/22/2018] [Accepted: 10/26/2018] [Indexed: 10/28/2022]
Abstract
Mycoplasma hyopneumoniae is the causative agent of porcine enzootic pneumonia (EP) and responsible for major economic losses in global swine industry. After colonization of the respiratory epithelium, M. hyopneumoniae elicits a general mucociliary clearance loss, prolonged inflammatory response, host immunosuppression and secondary infections. Until now, the pathogenesis of M. hyopneumoniae is not completely elucidated. This present study explores the pathogenicity of mhp390 (P68, a membrane-associated lipoprotein) by elucidating its multiple functions. Microtitrer plate adherence assay demonstrated that mhp390 is a new cilia adhesin that plays an important role in binding to swine tracheal cilia. Notably, mhp390 could induce significant apoptosis of lymphocytes and monocytes from peripheral blood mononuclear cells (PBMCs), as well as primary alveolar macrophages (PAMs), which might weaken the host immune response. In addition, mhp390 contributes to the production of proinflammatory cytokines, at least partially, via the release of IL-1β and TNF-α. To the best of our knowledge, this is the first report of the multiple functions of M. hyopneumoniae mhp390, which may supplement known virulence genes and further develop our understanding of the pathogenicity of M. hyopneumoniae.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Zhengyin Duan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Mao Li
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Sha Li
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Liurong Fang
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shaobo Xiao
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
9
|
Li RJ, Xu JH, Chen Q, Zhao J, Li AT, Yu HL. Enhancing the Catalytic Performance of a CYP116B Monooxygenase by Transdomain Combination Mutagenesis. ChemCatChem 2018. [DOI: 10.1002/cctc.201800054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ren-Jie Li
- Laboratory of Biocatalysis and Synthetic Biotechnology; State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P.R. China
| | - Jian-He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology; State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P.R. China
| | - Qi Chen
- Laboratory of Biocatalysis and Synthetic Biotechnology; State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P.R. China
| | - Jing Zhao
- Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; Tianjin 300308 P.R. China
| | - Ai-Tao Li
- Hubei Collaborative Innovation Center for, Green Transformation of Bio-resources; Hubei Key Laboratory of Industrial Biotechnology; College of Life Sciences; Hubei University; Wuhan 430062 P.R. China
| | - Hui-Lei Yu
- Laboratory of Biocatalysis and Synthetic Biotechnology; State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P.R. China
| |
Collapse
|
10
|
Revised Mechanism and Improved Efficiency of the QuikChange Site-Directed Mutagenesis Method. Methods Mol Biol 2018; 1498:367-374. [PMID: 27709589 DOI: 10.1007/978-1-4939-6472-7_25] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Site-directed mutagenesis has been widely used for the substitution, addition or deletion of nucleotide residues in a defined DNA sequence. QuikChange™ site-directed mutagenesis and its related protocols have been widely used for this purpose because of convenience and efficiency. We have recently demonstrated that the mechanism of the QuikChange™ site-directed mutagenesis process is different from that being proposed. The new mechanism promotes the use of partially overlapping primers and commercial PCR enzymes for efficient PCR and mutagenesis.
Collapse
|
11
|
Huang F, Niu Y, Liu Z, Liu W, Li X, Tan H, Yang Y. An E3 ubiquitin ligase from Brassica napus induces a typical heat-shock response in its own way in Escherichia coli. Acta Biochim Biophys Sin (Shanghai) 2017; 49:262-269. [PMID: 28399214 DOI: 10.1093/abbs/gmx004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Indexed: 11/14/2022] Open
Abstract
Previously, we have identified a novel E3 ubiquitin ligase, BNTR1, which plays a key role in heat stress response in Brassica napus. In this study, we accidentally found that BNTR1 can also improve thermal tolerance and reduce growth inhibition at 42°C in Escherichia coli, in a manner different from that in plant. We show that BNTR1 activates E. coli heat-shock response at low concentration in soluble form instead of in inclusion body, but BNTR1 is not functioning as a heat-shock protein (HSP) because deficient temperature-sensitive mutants of HSP genes display unconspicuous thermal tolerance in the presence of BNTR1. Our further studies show that BNTR1 triggers heat-shock response by competing with σ32 (σ32, heat-shock transcription factor) to its binding proteins DnaJ (HSP40) and DnaK (HSP70), which results in the release and accumulation of σ32, thereby promoting the heat-shock response, even under the non-heat-shock conditions. At 37°C, accumulation of the HSPs induced by BNTR1 could make cells much more tolerant than those without BNTR1 at 42°C. Thus, our results suggest that BNTR1 may potentially be a promising target in fermentation industry for reducing impact from temperature fluctuation, where E. coli works as bioreactors.
Collapse
Affiliation(s)
- Fei Huang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yulong Niu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zhibin Liu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Weifeng Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xufeng Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Hong Tan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610064, China
| | - Yi Yang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
12
|
Abstract
Mycoplasma hyopneumoniae is the etiological agent of swine enzootic pneumonia (EP), a disease that affects swine production worldwide. Vaccination is the most cost-effective strategy for the control and prevention of the disease. Research using genome-based approach has the potential to elucidate the biology and pathogenesis of M. hyopneumoniae and contribute to the development of more effective vaccines. Here, we describe the protocol for developing M. hyopneumoniae recombinant vaccines using reverse vaccinology approaches.
Collapse
|
13
|
Combined Overlap Extension PCR Method for Improved Site Directed Mutagenesis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8041532. [PMID: 27995143 PMCID: PMC5138438 DOI: 10.1155/2016/8041532] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/27/2016] [Indexed: 11/23/2022]
Abstract
The combined overlap extension PCR (COE-PCR) method developed in this work combines the strengths of the overlap extension PCR (OE-PCR) method with the speed and ease of the asymmetrical overlap extension (AOE-PCR) method. This combined method allows up to 6 base pairs to be mutated at a time and requires a total of 40–45 PCR cycles. A total of eight mutagenesis experiments were successfully carried out, with each experiment mutating between two to six base pairs. Up to four adjacent codons were changed in a single experiment. This method is especially useful for codon optimization, where doublet or triplet rare codons can be changed using a single mutagenic primer set, in a single experiment.
Collapse
|
14
|
Generation of mutant threonine dehydratase and its effects on isoleucine synthesis in Corynebacterium glutamicum. World J Microbiol Biotechnol 2015; 31:1369-77. [DOI: 10.1007/s11274-015-1885-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 06/05/2015] [Indexed: 12/15/2022]
|
15
|
Guo Y, Han M, Xu J, Zhang W. Analysis of acetohydroxyacid synthase variants from branched-chain amino acids-producing strains and their effects on the synthesis of branched-chain amino acids in Corynebacterium glutamicum. Protein Expr Purif 2015; 109:106-12. [DOI: 10.1016/j.pep.2015.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/03/2015] [Accepted: 02/06/2015] [Indexed: 11/29/2022]
|
16
|
Kim J, Kang WH, Hwang J, Yang HB, Dosun K, Oh CS, Kang BC. Transgenic Brassica rapa plants over-expressing eIF(iso)4E variants show broad-spectrum Turnip mosaic virus (TuMV) resistance. MOLECULAR PLANT PATHOLOGY 2014; 15:615-26. [PMID: 24417952 PMCID: PMC6638765 DOI: 10.1111/mpp.12120] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The protein-protein interaction between VPg (viral protein genome-linked) of potyviruses and eIF4E (eukaryotic initiation factor 4E) or eIF(iso)4E of their host plants is a critical step in determining viral virulence. In this study, we evaluated the approach of engineering broad-spectrum resistance in Chinese cabbage (Brassica rapa) to Turnip mosaic virus (TuMV), which is one of the most important potyviruses, by a systematic knowledge-based approach to interrupt the interaction between TuMV VPg and B. rapa eIF(iso)4E. The seven amino acids in the cap-binding pocket of eIF(iso)4E were selected on the basis of other previous results and comparison of protein models of cap-binding pockets, and mutated. Yeast two-hybrid assay and co-immunoprecipitation analysis demonstrated that W95L, K150L and W95L/K150E amino acid mutations of B. rapa eIF(iso)4E interrupted its interaction with TuMV VPg. All eIF(iso)4E mutants were able to complement an eIF4E-knockout yeast strain, indicating that the mutated eIF(iso)4E proteins retained their function as a translational initiation factor. To determine whether these mutations could confer resistance, eIF(iso)4E W95L, W95L/K150E and eIF(iso)4E wild-type were over-expressed in a susceptible Chinese cabbage cultivar. Evaluation of the TuMV resistance of T1 and T2 transformants demonstrated that the over-expression of the eIF(iso)4E mutant forms can confer resistance to multiple TuMV strains. These data demonstrate the utility of knowledge-based approaches for the engineering of broad-spectrum resistance in Chinese cabbage.
Collapse
Affiliation(s)
- Jinhee Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, South Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Generation of branched-chain amino acids resistant Corynebacterium glutamicum acetohydroxy acid synthase by site-directed mutagenesis. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0843-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Discovery of McbB, an Enzyme Catalyzing the β-Carboline Skeleton Construction in the Marinacarboline Biosynthetic Pathway. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303449] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Chen Q, Ji C, Song Y, Huang H, Ma J, Tian X, Ju J. Discovery of McbB, an Enzyme Catalyzing the β-Carboline Skeleton Construction in the Marinacarboline Biosynthetic Pathway. Angew Chem Int Ed Engl 2013; 52:9980-4. [DOI: 10.1002/anie.201303449] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/09/2013] [Indexed: 01/01/2023]
|
20
|
Recombinant secreted antigens from Mycoplasma hyopneumoniae delivered as a cocktail vaccine enhance the immune response of mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1370-6. [PMID: 23803903 DOI: 10.1128/cvi.00140-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mycoplasma hyopneumoniae is the etiological agent of porcine enzootic pneumonia (EP), which is a respiratory disease responsible for huge economic losses in the pig industry worldwide. The commercially available vaccines provide only partial protection and are expensive. Thus, the development of alternatives for the prophylaxis of EP is critical for improving pig health. The use of multiple antigens in the same immunization may represent a promising alternative. In the present study, seven secreted proteins of M. hyopneumoniae were cloned, expressed in Escherichia coli, and evaluated for antigenicity using serum from naturally and experimentally infected pigs. In addition, the immunogenicity of the seven recombinant proteins delivered individually or in protein cocktail vaccines was evaluated in mice. In Western blot assays and enzyme-linked immunosorbent assays, most of the recombinant proteins evaluated were recognized by convalescent-phase serum from the animals, indicating that they are expressed during the infectious process. The recombinant proteins were also immunogenic, and most induced a mixed IgG1/IgG2a humoral immune response. The use of these proteins in a cocktail vaccine formulation enhanced the immune response compared to their use as antigens delivered individually, providing evidence of the efficacy of the multiple-antigen administration strategy for the induction of an immune response against M. hyopneumoniae.
Collapse
|
21
|
Tan L, Chen H, Yu S, Qiu X, Song C, Chen D, Zhang S, Zhang F, He S, Shen X, Hu M, Ding C. A SOE-PCR method of introducing multiple mutations into Mycoplasma gallisepticum neuraminidase. J Microbiol Methods 2013; 94:117-120. [PMID: 23707236 DOI: 10.1016/j.mimet.2013.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 10/26/2022]
Abstract
A modified splicing with overlap extension PCR (SOE-PCR) was generated to introduce 21 TGA to TGG at Mycoplasma gallisepticum MGA_0329 gene. The recombinant protein was successfully expressed and retained neuraminidase activities, indicating that SOE-PCR is a rapid and highly efficient method of introducing multiple mutations into large M. gallisepticum genes.
Collapse
Affiliation(s)
- Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P. R. China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P. R. China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P. R. China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P. R. China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P. R. China
| | - Danqing Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P. R. China
| | - Shilei Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P. R. China
| | - Fanqing Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P. R. China
| | - Suibin He
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P. R. China
| | - Xinyue Shen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P. R. China; Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225009, P. R. China
| | - Meirong Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P. R. China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P. R. China.
| |
Collapse
|
22
|
Simionatto S, Marchioro SB, Maes D, Dellagostin OA. Mycoplasma hyopneumoniae: from disease to vaccine development. Vet Microbiol 2013; 165:234-42. [PMID: 23680109 DOI: 10.1016/j.vetmic.2013.04.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 02/02/2023]
Abstract
Mycoplasma hyopneumoniae is the etiological agent of swine enzootic pneumonia (EP), a disease that affects swine production worldwide. Vaccination is the most cost-effective strategy for the control and prevention of the disease. Despite efforts to control M. hyopneumoniae infection, significant economic losses in pig production continue to occur. The results of genome-based research have the potential to help understand the biology and pathogenesis of M. hyopneumoniae, and contribute to the development of more effective vaccines and diagnostic tests. In this review, the characteristics of M. hyopneumoniae related to pathogenesis and control measures will be discussed. Special emphasis will be placed on vaccination strategies that have been proposed with the use of reverse vaccinology approaches.
Collapse
Affiliation(s)
- Simone Simionatto
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, RS, Brazil.
| | | | | | | |
Collapse
|
23
|
Galli V, Simionatto S, Marchioro S, Fisch A, Gomes C, Conceição F, Dellagostin O. Immunisation of mice with Mycoplasma hyopneumoniae antigens P37, P42, P46 and P95 delivered as recombinant subunit or DNA vaccines. Vaccine 2012; 31:135-40. [DOI: 10.1016/j.vaccine.2012.10.088] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/14/2012] [Accepted: 10/25/2012] [Indexed: 11/29/2022]
|
24
|
Simionatto S, Marchioro SB, Galli V, Brum CB, Klein CS, Rebelatto R, Silva EF, Borsuk S, Conceição FR, Dellagostin OA. Immunological characterization of Mycoplasma hyopneumoniae recombinant proteins. Comp Immunol Microbiol Infect Dis 2012; 35:209-16. [DOI: 10.1016/j.cimid.2012.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/18/2011] [Accepted: 01/09/2012] [Indexed: 11/24/2022]
|
25
|
Bok JW, Keller NP. Fast and easy method for construction of plasmid vectors using modified quick-change mutagenesis. Methods Mol Biol 2012; 944:163-74. [PMID: 23065615 PMCID: PMC3692276 DOI: 10.1007/978-1-62703-122-6_11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Plasmid vector construction is an essential step for molecular microbiology yet often a time-consuming process. Manipulation of the fungal genome to express genes to activate secondary metabolite production often requires creation of plasmid constructs in a reiterative fashion. Here we introduce a modified Quick-change site-directed mutagenesis method that allows for rapid and accurate construction of fungal transformation vectors.
Collapse
|
26
|
Marchioro SB, Simionatto S, Galli V, Conceição FR, Brum CB, Fisch A, Gomes CK, Dellagostin OA. Production and characterization of recombinant transmembrane proteins from Mycoplasma hyopneumoniae. Vet Microbiol 2011; 155:44-52. [PMID: 21890287 DOI: 10.1016/j.vetmic.2011.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 07/27/2011] [Accepted: 08/01/2011] [Indexed: 10/17/2022]
Abstract
Mycoplasma hyopneumoniae is the etiological agent of swine enzootic pneumonia (EP), a chronic respiratory disease which causes significant economic losses to the swine industry worldwide. More efficient strategies for controlling this disease are necessary. In this study, we cloned17 genes coding for transmembrane proteins from M. hyopneumoniae, among which six were successfully expressed in Escherichia coli and had their immunogenic and antigenic properties evaluated. All proteins were immunogenic in mice and sera from naturally infected pigs reacted with the recombinant proteins, suggesting that they are expressed during infection. These antigens may contribute for the development of new recombinant vaccines and diagnostic tests against EP.
Collapse
Affiliation(s)
- S B Marchioro
- Laboratório de Biologia Molecular, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang X, Teng D, Yang Y, Tian F, Guan Q, Wang J. Construction of a reference plasmid molecule containing eight targets for the detection of genetically modified crops. Appl Microbiol Biotechnol 2011; 90:721-31. [PMID: 21336925 DOI: 10.1007/s00253-011-3159-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/18/2011] [Accepted: 01/23/2011] [Indexed: 12/17/2022]
Abstract
A standard plasmid containing eight targets was developed for quantitative detection of genetically modified (GM) soybeans and cotton. These eight targets were joined in tandem to form the pTLE8 plasmid with a length of 3,680 bp. This plasmid contains part of the endogenous soybean Lec1 gene, the Cauliflower mosaic virus (CaMV) 35S promoter, the Agrobacterium tumefaciens nopaline synthase (NOS) terminator, the PAT gene of the soybean line A2704-12, the event-specific 5'-junction region of Roundup-Ready Soya (RRS, 35SG), the Cry1A(c) gene from Bacillus thuringiensis (Bt), the endogenous cotton Sad1 gene, and a part of RRS EPSPS gene. The PCR efficiencies with pTLE8 as a calibrator ranged from 99.4% to 100.2% for the standard curves of the RRS EPSPS gene and the taxon-specific Lec1 gene (R(2)≥0.996). The limits of detection and quantification were nine and 15 copies, respectively. The standard deviation (SD) and relative standard deviation (RSD) values of repeatability were from 0.09 to 0.52 and from 0.28% to 2.11%, and those for reproducibility were from 0.12 to 1.15 and 0.42% to 3.85%, respectively. The average conversion factor (Cf) for the CRMs RRS quantification was 0.91. The RSD of the mean values for known samples ranged from 3.09% to 18.53%, and the biases were from 0.5% to 40%. These results show that our method using the pTLE8 plasmid as a reference material (RM) is reliable and feasible in the identification of GM soybeans, thus paving the way for the establishment of identification management systems for various products containing GMO components.
Collapse
Affiliation(s)
- Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, People's Republic of China
| | | | | | | | | | | |
Collapse
|
28
|
A new method for multi-site-directed mutagenesis. Anal Biochem 2010; 406:83-5. [PMID: 20547136 DOI: 10.1016/j.ab.2010.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/08/2010] [Accepted: 06/08/2010] [Indexed: 11/22/2022]
Abstract
A modified method for multi-site-directed mutagenesis was developed here based on polymerase chain reaction (PCR), DpnI digestion, and overlap extension. It needs only methylated plasmids obtained by Dam methyltransferase or plasmids from dam(+)Escherichia coli containing target gene. The procedure consists of PCR, DpnI digestion, overlap extension PCR, and plasmid transformation. The method was developed for multi-site-directed mutagenesis, including close proximity of mutation sites. It does not require 5'-phosphorylated primers and ligation and, thus, significantly simplifies the routine work and reduces the experimental cost for multi-site-directed mutagenesis.
Collapse
|