1
|
Rowan NJ. Current decontamination challenges and potentially complementary solutions to safeguard the vulnerable seafood industry from recalcitrant human norovirus in live shellfish: Quo Vadis? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162380. [PMID: 36841407 DOI: 10.1016/j.scitotenv.2023.162380] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Safeguarding the seafood industry is important given its contribution to supporting our growing global population. However, shellfish are filter feeders that bioaccumulate microbial contaminants in their tissue from wastewater discharged into the same coastal growing environments leading to significant human disease outbreaks unless appropriately mitigated. Removal or inactivation of enteric viruses is very challenging particularly as human norovirus (hNoV) binds to specific histo-blood ligands in live oyster tissue that are consumed raw or lightly cooked. The regulatory framework that sets out use of clean seawater and UV disinfection is appropriate for bacterial decontamination at the post-harvest land-based depuration (cleaning) stage. However, additional non-thermal technologies are required to eliminate hNoV in live shellfish (particularly oysters) where published genomic studies report that low-pressure UV has limited effectiveness in inactivating hNoV. The use of the standard genomic detection method (ISO 15, 216-1:2017) is not appropriate for assessing the loss of infectious hNoV in treated live shellfish. The use of surrogate viral infectivity methods appear to offer some insight into the loss of hNoV infectiousness in live shellfish during decontamination. This paper reviews the use of existing and potentially other combinational treatment approaches to enhance the removal or inactivation of enteric viruses in live shellfish. The use of alternative and complementary novel diagnostic approaches to discern viable hNoV are discussed. The effectiveness and virological safety of new affordable hNoV intervention(s) require testing and validating at commercial shellfish production in conjunction with laboratory-based research. Appropriate risk management planning should encompass key stakeholders including local government and the wastewater industry. Gaining a mechanistic understanding of the relationship between hNoV response at molecular and structural levels in individually treated oysters as a unit will inform predictive modeling and appropriate treatment technologies. Global warming of coastal growing environments may introduce additional contaminant challenges (such as invasive species); thus, underscoring need to develop real-time ecosystem monitoring of growing environments to alert shellfish producers to appropriately mitigate these threats.
Collapse
Affiliation(s)
- Neil J Rowan
- Centre for Sustainable Disinfection and Sterilization, Bioscience Research Institute, Technological University of the Shannon Midlands Midwest, Athlone Campus, Ireland.
| |
Collapse
|
2
|
Garvey M, Rowan NJ. Pathogenic Drug Resistant Fungi: A Review of Mitigation Strategies. Int J Mol Sci 2023; 24:1584. [PMID: 36675092 PMCID: PMC9863602 DOI: 10.3390/ijms24021584] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Fungal pathogens cause significant human morbidity and mortality globally, where there is a propensity to infect vulnerable people such as the immunocompromised ones. There is increasing evidence of resistance to antifungal drugs, which has significant implications for cutaneous, invasive and bloodstream infections. The World Health Organization (WHO) published a priority list of fungal pathogens in October 2022, thus, highlighting that a crisis point has been reached where there is a pressing need to address the solutions. This review provides a timely insight into the challenges and implications on the topic of antifungal drug resistance along with discussing the effectiveness of established disease mitigation modalities and approaches. There is also a need to elucidate the cellular and molecular mechanisms of fungal resistance to inform effective solutions. The established fungal decontamination approaches are effective for medical device processing and sterilization, but the presence of pathogenic fungi in recalcitrant biofilms can lead to challenges, particularly during cleaning. Future design ideas for implantable and reusable medical devices should consider antifungal materials and appropriates for disinfection, and where it is relevant, sterilization. Preventing the growth of mycotoxin-producing fungi on foods through the use of appropriate end-to-end processes is advisable, as mycotoxins are recalcitrant and challenging to eliminate once they have formed.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| | - Neil J. Rowan
- Bioscience Research Institute, Technical University Shannon Midlands Midwest, N37 HD68 Athlone, Ireland
| |
Collapse
|
3
|
Garvey M, Meade E, Rowan NJ. Effectiveness of front line and emerging fungal disease prevention and control interventions and opportunities to address appropriate eco-sustainable solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158284. [PMID: 36029815 DOI: 10.1016/j.scitotenv.2022.158284] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Fungal pathogens contribute to significant disease burden globally; however, the fact that fungi are eukaryotes has greatly complicated their role in fungal-mediated infections and alleviation. Antifungal drugs are often toxic to host cells and there is increasing evidence of adaptive resistance in animals and humans. Existing fungal diagnostic and treatment regimens have limitations that has contributed to the alarming high mortality rates and prolonged morbidity seen in immunocompromised cohorts caused by opportunistic invasive infections as evidenced during HIV and COVID-19 pandemics. There is a need to develop real-time monitoring and diagnostic methods for fungal pathogens and to create a greater awareness as to the contribution of fungal pathogens in disease causation. Greater information is required on the appropriate selection and dose of antifungal drugs including factors governing resistance where there is commensurate need to discover more appropriate and effective solutions. Popular azole fungal drugs are widely detected in surface water and sediment due to incomplete removal in wastewater treatment plants where they are resistant to microbial degradation and may cause toxic effects on aquatic organisms such as algae and fish. UV has limited effectiveness in destruction of anti-fungal drugs where there is increased interest in the combination approaches such as novel use of pulsed-plasma gas-discharge technologies for environmental waste management. There is growing interest in developing alternative and complementary green eco-biocides and disinfection innovation. Fungi present challenges for cleaning, disinfection and sterilization of reusable medical devices such as endoscopes where they (example, Aspergillus and Candida species) can be protected when harboured in build-up biofilm from lethal processing. Information on the efficacy of established disinfection and sterilization technologies to address fungal pathogens including bottleneck areas that present high risk to patients is lacking. There is a need to address risk mitigation and modelling to inform efficacy of appropriate intervention technologies that must consider all contributing factors where there is potential to adopt digital technologies to enable real-time analysis of big data, such as use of artificial intelligence and machine learning. International consensus on standardised protocols for developing and reporting on appropriate alternative eco-solutions must be reached, particularly in order to address fungi with increasing drug resistance where research and innovation can be enabled using a One Health approach.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, Sligo, Ireland; Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, Sligo, Ireland
| | - Elaine Meade
- Department of Life Science, Atlantic Technological University, Sligo, Ireland; Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, Sligo, Ireland
| | - Neil J Rowan
- Bioscience Research Institute, Technological University of the Shannon Midlands Midwest, Athlone, Ireland; Centre for Decontamination, Sterilization and Biosecurity, Technological University of the Shannon Midlands Midwest, Athlone, Ireland; Empower Eco Sustainability Hub, Technological University of the Shannon Midlands Midwest, Athlone, Ireland.
| |
Collapse
|
4
|
Hagos B, Molestina RE. A Simple Alcohol-based Method of Oocyst Inactivation for Use in the Development of Detection Assays for Cryptosporidium. Food Waterborne Parasitol 2022; 27:e00163. [PMID: 35782020 PMCID: PMC9249555 DOI: 10.1016/j.fawpar.2022.e00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 12/03/2022] Open
Abstract
Cryptosporidium spp. are obligate, intracellular parasites that cause life-threatening diarrhea among children and immunocompromised adults. Transmission occurs by the fecal-oral route following ingestion of thick-walled oocysts that can contaminate, persist, and resist disinfection in water and food. Sodium hypochlorite, peroxides, ozone, formaldehyde, and ammonia are suitable disinfectants against Cryptosporidium oocysts. Effective concentrations of these chemicals can be toxic and not practical for downstream research use of non-viable oocysts. Oocyst inactivation approaches such as UV light, heat, and treatments with ethanol or methanol are generally more accessible for routine lab use, yet their applicability in Cryptosporidium assay development is limited. The aims of this study were to evaluate methods of inactivation of Cryptosporidium oocysts that can be readily applied in the laboratory and test the utility of whole inactive oocysts in quantitative PCR (qPCR). Experiments were performed on C. parvum oocysts subjected to heat (75 °C/10 min) or treated with increasing concentrations of ethanol and methanol over time. Viability assays based on propidium iodide (PI) staining, in vitro excystation, and infection of the Hct-8 cell line were used to evaluate the efficacies of the treatments. Excystation of sporozoites was not impaired with 24 h exposures of oocysts to 50% ethanol or methanol, even though significant PI incorporation was observed. Concentrations of ≥70% of these chemicals were required to completely inhibit excystation and infection of Hct-8 cells in vitro. Inactivated oocysts stored for up to 30 days at 4 °C retained cyst wall integrity and antigenicity as observed by light microscopy and immunofluorescence. Moreover, non-viable oocysts applied directly in qPCR assays of the COWP gene were useful reference reagents for the identification and quantification of Cryptosporidium in spiked water samples. In summary, we have established a practical approach to inactivate C. parvum oocysts in the laboratory that is suitable for the development of detection or diagnostic assays targeting the parasite. Disinfectant-based inactivation of oocysts is not feasible for assay development. Inactivation methods that retain antigen and nucleic acid integrity are limited. Alcohol-inactivated oocysts are suitable as reference reagents in qPCR. We present a method to effectively inactivate oocysts and retain assayable properties.
Collapse
|
5
|
Menu E, Mosnier E, Cotrel A, Favennec L, Razakandrainibe R, Valot S, Blanchet D, Dalle F, Costa D, Gaillet M, Demar M, de Laval F. Cryptosporidiosis outbreak in Amazonia, French Guiana, 2018. PLoS Negl Trop Dis 2022; 16:e0010068. [PMID: 35100286 PMCID: PMC8803148 DOI: 10.1371/journal.pntd.0010068] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cryptosporidiosis outbreaks in South America are poorly documented. In March 2018, 51 cases of cryptosporidiosis were reported in Maripasoula, a village located in a remote forest area along the border between Surinam and French Guiana. METHOD To identify the origin of the epidemic, we performed epidemiological, microbiological, and environmental investigations. Only the cases involving diarrhoea and Cryptosporidium-positive stool were considered as bona fide, while cases involving diarrhoea and close contact with a confirmed case were classified as "possible". RESULTS We identified 16 confirmed cases and 35 possible ones. Confirmed cases comprised nine children (median age of 18 months, range: 6-21), one immunocompromised adult and six soldiers. One child required a hospitalisation for rehydration. All 16 Cryptosporidium stools were PCR positive, and sequencing of the gp60 gene confirmed only one Cryptosporidium hominis subtype IbA10G2. Tap water consumption was the only common risk factor identified. Contamination of the water network with Cryptosporidium parvum subtype IIdA19G2 was found. CONCLUSION Water quality is a major public health issue in Amazonian French Guiana, especially for population at risk (children, people with comorbidity, travelers). For them, alternative water supply or treatment should be implemented.
Collapse
Affiliation(s)
- Estelle Menu
- Laboratoire Hospitalo-Universitaire de Parasitologie-Mycologie, Centre Hospitalier Andrée-Rosemon, Cayenne, French Guiana
- Laboratoire Hospitalo-Universitaire de Parasitologie-Mycologie, Institut Hospitalo-Universitaire, Méditerranée Infection, Marseille, France
- Aix Marseille Université, IRD, AP-HM, IHU-Méditerranée Infection, UMR Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
| | - Emilie Mosnier
- Unité des Maladies Infectieuses et Tropicales (UMIT), Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
- Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, Aix Marseille University, INSERM, IRD, SESSTIM, Marseille, France
| | - Arnaud Cotrel
- French Armed Forces Health Service in French Guiana, Cayenne, French Guiana
| | - Loic Favennec
- CNR-LE Cryptosporidioses, Laboratoire de Parasitologie Mycologie, CHU Rouen, Rouen, France
- University of Medicine Pharmacy Rouen EA ESCAPE 7510, Rouen, France
| | - Romy Razakandrainibe
- CNR-LE Cryptosporidioses, Laboratoire de Parasitologie Mycologie, CHU Rouen, Rouen, France
- University of Medicine Pharmacy Rouen EA ESCAPE 7510, Rouen, France
| | - Stéphane Valot
- Laboratoire de Parasitologie Mycologie, Laboratoire Collaborateur du CNR-LE Cryptosporidioses, CHU Dijon, Dijon, France
| | - Denis Blanchet
- Laboratoire Hospitalo-Universitaire de Parasitologie-Mycologie, Centre Hospitalier Andrée-Rosemon, Cayenne, French Guiana
- Ecosystèmes amazoniens et Pathologie Tropicale, Université de la Guyane, Cayenne, French Guiana
| | - Frédéric Dalle
- Laboratoire de Parasitologie Mycologie, Laboratoire Collaborateur du CNR-LE Cryptosporidioses, CHU Dijon, Dijon, France
- UMR PAM, Equipe VAlMiS, Université Bourgogne Franche-Comté, Dijon, France
| | - Damien Costa
- CNR-LE Cryptosporidioses, Laboratoire de Parasitologie Mycologie, CHU Rouen, Rouen, France
- University of Medicine Pharmacy Rouen EA ESCAPE 7510, Rouen, France
| | - Mélanie Gaillet
- Pôle des Centres Délocalisés de Prévention et de Soins, Centre hospitalier Andrée Rosemon, Cayenne, French Guiana
| | - Magalie Demar
- Laboratoire Hospitalo-Universitaire de Parasitologie-Mycologie, Centre Hospitalier Andrée-Rosemon, Cayenne, French Guiana
- Ecosystèmes amazoniens et Pathologie Tropicale, Université de la Guyane, Cayenne, French Guiana
| | - Franck de Laval
- Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, Aix Marseille University, INSERM, IRD, SESSTIM, Marseille, France
- French Armed Forces Health Service in French Guiana, Cayenne, French Guiana
- SSA, Service de Santé des Armées, CESPA, Centre d’épidémiologie et de santé publique des armées, Marseille, France
| |
Collapse
|
6
|
Craighead S, Huang R, Chen H, Kniel KE. The use of pulsed light to inactivate Cryptosporidium parvum oocysts on high-risk commodities (Cilantro, mesclun lettuce, spinach, and tomatoes). Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
McEvoy B, Lynch M, Rowan NJ. Opportunities for the application of real-time bacterial cell analysis using flow cytometry for the advancement of sterilization microbiology. J Appl Microbiol 2020; 130:1794-1812. [PMID: 33155740 DOI: 10.1111/jam.14876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 01/11/2023]
Abstract
Medical devices provide critical care and diagnostic applications through patient contact. Sterility assurance level (SAL) may be defined as the probability of a single viable micro-organism occurring on an item after a sterilization process. Sterilization microbiology often relies upon using an overkill validation method where a 12-log reduction in recalcitrant bacterial endospore population occurs during the process that exploits conventional laboratory-based culture media for enumeration. This timely review explores key assumptions underpinning use of conventional culture-based methods in sterilization microbiology. Consideration is given to how such methods may limit the ability to fully appreciate the inactivation kinetics of a sterilization process such as vaporized hydrogen peroxide (VH2O2) sterilization, and consequently design efficient sterilization processes. Specific use of the real-time flow cytometry (FCM) is described by way of elucidating the practical relevance of these limitation factors with implications and opportunities for the sterilization industry discussed. Application of FCM to address these culture-based limitation factors will inform real-time kinetic inactivation modelling and unlock potential to embrace emerging opportunities for pharma, medical device and sterilization industries including potentially disruptive applications that may involve reduced usage of sterilant.
Collapse
Affiliation(s)
- B McEvoy
- STERIS Applied Sterilization Technologies, IDA Business and Technology Park, Tullamore, Ireland
| | - M Lynch
- Centre for Disinfection, Sterilization and Biosecurity, Athlone Institute of Technology, Athlone, Ireland
| | - N J Rowan
- Centre for Disinfection, Sterilization and Biosecurity, Athlone Institute of Technology, Athlone, Ireland
| |
Collapse
|
8
|
Marangoni Júnior L, Cristianini M, Anjos CAR. Packaging aspects for processing and quality of foods treated by pulsed light. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Luís Marangoni Júnior
- Department of Food Technology, School of Food Engineering University of Campinas Campinas Brazil
| | - Marcelo Cristianini
- Department of Food Technology, School of Food Engineering University of Campinas Campinas Brazil
| | | |
Collapse
|
9
|
Craighead S, Hertrich S, Boyd G, Sites J, Niemira BA, Kniel KE. Cold Atmospheric Plasma Jet Inactivates Cryptosporidium parvum Oocysts on Cilantro. J Food Prot 2020; 83:794-800. [PMID: 32318724 DOI: 10.4315/0362-028x.jfp-19-442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/14/2019] [Indexed: 11/11/2022]
Abstract
ABSTRACT Cilantro was recently identified as a vehicle for protozoan illness. Current postharvest practices are not sufficient to inactivate protozoa on cilantro. Cold plasma is an emerging nonthermal waterless technology with potential applications in food processing that are currently being investigated to enhance the safety of herbs. The purpose of this study was to determine the impact of cold atmospheric plasma (CP) on the viability of Cryptosporidium parvum oocysts on cilantro. C. parvum oocysts were inoculated onto cilantro and treated with a CP jet for 0, 30, 90, and 180 s at a working distance of 10 cm with a flow of 1.42 × 10-3 m3/s. Oocyst viability was determined using HCT-8 cell culture infectivity assays. Overall, each treatment significantly reduced oocyst infectivity compared with the 0-s treatment control (P ≤ 0.02). Log inactivations of oocysts observed on cilantro were 0.84, 1.23, and 2.03 for the 30-, 90-, and 180-s treatment times, respectively. Drying and darkening of cilantro leaves was observed with treatments longer than 30 s. CP can reduce C. parvum infectivity on cilantro. With further research and optimization, this treatment technology has potential applications in postharvest processing of cilantro. HIGHLIGHTS
Collapse
Affiliation(s)
- Shani Craighead
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716; and
| | - Sarah Hertrich
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038, USA
| | - Glenn Boyd
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038, USA
| | - Joseph Sites
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038, USA
| | - Brendan A Niemira
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038, USA
| | - Kalmia E Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716; and
| |
Collapse
|
10
|
Woolsey ID, Blomstrand B, Øines Ø, Enemark HL. Assessment of differences between DNA content of cell-cultured and freely suspended oocysts of Cryptosporidium parvum and their suitability as DNA standards in qPCR. Parasit Vectors 2019; 12:596. [PMID: 31856894 PMCID: PMC6923971 DOI: 10.1186/s13071-019-3851-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/11/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Although more modern methods are available, quantitative PCR (qPCR) is reproducible, sensitive and specific with instruments and expertise readily available in many laboratories. As such, the use of qPCR in Cryptosporidium research is well established and still widely used by researchers globally. This method depends upon the generation of standards at different concentrations to generate standard curves subsequently used for the quantification of DNA. METHODS We assessed four types of DNA template used to generate standard curves in drug screening studies involving Cryptosporidium spp.: (i) serially diluted Cryptosporidium parvum oocysts (106-1); (ii) diluted template DNA from pure oocysts (×10-×106 dilution of 106 oocyst DNA template); (iii) oocysts incubated in human ileocecal adenocarcinoma (HCT-8) cells (105-1 and 5 × 104-50); and (iv) diluted DNA template (5 × 104) from cell culture incubated parasites (×10-×1000). RESULTS Serial dilutions of both cell culture and pure oocyst suspension DNA template yielded better linearity than cell culture derived standards, with dilutions of 106 oocysts exhibiting similar quantification cycle (Cq) values to those obtained from DNA template dilutions of 106 oocysts. In contrast, cell culture incubated oocysts demonstrated significantly higher DNA content than equivalent freely suspended oocysts and diluted DNA template from both cell culture derived and freely suspended oocysts across numerous concentrations. CONCLUSIONS For many studies involving Cryptosporidium, only relative DNA content is required and as such, the superior linearity afforded by freely suspended oocysts and diluted DNA template (from either cell culture derived standards or freely suspended oocysts) will allow for more accurate relative quantification in each assay. Parasite division in the cell culture standards likely explains the higher DNA content found. These standards, therefore, have the potential to more accurately reflect DNA content in cell culture assays, and despite more modern methods available for absolute quantification, i.e. droplet digital PCR (ddPCR), the ubiquity of qPCR for the foreseeable future encourages further investigation into the reduced linearity observed in these standards such as varying oocyst seeding density, non-linear growth rates and assay efficiency.
Collapse
Affiliation(s)
- Ian D. Woolsey
- Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Ullevålsveien 68, 0454 Oslo, Norway
| | - Berit Blomstrand
- Norwegian Centre for Organic Agriculture, Gunnars veg 6, 6630 Tingvoll, Norway
| | - Øivind Øines
- Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Ullevålsveien 68, 0454 Oslo, Norway
| | - Heidi L. Enemark
- Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Ullevålsveien 68, 0454 Oslo, Norway
| |
Collapse
|
11
|
Rowan NJ. Pulsed light as an emerging technology to cause disruption for food and adjacent industries – Quo vadis? Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Garvey M, Rowan NJ. Pulsed UV as a potential surface sanitizer in food production processes to ensure consumer safety. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Rousseau A, La Carbona S, Dumètre A, Robertson LJ, Gargala G, Escotte-Binet S, Favennec L, Villena I, Gérard C, Aubert D. Assessing viability and infectivity of foodborne and waterborne stages (cysts/oocysts) of Giardia duodenalis, Cryptosporidium spp., and Toxoplasma gondii: a review of methods. ACTA ACUST UNITED AC 2018; 25:14. [PMID: 29553366 PMCID: PMC5858526 DOI: 10.1051/parasite/2018009] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/09/2018] [Indexed: 11/14/2022]
Abstract
Giardia duodenalis, Cryptosporidium spp. and Toxoplasma gondii are protozoan parasites that have been highlighted as emerging foodborne pathogens by the Food and Agriculture Organization of the United Nations and the World Health Organization. According to the European Food Safety Authority, 4786 foodborne and waterborne outbreaks were reported in Europe in 2016, of which 0.4% were attributed to parasites including Cryptosporidium, Giardia and Trichinella. Until 2016, no standardized methods were available to detect Giardia, Cryptosporidium and Toxoplasma (oo)cysts in food. Therefore, no regulation exists regarding these biohazards. Nevertheless, considering their low infective dose, ingestion of foodstuffs contaminated by low quantities of these three parasites can lead to human infection. To evaluate the risk of protozoan parasites in food, efforts must be made towards exposure assessment to estimate the contamination along the food chain, from raw products to consumers. This requires determining: (i) the occurrence of infective protozoan (oo)cysts in foods, and (ii) the efficacy of control measures to eliminate this contamination. In order to conduct such assessments, methods for identification of viable (i.e. live) and infective parasites are required. This review describes the methods currently available to evaluate infectivity and viability of G. duodenalis cysts, Cryptosporidium spp. and T. gondii oocysts, and their potential for application in exposure assessment to determine the presence of the infective protozoa and/or to characterize the efficacy of control measures. Advantages and limits of each method are highlighted and an analytical strategy is proposed to assess exposure to these protozoa.
Collapse
Affiliation(s)
- Angélique Rousseau
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France - ACTALIA Food Safety Department, 310 Rue Popielujko, 50000 Saint-Lô, France - EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | | | - Aurélien Dumètre
- Aix Marseille Univ, IRD (Dakar, Marseille, Papeete), AP-HM, IHU-Méditerranée Infection, UMR Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
| | - Lucy J Robertson
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, PO Box 8146 Dep., 0033, Oslo, Norway
| | - Gilles Gargala
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | - Sandie Escotte-Binet
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| | - Loïc Favennec
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | - Isabelle Villena
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| | - Cédric Gérard
- Food Safety Microbiology, Nestlé Research Center, PO Box 44, CH-1000 Lausanne 26, Switzerland
| | - Dominique Aubert
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| |
Collapse
|
14
|
Murray IMT, Rowan NJ, McNamee S, Campbell K, Fogarty AM. Pulsed light reduces the toxicity of the algal toxin okadaic acid to freshwater crustacean Daphnia pulex. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:607-614. [PMID: 29052147 DOI: 10.1007/s11356-017-0472-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 10/11/2017] [Indexed: 06/07/2023]
Abstract
This constitutes the first study to report on the reduction in toxicity of the dinoflagellate algal toxin okadaic acid after novel pulsed light (PL) treatments where ecotoxicological assessment was performed using a miniaturised format of the conventional in vivo freshwater crustacean Daphnia sp. acute toxicity test. Bivalves accumulate this toxin, which can then enter the human food chain causing deleterious health effects such as diarrhetic shellfish poisoning. This miniaturised toxicological bioassay used substantially less sample volume and chemical reagents. Findings revealed a 24-h EC50 of 25.87 μg/L for PL-treated okadaic acid at a UV dose of 12.98 μJ/cm2 compared to a 24-h EC50 of 1.68 μg/L for the untreated okadaic acid control, suggesting a 15-fold reduction in toxicity to Daphnia pulex. The bioassay was validated in this study and correlated well with the "classic" ISO format (r = 0.98) using the traditional reference chemical potassium dichromate (K2Cr2O7). Reduction by up to 65% in PL-treated okadaic acid concentration was confirmed by LC-MS/MS analysis. Findings from this study have positive ecological, societal and enterprise implications, such as the development of PL technology for the prevention or reduce algal contamination of fisheries and aquaculture industries.
Collapse
Affiliation(s)
- Iain M T Murray
- Department of Life & Physical Science, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland.
| | - Neil J Rowan
- Department of Life & Physical Science, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland
| | - Sara McNamee
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Co. Antrim, UK
| | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Co. Antrim, UK
| | - Andrew M Fogarty
- Department of Life & Physical Science, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland
| |
Collapse
|
15
|
Chyzheuskaya A, Cormican M, Srivinas R, O'Donovan D, Prendergast M, O'Donoghue C, Morris D. Economic Assessment of Waterborne Outbreak of Cryptosporidiosis. Emerg Infect Dis 2017; 23:1650-1656. [PMID: 28930007 PMCID: PMC5621525 DOI: 10.3201/eid2310.152037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In 2007, a waterborne outbreak of Cryptosporidium hominis infection occurred in western Ireland, resulting in 242 laboratory-confirmed cases and an uncertain number of unconfirmed cases. A boil water notice was in place for 158 days that affected 120,432 persons residing in the area, businesses, visitors, and commuters. This outbreak represented the largest outbreak of cryptosporidiosis in Ireland. The purpose of this study was to evaluate the cost of this outbreak. We adopted a societal perspective in estimating costs associated with the outbreak. Economic cost estimated was based on totaling direct and indirect costs incurred by public and private agencies. The cost of the outbreak was estimated based on 2007 figures. We estimate that the cost of the outbreak was >€19 million (≈€120,000/day of the outbreak). The US dollar equivalent based on today's exchange rates would be $22.44 million (≈$142,000/day of the outbreak). This study highlights the economic need for a safe drinking water supply.
Collapse
|
16
|
Barrett M, Fitzhenry K, O'Flaherty V, Dore W, Keaveney S, Cormican M, Rowan N, Clifford E. Detection, fate and inactivation of pathogenic norovirus employing settlement and UV treatment in wastewater treatment facilities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 568:1026-1036. [PMID: 27350093 DOI: 10.1016/j.scitotenv.2016.06.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 05/04/2023]
Abstract
It is accepted that discharged wastewaters can be a significant source of pathogenic viruses in receiving water bodies contributing to pollution and may in turn enter the human food chain and pose a risk to human health, thus norovirus (NoV) is often a predominant cause of gastroenteritis globally. Working with NoV poses particular challenges as it cannot be readily identified and detection by molecular methods does not assess infectivity. It has been proposed that the infectivity of NoV may be modelled through the use of an alternative virus; F-specific RNA (FRNA) bacteriophages; GA genotype and other FRNA bacteriophages have been used as a surrogate in studies of NoV inactivation. This study investigated the efficiency of novel pulsed ultraviolet irradiation and low pressure ultraviolet irradiation as a potential pathogen inactivation system for NoV and FRNA bacteriophage (GA) in secondary treated wastewaters. The role of UV dose and the impact of suspended solids concentration on removal efficiency were also examined. The study also investigated the role of settlement processes in wastewater treatment plants in removing NoV. While NoV inactivation could not be determined it was found that at a maximum UV dose of 6.9J/cm(2) (6900mJ/cm(2)) an average 2.4 log removal of FRNA bacteriophage (GA) was observed; indicating the potential need for high UV doses to remove NoV if FRNA bacteriophage prove a suitable indicator for NoV. The study found that increasing concentrations of suspended solids impacted on PUV efficiency however, it appears the extent of the impact may be site specific. Furthermore, the study found that settlement processes can play a significant role in the removal of FRNA bacteriophage, thus potentially NoV.
Collapse
Affiliation(s)
- M Barrett
- Microbial Ecology Laboratory, Microbiology, School of Natural sciences, National University of Ireland Galway, Ireland; Ryan Institute, National University of Ireland Galway, Ireland; College of Engineering and Informatics, National University of Ireland Galway, Ireland
| | - K Fitzhenry
- Ryan Institute, National University of Ireland Galway, Ireland; College of Engineering and Informatics, National University of Ireland Galway, Ireland
| | - V O'Flaherty
- Microbial Ecology Laboratory, Microbiology, School of Natural sciences, National University of Ireland Galway, Ireland; Ryan Institute, National University of Ireland Galway, Ireland
| | - W Dore
- Marine Institute, Galway, Ireland
| | | | - M Cormican
- Ryan Institute, National University of Ireland Galway, Ireland; Centre for Health from Environment, Ryan Institute, National University of Ireland Galway, Ireland
| | - N Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Ireland
| | - E Clifford
- Ryan Institute, National University of Ireland Galway, Ireland; College of Engineering and Informatics, National University of Ireland Galway, Ireland.
| |
Collapse
|
17
|
Garvey M, Coughlan G, Murphy N, Rowan N. The pulsed light inactivation of veterinary relevant microbial biofilms and the use of a RTPCR assay to detect parasite species within biofilm structures. Open Vet J 2016; 6:15-22. [PMID: 26862516 PMCID: PMC4744370 DOI: 10.4314/ovj.v6i1.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/05/2016] [Indexed: 12/23/2022] Open
Abstract
The presence of pathogenic organisms namely parasite species and bacteria in biofilms in veterinary settings, is a public health concern in relation to human and animal exposure. Veterinary clinics represent a significant risk factor for the transfer of pathogens from housed animals to humans, especially in cases of wound infection and the shedding of faecal matter. This study aims to provide a means of detecting veterinary relevant parasite species in bacterial biofilms, and to provide a means of disinfecting these biofilms. A real time PCR assay was utilized to detect parasite DNA in Bacillus cereus biofilms on stainless steel and PVC surfaces. Results show that both Cryptosporidium and Giardia attach to biofilms in large numbers (100-1000 oo/cysts) in as little as 72 hours. Pulsed light successfully inactivated all test species (Listeria, Salmonella, Bacillus, Escherichia) in planktonic and biofilm form with an increase in inactivation for every increase in UV dose.
Collapse
Affiliation(s)
- M Garvey
- Department of Life Sciences, Institute of Technology Sligo, Sligo, Ireland
| | - G Coughlan
- Department of Parasitology, National University of Ireland Maynooth, Maynooth, Ireland; Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - N Murphy
- Department of Parasitology, National University of Ireland Maynooth, Maynooth, Ireland
| | - N Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| |
Collapse
|
18
|
Le Goff L, Hubert B, Favennec L, Villena I, Ballet JJ, Agoulon A, Orange N, Gargala G. Pilot-Scale Pulsed UV Light Irradiation of Experimentally Infected Raspberries Suppresses Cryptosporidium parvum Infectivity in Immunocompetent Suckling Mice. J Food Prot 2015; 78:2247-52. [PMID: 26613921 DOI: 10.4315/0362-028x.jfp-15-062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cryptosporidium spp., a significant cause of foodborne infection, have been shown to be resistant to most chemical food disinfectant agents and infective for weeks in irrigation waters and stored fresh vegetal produce. Pulsed UV light (PL) has the potential to inactivate Cryptosporidium spp. on surfaces of raw or minimally processed foods or both. The present study aimed to evaluate the efficacy of PL on viability and in vivo infectivity of Cryptosporidium parvum oocysts present on raspberries, a known source of transmission to humans of oocyst-forming apicomplexan pathogens. The skin of each of 20 raspberries was experimentally inoculated with five 10-μl spots of an oocyst suspension containing 6 × 10(7) oocysts per ml (Nouzilly isolate). Raspberries were irradiated by PL flashes (4 J/cm(2) of total fluence). This dose did not affect colorimetric or organoleptic characteristics of fruits. After immunomagnetic separation from raspberries, oocysts were bleached and administered orally to neonatal suckling mice. Seven days after infection, mice were euthanized, and the number of oocysts in the entire small intestine was individually assessed by immunofluorescence flow cytometry. Three of 12 and 12 of 12 inoculated mice that received 10 and 100 oocysts isolated from nonirradiated raspberries, respectively, were found infected. Four of 12 and 2 of 12 inoculated mice that received 10(3) and 10(4) oocysts from irradiated raspberries, respectively, were found infected. Oocyst counts were lower in animals inoculated with 10(3) and 10(4) oocysts from irradiated raspberries (92 ± 144 and 38 ± 82, respectively) than in animals infected with 100 oocysts from nonirradiated raspberries (35,785 ± 66,221, P = 0.008). PL irradiation achieved oocyst reductions of 2 and 3 log for an inoculum of 10(3) and 10(4) oocysts, respectively. The present pilot-scale evaluation suggests that PL is an effective mode of decontamination for raspberries and prompts further applicability studies in industrial contexts.
Collapse
Affiliation(s)
- L Le Goff
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie-Mycologie, University of Rouen, 76183 Rouen Cedex, France.
| | - B Hubert
- Agro-Hall, Centre de Ressource Technologique, Normandie Sécurité Sanitaire, Instituts Universitaires de Technologie d'Evreux, 2700 Evreux, France
| | - L Favennec
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie-Mycologie, University of Rouen, 76183 Rouen Cedex, France
| | - I Villena
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie-Mycologie, SFR CAP-Santé FED4231, University of Reims Champagne-Ardennes, 51095 Reims Cedex, France
| | - J J Ballet
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie-Mycologie, University of Rouen, 76183 Rouen Cedex, France
| | - A Agoulon
- Agro-Hall, Centre de Ressource Technologique, Normandie Sécurité Sanitaire, Instituts Universitaires de Technologie d'Evreux, 2700 Evreux, France
| | - N Orange
- Plateforme Technologique d'Evreux, Normandie Sécurité Sanitaire, Instituts Universitaires de Technologie d'Evreux, 2700 Evreux, France
| | - G Gargala
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie-Mycologie, University of Rouen, 76183 Rouen Cedex, France
| |
Collapse
|
19
|
Paziewska-Harris A, Singer M, Schoone G, Schallig H. Quantitative analysis of Cryptosporidium growth in in vitro culture--the impact of parasite density on the success of infection. Parasitol Res 2015; 115:329-37. [PMID: 26435485 DOI: 10.1007/s00436-015-4751-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/17/2015] [Indexed: 11/29/2022]
Abstract
Cryptosporidium is an important waterborne pathogen for which no treatment or vaccination is available. This study set out to quantify DNA replication of Cryptosporidium parvum in vitro. Cryptosporidium DNA could be detected at up to 60 % of input level in both host-cell-free and host cell containing cultures 6 days after infection with living sporozoites, but was lost within 2 days in cultures inoculated with UV-inactivated sporozoites. Total DNA increased between days 2 and 6, evidence of successful DNA replication in both cell-free and host-cell-containing cultures. Overall however, only a small fraction (up to 5 %) of parasite DNA could be found associated with host cells or bound to plastic of the cell-free cultures, and the majority of parasite DNA was present in the cell culture medium, separable by simple decantation. After 2 days, in host-cell-containing cultures, the parasite DNA could be concentrated by slow centrifugation, suggesting that it was associated with intact parasite cells, but at 6 days, the majority could not be centrifuged and is therefore thought to have represented copies associated with dead and degraded parasites. In cell-free cultures and in larger plates, the majority of DNA was in this form. Performance of the parasite was best in small culture plates, and least in the largest plate sizes. We interpret these results as suggesting that Cryptosporidium sporozoites first bind to the host cell monolayer or to the plasticware, but then by 2 days, there has been a substantial release of parasites back into the medium. Host-cell-free cultures also supported modest replication and may have represented DNA synthesis in cells beginning merogony. The role of the host cells is unclear, as so much of the parasite DNA is released into the medium. Host cells may provide a feeder role, conditioning the medium for Cryptosporidium development.
Collapse
Affiliation(s)
- Anna Paziewska-Harris
- KIT Biomedical Research, Royal Tropical Institute, Meibergdreef 39, 1105 AZ, Amsterdam, The Netherlands.
| | - Martin Singer
- Current address: Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | - Gerard Schoone
- KIT Biomedical Research, Royal Tropical Institute, Meibergdreef 39, 1105 AZ, Amsterdam, The Netherlands
| | - Henk Schallig
- KIT Biomedical Research, Royal Tropical Institute, Meibergdreef 39, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Rowan NJ, Valdramidis VP, Gómez-López VM. A review of quantitative methods to describe efficacy of pulsed light generated inactivation data that embraces the occurrence of viable but non culturable state microorganisms. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.03.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Garvey M, Rowan N. A pulsed light system for the disinfection of flow through water in the presence of inorganic contaminants. JOURNAL OF WATER AND HEALTH 2015; 13:406-412. [PMID: 26042973 DOI: 10.2166/wh.2014.176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The use of ultraviolet (UV) light for water disinfection has become increasingly popular due to on-going issues with drinking water and public health. Pulsed UV light has proved to be an effective form of inactivating a range of pathogens including parasite species. However, there are limited data available on the use of pulsed UV light for the disinfection of flowing water in the absence or presence of inorganic contaminants commonly found in water sources. Here, we report on the inactivation of test species including Bacillus endospores following pulsed UV treatment as a flow through system. Significant levels of inactivation were obtained for both retention times tested. The presence of inorganic contaminants iron and/or manganese did affect the rate of disinfection, predominantly resulting in an increase in the levels of inactivation at certain UV doses. The findings of this study suggest that pulsed UV light may provide a method of water disinfection as it successfully inactivated bacterial cells and bacterial endospores in the absence and presence of inorganic contaminants.
Collapse
Affiliation(s)
- Mary Garvey
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Westmeath, Ireland E-mail:
| | - Neil Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Westmeath, Ireland E-mail:
| |
Collapse
|
22
|
Garvey M, Stocca A, Rowan N. Development of a combined in vitro cell culture--quantitative PCR assay for evaluating the disinfection performance of pulsed light for treating the waterborne enteroparasite Giardia lamblia. Exp Parasitol 2014; 144:6-13. [PMID: 24929148 DOI: 10.1016/j.exppara.2014.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 05/31/2014] [Accepted: 06/02/2014] [Indexed: 11/25/2022]
Abstract
Giardia lamblia is a flagellated protozoan parasite that is recognised as a frequent cause of water-borne disease in humans and animals. We report for the first time on the use of a combined in vitro HCT-8 cell culture-quantitative PCR assay for evaluating the efficacy of using pulsed UV light for treating G. lamblia parasites. Findings showed that current methods that are limited to using vital stains before and after cyst excystation are not appropriate for monitoring or evaluating cyst destruction post PUV-treatments. Use of the human ileocecal HCT-8 cell line was superior to that of the human colon Caco-2 cell line for in vitro culture and determining PUV sensitivity of treated cysts. G. lamblia cysts were also shown to be more resistant to PUV irradiation compared to treating similar numbers of Cryptosporidium parvum oocysts. These observations also show that the use of this HCT-8 cell culture assay may replace use of animal models for determining disinfection performances of PUV for treating both C. parvum and G. lamblia.
Collapse
Affiliation(s)
- Mary Garvey
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Rd, Athlone, Westmeath, Ireland.
| | - Alessia Stocca
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Rd, Athlone, Westmeath, Ireland
| | - Neil Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Rd, Athlone, Westmeath, Ireland
| |
Collapse
|
23
|
Hayes J, Kirf D, Garvey M, Rowan N. Disinfection and toxicological assessments of pulsed UV and pulsed-plasma gas-discharge treated-water containing the waterborne protozoan enteroparasite Cryptosporidium parvum. J Microbiol Methods 2013; 94:325-37. [PMID: 23892042 DOI: 10.1016/j.mimet.2013.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
Abstract
We report for the first time on the comparative use of pulsed-plasma gas-discharge (PPGD) and pulsed UV light (PUV) for the novel destruction of the waterborne enteroparasite Cryptosporidium parvum. It also describes the first cyto-, geno- and ecotoxicological assays undertaken to assess the safety of water decontaminated using PPGD and PUV. During PPGD treatments, the application of high voltage pulses (16 kV, 10 pps) to gas-injected water (N2 or O2, flow rate 2.5L/min) resulted in the formation of a plasma that generated free radicals, ultraviolet light, acoustic shock waves and electric fields that killed ca. 4 log C. parvum oocysts in 32 min exposure. Findings showed that PPGD-treated water produced significant cytotoxic properties (as determined by MTT and neutral red assays), genotoxic properties (as determined by comet and Ames assays), and ecotoxic properties (as determined by Microtox™, Thamnotox™ and Daphnotox™ assays) that are representative of different trophic levels in aquatic environment (p<0.05). Depending in part on the type of injected gas used, PPGD-treated water became either alkaline (pH ≤ 8.58, using O2) or acidic (pH ≥ 3.21, using N2) and contained varying levels of reactive free radicals such as ozone (0.8 mg/L) and/or dissociated nitric and nitrous acid that contributed to the observed disinfection and toxicity. Chemical analysis of PPGD-treated water revealed increasing levels of electrode metals that were present at ≤ 30 times the tolerated respective values for EU drinking water. PUV-treated water did not exhibit any toxicity and was shown to be far superior to that of PPGD for killing C. parvum oocysts taking only 90 s of pulsing [UV dose of 6.29 μJ/cm(2)] to produce a 4-log reduction compared to a similar reduction level achieved after 32min PPGD treatment as determined by combined in vitro CaCo-2 cell culture-qPCR.
Collapse
Affiliation(s)
- Jennifer Hayes
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Ireland
| | | | | | | |
Collapse
|
24
|
Garvey M, Clifford E, O'Reilly E, Rowan NJ. Efficacy of Using HarmlessBacillusEndospores to Estimate the Inactivation ofCryptosporidium parvumOocysts in Water. J Parasitol 2013; 99:448-52. [DOI: 10.1645/12-48.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
25
|
Inactivation of exogenous endoparasite stages by chemical disinfectants: current state and perspectives. Parasitol Res 2013; 112:917-32. [PMID: 23392903 DOI: 10.1007/s00436-013-3324-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 01/25/2013] [Indexed: 10/27/2022]
Abstract
Chemical disinfection is common practice and inevitable to achieve sufficient control over parasites particularly in intensive animal housing systems. To identify suitable chemicals, reliable data on antiparasitic efficacy of disinfectants are required. This review summarizes recently published experience with procedures applied to evaluate the viability of a variety of endoparasites following physical or chemical stress. It is concluded that laboratory models used to assess antiparasitic efficacy of e.g. commercial disinfectants should consider the most resistant stages of both helminths and protozoa, i.e. ascarid eggs and coccidia oocysts. To ensure reproducibility and transparency, standardized protocols are pivotal. Such protocols are established on a national level (e.g. DVG guidelines in Germany); however, internationally accepted certification procedures are currently lacking.
Collapse
|
26
|
Massier S, Bouffartigues E, Rincé A, Maillot O, Feuilloley MGJ, Orange N, Chevalier S. Effects of a pulsed light-induced stress on Enterococcus faecalis. J Appl Microbiol 2012; 114:186-95. [PMID: 23035907 DOI: 10.1111/jam.12029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/16/2012] [Accepted: 09/25/2012] [Indexed: 01/28/2023]
Abstract
AIMS Pulsed light (PL) technology is a surface decontamination process that can be used on food, packaging or water. PL efficiency may be limited by its low degree of penetration or because of a shadow effect. In these cases, surviving bacteria will be able to perceive PL as a stress. Such a stress was mimicked using low transmitted energy conditions, and its effects were investigated on the highly environmental adaptable bacterium Enterococcus faecalis V583. METHODS AND RESULTS In these laboratory conditions, a complete decontamination of the artificially inoculated medium was performed using energy doses as low as 1.8 J cm(-2) , while a treatment of 0.5, 1 and 1.2 J cm(-2) led to a 2.2, 6 and 7-log(10) CFU ml(-1) reduction in the initial bacterial population, respectively. Application of a 0.5 J cm(-2) pretreatment allowed the bacteria to resist more efficiently a 1.2 J cm(-2) subsequent PL dose. This 0.5 J cm(-2) treatment increased the bacterial mutation frequency and affected the abundance of 19 proteins as revealed by a global proteome analysis. CONCLUSIONS Enterococcus faecalis is able to adapt to a PL treatment, providing a molecular response to low-energy PL dose, leading to enhanced resistance to a subsequent treatment and increasing the mutation frequency. SIGNIFICANCE AND IMPACT OF THE STUDY This study gives further insights on Ent. faecalis capacities to adapt and to resist to stress.
Collapse
Affiliation(s)
- S Massier
- LMSM, Laboratoire de Microbiologie-Signaux et Microenvironnement, EA 4312, Université de Rouen, Evreux, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Jenkins MB, Liotta JL, Bowman DD. Inactivation kinetics of Cryptosporidium parvum oocysts in a swine waste lagoon and spray field. J Parasitol 2012; 99:337-42. [PMID: 23016982 DOI: 10.1645/ge-3193.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Because of outbreaks of cryptosporidiosis in humans, some Cryptosporidium spp. have become a public health concern. Commercial swine operations can be a source of this protozoan parasite. Although the species distribution of Cryptosporidium is likely dominated by Cryptosporidium suis , a fraction may be comprised of other Cryptosporidium species infectious to humans such as Cryptosporidium parvum . To better understand the survival dynamics of Cryptosporidium spp., oocysts associated with swine operations, 2 experiments were performed to determine die-off rates of C. parvum oocysts in a swine waste lagoon (2009 and 2010) and its spray field (2010 and 2011). Sentinel chambers containing a lagoon effluent suspension of C. parvum oocysts were submerged in the lagoon, and triplicate chambers were removed over time; oocysts were extracted and assayed for viability. For comparative purposes, inactivation rates of Ascaris suum eggs contained in sentinel chambers were also determined. For 2 spray field experiments, air-dried and sieved surface soil was placed in sentinel chambers, hydrated, and inoculated with a lagoon effluent suspension of C. parvum oocysts. Sentinel chambers and control oocysts in PBS contained in microcentrifuge tubes were buried 1.5 cm below the soil surface in 3 blocks. Triplicate chambers and controls were removed over time; oocysts were extracted and assayed for viability. Based on the first order decay equation, days to reach 99% die-off (T(99)) were determined. T(99)-values determined for the 2 lagoon experiments were 13.1 and 20.1 wk, respectively. A T(99)-value for C. parvum in the spray field was significantly longer at 38.0 wk than the control oocysts in PBS at 29.0 wk. The waste lagoon and spray field system of manure management at this large-scale farrowing operation appeared to reduce the load of C. parvum oocysts before they can be hydrologically transported off the operation and reduces their likelihood of contaminating surface waters and threatening public health.
Collapse
Affiliation(s)
- Michael B Jenkins
- USDA-Agriculture Research Service, J. Phil Campbell, Sr., Natural Resource Conservation Center, Watkinsville, Georgia 30677, USA.
| | | | | |
Collapse
|
28
|
Kothavade RJ. Potential molecular tools for assessing the public health risk associated with waterborne Cryptosporidium oocysts. J Med Microbiol 2012; 61:1039-1051. [DOI: 10.1099/jmm.0.043158-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
29
|
Hayes JC, Laffey JG, McNeil B, Rowan NJ. Relationship between growth of food-spoilage yeast in high-sugar environments and sensitivity to high-intensity pulsed UV light irradiation. Int J Food Sci Technol 2012. [DOI: 10.1111/j.1365-2621.2012.03052.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Comparison of assays for sensitive and reproducible detection of cell culture-infectious Cryptosporidium parvum and Cryptosporidium hominis in drinking water. Appl Environ Microbiol 2011; 78:156-62. [PMID: 22038611 DOI: 10.1128/aem.06444-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study compared the three most commonly used assays for detecting Cryptosporidium sp. infections in cell culture: immunofluorescent antibody and microscopy assay (IFA), PCR targeting Cryptosporidium sp.-specific DNA, and reverse transcriptase PCR (RT-PCR) targeting Cryptosporidium sp.-specific mRNA. Monolayers of HCT-8 cells, grown in 8-well chamber slides or 96-well plates, were inoculated with a variety of viable and inactivated oocysts to assess assay performance. All assays detected infection with low doses of flow cytometry-enumerated Cryptosporidium parvum oocysts, including infection with one oocyst and three oocysts. All methods also detected infection with Cryptosporidium hominis. The RT-PCR assay, IFA, and PCR assay detected infection in 23%, 25%, and 51% of monolayers inoculated with three C. parvum oocysts and 10%, 9%, and 16% of monolayers inoculated with one oocyst, respectively. The PCR assay was the most sensitive, but it had the highest frequency of false positives with mock-infected cells and inactivated oocysts. IFA was the only infection detection assay that did not produce false positives with mock-infected monolayers. IFA was also the only assay that detected infections in all experiments with spiked oocysts recovered from Envirochek capsules following filtration of 1,000 liters of treated water. Consequently, cell culture with IFA detection is the most appropriate method for routine and sensitive detection of infectious Cryptosporidium parvum and Cryptosporidium hominis in drinking water.
Collapse
|
31
|
Karanis P, Aldeyarbi HM. Evolution of Cryptosporidium in vitro culture. Int J Parasitol 2011; 41:1231-42. [PMID: 21889507 DOI: 10.1016/j.ijpara.2011.08.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/03/2011] [Accepted: 08/04/2011] [Indexed: 02/07/2023]
Abstract
This overview discusses findings from culturing Cryptosporidium spp. in cell and axenic cultures as well as factors limiting the development of this parasite in cultivation systems during recent years. A systematic review is undertaken of findings regarding the life cycle of the parasite, taking into account physiological, biochemical and genetic aspects, in the hope that this attempt will facilitate future approaches to research and developments in the understanding of Cryptosporidium biology.
Collapse
Affiliation(s)
- P Karanis
- University of Cologne, Center for Anatomy, Institute II, Molecular and Medical Parasitology, Joseph-Stelzmann-Street 9, Geb.35, 50937 Köln, Germany.
| | | |
Collapse
|
32
|
Farrell H, Hayes J, Laffey J, Rowan N. Studies on the relationship between pulsed UV light irradiation and the simultaneous occurrence of molecular and cellular damage in clinically-relevant Candida albicans. J Microbiol Methods 2011; 84:317-26. [DOI: 10.1016/j.mimet.2010.12.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 12/15/2010] [Accepted: 12/15/2010] [Indexed: 11/26/2022]
|
33
|
Rowan NJ. Defining established and emerging microbial risks in the aquatic environment: current knowledge, implications, and outlooks. Int J Microbiol 2010; 2011:462832. [PMID: 20976256 PMCID: PMC2952898 DOI: 10.1155/2011/462832] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 07/27/2010] [Indexed: 01/31/2023] Open
Abstract
This timely review primarily addresses important but presently undefined microbial risks to public health and to the natural environment. It specifically focuses on current knowledge, future outlooks and offers some potential alleviation strategies that may reduce or eliminate the risk of problematic microbes in their viable but nonculturable (VBNC) state and Cryptosporidium oocysts in the aquatic environment. As emphasis is placed on water quality, particularly surrounding efficacy of decontamination at the wastewater treatment plant level, this review also touches upon other related emerging issues, namely, the fate and potential ecotoxicological impact of untreated antibiotics and other pharmaceutically active compounds in water. Deciphering best published data has elucidated gaps between science and policy that will help stakeholders work towards the European Union's Water Framework Directive (2000/60/EC), which provides an ambitious legislative framework for water quality improvements within its region and seeks to restore all water bodies to "good ecological status" by 2015. Future effective risk-based assessment and management, post definition of the plethora of dynamic inter-related factors governing the occurrence, persistence and/or control of these presently undefined hazards in water will also demand exploiting and harnessing tangential advances in allied disciplines such as mathematical and computer modeling that will permit efficient data generation and transparent reporting to be undertaken by well-balanced consortia of stakeholders.
Collapse
Affiliation(s)
- Neil J. Rowan
- Department of Nursing and Health Science, School of Science, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland
| |
Collapse
|