1
|
Li W, Wang X, Jiang Y, Cui S, Hu J, Wei Y, Li J, Wu Y. Volatile Organic Compounds Produced by Co-Culture of Burkholderia vietnamiensis B418 with Trichoderma harzianum T11-W Exhibits Improved Antagonistic Activities against Fungal Phytopathogens. Int J Mol Sci 2024; 25:11097. [PMID: 39456879 PMCID: PMC11507488 DOI: 10.3390/ijms252011097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Recently, there has been a growing interest in the biocontrol activity of volatile organic compounds (VOCs) produced by microorganisms. This study specifically focuses on the effects of VOCs produced by the co-culture of Burkholderia vietnamiensis B418 and Trichoderma harzianum T11-W for the control of two phytopathogenic fungi, Botrytis cinerea and Fusarium oxysporum f. sp. cucumerium Owen. The antagonistic activity of VOCs released in mono- and co-culture modes was evaluated by inhibition assays on a Petri dish and in detached fruit experiments, with the co-culture demonstrating significantly higher inhibitory effects on the phytopathogens on both the plates and fruits compared with the mono-cultures. Metabolomic profiles of VOCs were conducted using the solid-liquid microextraction technique, revealing 341 compounds with significant changes in their production during the co-culture. Among these compounds, linalool, dimethyl trisulfide, dimethyl disulfide, geranylacetone, 2-phenylethanol, and acetophenone were identified as having strong antagonistic activity through a standard inhibition assay. These key compounds were found to be related to the improved inhibitory effect of the B418 and T11-W co-culture. Overall, the results suggest that VOCs produced by the co-culture of B. vietnamiensis B418 and T. harzianum T11-W possess great potential in biological control.
Collapse
Affiliation(s)
- Wenzhe Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (W.L.); (X.W.); (Y.J.); (S.C.); (J.H.); (Y.W.); (J.L.)
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xinyue Wang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (W.L.); (X.W.); (Y.J.); (S.C.); (J.H.); (Y.W.); (J.L.)
| | - Yanqing Jiang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (W.L.); (X.W.); (Y.J.); (S.C.); (J.H.); (Y.W.); (J.L.)
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shuning Cui
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (W.L.); (X.W.); (Y.J.); (S.C.); (J.H.); (Y.W.); (J.L.)
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jindong Hu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (W.L.); (X.W.); (Y.J.); (S.C.); (J.H.); (Y.W.); (J.L.)
| | - Yanli Wei
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (W.L.); (X.W.); (Y.J.); (S.C.); (J.H.); (Y.W.); (J.L.)
| | - Jishun Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (W.L.); (X.W.); (Y.J.); (S.C.); (J.H.); (Y.W.); (J.L.)
| | - Yuanzheng Wu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (W.L.); (X.W.); (Y.J.); (S.C.); (J.H.); (Y.W.); (J.L.)
| |
Collapse
|
2
|
Achimón F, Pizzolitto RP. Volatilome of the maize phytopathogenic fungus Fusarium verticillioides: potential applications in diagnosis and biocontrol. PEST MANAGEMENT SCIENCE 2024. [PMID: 39354900 DOI: 10.1002/ps.8439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Fusarium verticillioides is a maize fungal phytopathogen and a producer of volatile organic compounds (VOCs) and fumonisin B1 (FB1). Our aim was to study the volatilome, conidial production, ergosterol and FB1 biosynthesis in maize cultures over a 30-day incubation period (5, 10, 15, 20, 25, 30 days post inoculation [DPI]). The effect of pure VOCs on the same parameters was then evaluated to study their potential role as biocontrol agents. RESULTS In total, 91 VOCs were detected, with volatile profiles being more similar between 5 and 10 DPI compared with 15, 20, 25 and 30 DPI. Ergosterol content increased steadily with incubation time, and three growth stages were identified: a lag phase (0 to 15 DPI), an exponential phase (15 to 20 DPI) and a stationary phase (20 to 30 DPI). The maximum concentration of FB1 was detected at 25 (0.030 μg FB1/μg ergosterol) and 30 DPI (0.037 μg FB1/μg ergosterol), whereas conidial production showed a maximum value at 15 DPI (4.3 ± 0.2 × 105 conidia/μg ergosterol). Regarding pure VOCs, minimal inhibitory concentration values ranged from 0.3 mm for 4-hexen-3-one to 7.4 mm for 2-undecanone. Pure VOCs reduced radial growth, conidial production and ergosterol and FB1 biosynthesis. CONCLUSIONS The marked resemblance between VOC profiles at 5 and 10 DPI suggests that they could act as early indicators of fungal contamination, particularly 4-ethylguaiacol, 4-ethyl-2-methoxyanisole, heptanol and heptyl acetate. On the other hand, their role as inhibitors of fungal growth and FB1 biosynthesis prove their great potential as safer alternatives to control phytopathogenic fungi. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fernanda Achimón
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Córdoba, Argentina
- Instituto de Ciencia y Tecnología de Los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Romina P Pizzolitto
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Córdoba, Argentina
- Instituto de Ciencia y Tecnología de Los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
3
|
Lochmann F, Flatschacher D, Stock V, Schiller A, Zeilinger S, Ruzsanyi V. Near real-time quantification of microbial volatile organic compounds from mycoparasitic fungi: Potential for advanced monitoring and pest control. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1244:124237. [PMID: 39013326 DOI: 10.1016/j.jchromb.2024.124237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/18/2024]
Abstract
Microbial volatile organic compounds (MVOCs) are thought to play a key role in the interactions between mycoparasitic fungi, such as the biocontrol agent Trichoderma atroviride (T. atroviride), and their environment. However, the analysis of MVOC emissions from fungal samples is challenging because of low analyte concentrations, typically in the ppbV-range, and the complex chemical nature of biological samples. In a recent study using proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS) to determine MVOC emissions from T. atroviride, many product ions were unspecific, as they could arise from a large number of possible analytes. The aim of the present study was to determine whether fast gas chromatography (fast-GC) coupled to PTR-ToF-MS could be used to overcome this issue and constitute a suitable on-line, near real-time method to identify and quantify fungal MVOC emissions in the ppbV-to-ppmV regime. Using gas standards of eleven MVOCs known to be emitted by T. atroviride such as 6-amyl-α-pyrone (6-PP), 2-pentylfuran, 1-octen-3-ol, 2-heptanone, 3-octanone, 2-methyl-1-propanol, 2-pentanone, 3-methyl-1-butanol, 3-methylbutanal, acetone and ethanol, we developed a fast-GC method with a total runtime of 180 s which significantly enhances the analytical specificity of PTR-ToF-MS compared to conventional PTR-ToF-MS without fast-GC separation. Limits of detection were on the order of 0.1-4 ppbV. The increased analytical specificity demonstrated notable benefits, especially for MVOCs having partially overlapping distributions of product ions when analyzed directly using PTR-ToF-MS. In order to demonstrate the applicability of the analytical method, we analysed T. atroviride samples in four biological replicates twice daily over a duration of five days. Using the fast-GC method, nine out of the eleven MVOC species considered in this study in the headspace of T. atroviride could be identified and quantified and their time evolution over the five-day incubation period determined. The measured volume mixing ratios (VMRs) ranged from single-digit ppbV (2-pentylfuran) up to few ppmV (6-PP and ethanol), with the other compounds in the 10-to-100-ppbV range (1-octen-3-ol, 2-heptanone, 2-methyl-1-propanol, 3-methyl-1-butanol, 3-methylbutanal and acetone). Our results suggest that fast-GC-PTR-ToF-MS is a method well-suited for the analysis of gas-phase samples of biological origin, including but not limited to (mycoparasitic) fungi, in a wide range of VMRs from sub-ppbV to few-ppmV.
Collapse
Affiliation(s)
- Franziska Lochmann
- Institut für Atemgasanalytik, Universität Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Daniel Flatschacher
- Institut für Mikrobiologie, Universität Innsbruck, Technikerstrasse 25d, A-6020 Innsbruck, Austria
| | - Valentina Stock
- Institut für Atemgasanalytik, Universität Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Arne Schiller
- Institut für Atemgasanalytik, Universität Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Susanne Zeilinger
- Institut für Mikrobiologie, Universität Innsbruck, Technikerstrasse 25d, A-6020 Innsbruck, Austria
| | - Veronika Ruzsanyi
- Institut für Atemgasanalytik, Universität Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| |
Collapse
|
4
|
Wang X, Li W, Cui S, Wu Y, Wei Y, Li J, Hu J. Impact of tps1 Deletion and Overexpression on Terpene Metabolites in Trichoderma atroviride. J Fungi (Basel) 2024; 10:485. [PMID: 39057372 PMCID: PMC11278490 DOI: 10.3390/jof10070485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Terpenoids are structurally diverse natural products that have been widely used in the pharmaceutical, food, and cosmetic industries. Research has shown that fungi produce a variety of terpenoids, yet fungal terpene synthases remain not thoroughly explored. In this study, the tps1 gene, a crucial component of the terpene synthetic pathway, was isolated from Trichoderma atroviride HB20111 through genome mining. The function of this gene in the terpene synthetic pathway was investigated by constructing tps1-gene-deletion- and overexpression-engineered strains and evaluating the expression differences in the tps1 gene at the transcript level. HS-SPME-GC-MS analysis revealed significant variations in terpene metabolites among wild-type, tps1-deleted (Δtps1), and tps1-overexpressed (Otps1) strains; for instance, most sesquiterpene volatile organic compounds (VOCs) were notably reduced or absent in the Δtps1 strain, while nerolidol, β-acorenol, and guaiene were particularly produced by the Otps1 strain. However, both the Δtps1 and Otps1 strains produced new terpene metabolites compared to the wild-type, which indicated that the tps1 gene played an important role in terpene synthesis but was not the only gene involved in T. atroviride HB20111. The TPS1 protein encoded by the tps1 gene could function as a sesquiterpene cyclase through biological information and evolutionary tree analysis. Additionally, fungal inhibition assay and wheat growth promotion assay results suggested that the deletion or overexpression of the tps1 gene had a minimal impact on fungal inhibitory activity, plant growth promotion, and development, as well as stress response. This implies that these activities of T. atroviride HB20111 might result from a combination of multiple metabolites rather than being solely dependent on one specific metabolite. This study offers theoretical guidance for future investigations into the mechanism of terpenoid synthesis and serves as a foundation for related studies on terpenoid metabolic pathways in fungi.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jindong Hu
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China; (X.W.)
| |
Collapse
|
5
|
Mendoza-Mendoza A, Esquivel-Naranjo EU, Soth S, Whelan H, Alizadeh H, Echaide-Aquino JF, Kandula D, Hampton JG. Uncovering the multifaceted properties of 6-pentyl-alpha-pyrone for control of plant pathogens. FRONTIERS IN PLANT SCIENCE 2024; 15:1420068. [PMID: 38957597 PMCID: PMC11217547 DOI: 10.3389/fpls.2024.1420068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024]
Abstract
Some volatile organic compounds (VOCs) produced by microorganisms have the ability to inhibit the growth and development of plant pathogens, induce the activation of plant defenses, and promote plant growth. Among them, 6-pentyl-alpha-pyrone (6-PP), a ketone produced by Trichoderma fungi, has emerged as a focal point of interest. 6-PP has been isolated and characterized from thirteen Trichoderma species and is the main VOC produced, often accounting for >50% of the total VOCs emitted. This review examines abiotic and biotic interactions regulating the production of 6-PP by Trichoderma, and the known effects of 6-PP on plant pathogens through direct and indirect mechanisms including induced systemic resistance. While there are many reports of 6-PP activity against plant pathogens, the vast majority have been from laboratory studies involving only 6-PP and the pathogen, rather than glasshouse or field studies including a host plant in the system. Biopesticides based on 6-PP may well provide an eco-friendly, sustainable management tool for future agricultural production. However, before this can happen, challenges including demonstrating disease control efficacy in the field, developing efficient delivery systems, and determining cost-effective application rates must be overcome before 6-PP's potential for pathogen control can be turned into reality.
Collapse
Affiliation(s)
| | - Edgardo Ulises Esquivel-Naranjo
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro, Mexico
| | - Sereyboth Soth
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - Helen Whelan
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - Hossein Alizadeh
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | | | - Diwakar Kandula
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - John G. Hampton
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
6
|
Lochmann F, Flatschacher D, Speckbacher V, Zeilinger S, Heuschneider V, Bereiter S, Schiller A, Ruzsanyi V. Demonstrating the Applicability of Proton Transfer Reaction Mass Spectrometry to Quantify Volatiles Emitted by the Mycoparasitic Fungus Trichoderma atroviride in Real Time: Monitoring of Trichoderma-Based Biopesticides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1168-1177. [PMID: 38708575 PMCID: PMC11157538 DOI: 10.1021/jasms.3c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024]
Abstract
The present study aims to explore the potential application of proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) for real-time monitoring of microbial volatile organic compounds (MVOCs). This investigation can be broadly divided into two parts. First, a selection of 14 MVOCs was made based on previous research that characterized the MVOC emissions of Trichoderma atroviride, which is a filamentous fungus widely used as a biocontrol agent. The analysis of gas-phase standards using PTR-ToF-MS allowed for the categorization of these 14 MVOCs into two groups: the first group primarily undergoes nondissociative proton transfer, resulting in the formation of protonated parent ions, while the second group mainly undergoes dissociative proton transfer, leading to the formation of fragment ions. In the second part of this investigation, the emission of MVOCs from samples of T. atroviride was continuously monitored over a period of five days using PTR-ToF-MS. This also included the first quantitative online analysis of 6-amyl-α-pyrone (6-PP), a key MVOC emitted by T. atroviride. The 6-PP emissions of T. atroviride cultures were characterized by a gradual increase over the first two days of cultivation, reaching a plateau-like maximum with volume mixing ratios exceeding 600 ppbv on days three and four. This was followed by a marked decrease, where the 6-PP volume mixing ratios plummeted to below 50 ppbv on day five. This observed sudden decrease in 6-PP emissions coincided with the start of sporulation of the T. atroviride cultures as well as increasing intensities of product ions associated with 1-octen-3-ol and 3-octanone, whereas both these MVOCs were previously associated with sporulation in T. atroviride. The study also presents the observations and discussion of further MVOC emissions from the T. atroviride samples and concludes with a critical assessment of the possible applications and limitations of PTR-ToF-MS for the online monitoring of MVOCs from biological samples in real time.
Collapse
Affiliation(s)
- Franziska Lochmann
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| | - Daniel Flatschacher
- Institut
für Mikrobiologie, Universität
Innsbruck, Technikerstrasse
25d, A-6020 Innsbruck, Austria
| | - Verena Speckbacher
- Institut
für Mikrobiologie, Universität
Innsbruck, Technikerstrasse
25d, A-6020 Innsbruck, Austria
| | - Susanne Zeilinger
- Institut
für Mikrobiologie, Universität
Innsbruck, Technikerstrasse
25d, A-6020 Innsbruck, Austria
| | - Valentina Heuschneider
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| | - Stephanie Bereiter
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| | - Arne Schiller
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| | - Veronika Ruzsanyi
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
7
|
Di Francesco A, Jabeen F, Vall-llaura N, Moret E, Martini M, Torres R, Ermacora P, Teixidó N. Pseudomonas synxantha volatile organic compounds: efficacy against Cadophora luteo-olivacea and Botrytis cinerea of kiwifruit. FRONTIERS IN PLANT SCIENCE 2024; 15:1398014. [PMID: 38779078 PMCID: PMC11109433 DOI: 10.3389/fpls.2024.1398014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Volatile organic compounds (VOCs) are responsible for the antagonistic activity exerted by different biological control agents (BCAs). In this study, VOCs produced by Pseudomonas synxantha strain 117-2b were tested against two kiwifruit fungal postharvest pathogens: Cadophora luteo-olivacea and Botrytis cinerea, through in vitro and in vivo assays. In vitro results demonstrated that P. synxantha 117-2b VOCs inhibit mycelial growth of C. luteo-olivacea and B. cinerea by 56% and 42.8% after 14 and 5 days of exposition, respectively. In vivo assay demonstrated significant inhibitory effects. VOCs used as a biofumigant treatment reduced skin-pitting symptoms disease severity by 28.5% and gray mold incidence by 66.6%, with respect to the untreated control. BCA volatiles were analyzed by solid-phase microextraction coupled with gas chromatography-mass spectrometry (SPME-GC/MS), and among the detected compounds, 1-butanol, 3-methyl and 1-nonene resulted as the most produced. Their efficacy as pure synthetic compounds was assayed against mycelial growth of fungal pathogens by different concentrations (0.34, 0.56, and 1.12 µL mL-1 headspace). The effect of the application of VOCs as a biofumigant was also investigated as the expression level of seven defense-related genes of kiwifruit at different exposition times. The results indicated an enhancement of the expression of almost all the genes starting from 3 h of treatment. These results described P. synxantha VOCs characteristics and their potential as a promising method to adopt for protecting kiwifruit from postharvest diseases caused by C. luteo-olivacea and B. cinerea.
Collapse
Affiliation(s)
- Alessandra Di Francesco
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Farwa Jabeen
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Núria Vall-llaura
- Postharvest Programme, Institute of Agrifood Research and Technology (IRTA), Lleida, Spain
| | - Erica Moret
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Marta Martini
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Rosario Torres
- Postharvest Programme, Institute of Agrifood Research and Technology (IRTA), Lleida, Spain
| | - Paolo Ermacora
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Neus Teixidó
- Postharvest Programme, Institute of Agrifood Research and Technology (IRTA), Lleida, Spain
| |
Collapse
|
8
|
Wang X, Zhang J, Lu X, Bai Y, Wang G. Two diversities meet in the rhizosphere: root specialized metabolites and microbiome. J Genet Genomics 2024; 51:467-478. [PMID: 37879496 DOI: 10.1016/j.jgg.2023.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/15/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
Plants serve as rich repositories of diverse chemical compounds collectively referred to as specialized metabolites. These compounds are of importance for adaptive processes, including interactions with various microbes both beneficial and harmful. Considering microbes as bioreactors, the chemical diversity undergoes dynamic changes when root-derived specialized metabolites (RSMs) and microbes encounter each other in the rhizosphere. Recent advancements in sequencing techniques and molecular biology tools have not only accelerated the elucidation of biosynthetic pathways of RSMs but also unveiled the significance of RSMs in plant-microbe interactions. In this review, we provide a comprehensive description of the effects of RSMs on microbe assembly in the rhizosphere and the influence of corresponding microbial changes on plant health, incorporating the most up-to-date information available. Additionally, we highlight open questions that remain for a deeper understanding of and harnessing the potential of RSM-microbe interactions to enhance plant adaptation to the environment. Finally, we propose a pipeline for investigating the intricate associations between root exometabolites and the rhizomicrobiome.
Collapse
Affiliation(s)
- Xiaochen Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingying Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Xinjun Lu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Thomas G, Caulfield J, Nikolaeva-Reynolds L, Birkett MA, Vuts J. Solvent Extraction of PDMS Tubing as a New Method for the Capture of Volatile Organic Compounds from Headspace. J Chem Ecol 2024; 50:85-99. [PMID: 38246946 DOI: 10.1007/s10886-024-01469-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Polydimethylsiloxane (PDMS) tubing is increasingly being used to collect volatile organic compounds (VOCs) from static biological headspace. However, analysis of VOCs collected using PDMS tubing often deploys thermal desorption, where samples are considered as 'one-offs' and cannot be used in multiple experiments. In this study, we developed a static headspace VOC collection method using PDMS tubing which is solvent-based, meaning that VOC extracts can be used multiple times and can be linked to biological activity. Using a synthetic blend containing a range of known semiochemicals (allyl isothiocyanate, (Z)-3-hexen-1-ol, 1-octen-3-one, nonanal, (E)-anethol, (S)-bornyl acetate, (E)-caryophyllene and pentadecane) with differing chemical and physicochemical properties, VOCs were collected in static headspace by exposure to PDMS tubing with differing doses, sampling times and lengths. In a second experiment, VOCs from oranges were collected using PDMS sampling of static headspace versus dynamic headspace collection. VOCs were eluted with diethyl ether and analysed using gas chromatography - flame ionization detector (GC-FID) and coupled GC - mass spectrometry. GC-FID analysis of collected samples showed that longer PDMS tubes captured significantly greater quantities of compounds than shorter tubes, and that sampling duration significantly altered the recovery of all tested compounds. Moreover, greater quantities of compounds were recovered from closed compared to open systems. Finally, analysis of orange headspace VOCs showed no qualitative differences in VOCs recovered compared to dynamic headspace collections, although quantities sampled using PDMS tubing were lower. In summary, extraction of PDMS tubing with diethyl ether solvent captures VOCs from the headspace of synthetic blends and biological samples, and the resulting extracts can be used for multiple experiments linking VOC content to biological activity.
Collapse
Affiliation(s)
- Gareth Thomas
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - John Caulfield
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | | | - Michael A Birkett
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - József Vuts
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK.
| |
Collapse
|
10
|
Contreras-Cornejo HA, Schmoll M, Esquivel-Ayala BA, González-Esquivel CE, Rocha-Ramírez V, Larsen J. Mechanisms for plant growth promotion activated by Trichoderma in natural and managed terrestrial ecosystems. Microbiol Res 2024; 281:127621. [PMID: 38295679 DOI: 10.1016/j.micres.2024.127621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/26/2023] [Accepted: 01/13/2024] [Indexed: 02/16/2024]
Abstract
Trichoderma spp. are free-living fungi present in virtually all terrestrial ecosystems. These soil fungi can stimulate plant growth and increase plant nutrient acquisition of macro- and micronutrients and water uptake. Generally, plant growth promotion by Trichoderma is a consequence of the activity of potent fungal signaling metabolites diffused in soil with hormone-like activity, including indolic compounds as indole-3-acetic acid (IAA) produced at concentrations ranging from 14 to 234 μg l-1, and volatile organic compounds such as sesquiterpene isoprenoids (C15), 6-pentyl-2H-pyran-2-one (6-PP) and ethylene (ET) produced at levels from 10 to 120 ng over a period of six days, which in turn, might impact plant endogenous signaling mechanisms orchestrated by plant hormones. Plant growth stimulation occurs without the need of physical contact between both organisms and/or during root colonization. When associated with plants Trichoderma may cause significant biochemical changes in plant content of carbohydrates, amino acids, organic acids and lipids, as detected in Arabidopsis thaliana, maize (Zea mays), tomato (Lycopersicon esculentum) and barley (Hordeum vulgare), which may improve the plant health status during the complete life cycle. Trichoderma-induced plant beneficial effects such as mechanisms of defense and growth are likely to be inherited to the next generations. Depending on the environmental conditions perceived by the fungus during its interaction with plants, Trichoderma can reprogram and/or activate molecular mechanisms commonly modulated by IAA, ET and abscisic acid (ABA) to induce an adaptative physiological response to abiotic stress, including drought, salinity, or environmental pollution. This review, provides a state of the art overview focused on the canonical mechanisms of these beneficial fungi involved in plant growth promotion traits under different environmental scenarios and shows new insights on Trichoderma metabolites from different chemical classes that can modulate specific plant growth aspects. Also, we suggest new research directions on Trichoderma spp. and their secondary metabolites with biological activity on plant growth.
Collapse
Affiliation(s)
- Hexon Angel Contreras-Cornejo
- Laboratorio Nacional de Innovación Ecotecnológica para la Sustentabilidad (LANIES), Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), UNAM, Mexico; IIES-UNAM, Antigua carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, 58190 Morelia, Michoacán, Mexico.
| | - Monika Schmoll
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Centre of Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Blanca Alicia Esquivel-Ayala
- Laboratorio de Entomología, Facultad de Biología, Edificio B4, Universidad Michoacana de San Nicolás de Hidalgo, Gral. Francisco J. Múgica S/N, Ciudad Universitaria, CP 58030 Morelia, Michoacán, Mexico
| | - Carlos E González-Esquivel
- Laboratorio Nacional de Innovación Ecotecnológica para la Sustentabilidad (LANIES), Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), UNAM, Mexico; IIES-UNAM, Antigua carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, 58190 Morelia, Michoacán, Mexico
| | - Victor Rocha-Ramírez
- Laboratorio Nacional de Innovación Ecotecnológica para la Sustentabilidad (LANIES), Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), UNAM, Mexico; IIES-UNAM, Antigua carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, 58190 Morelia, Michoacán, Mexico
| | - John Larsen
- Laboratorio Nacional de Innovación Ecotecnológica para la Sustentabilidad (LANIES), Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), UNAM, Mexico; IIES-UNAM, Antigua carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, 58190 Morelia, Michoacán, Mexico
| |
Collapse
|
11
|
Liu J, Lin M, Han P, Yao G, Jiang H. Biosynthesis Progress of High-Energy-Density Liquid Fuels Derived from Terpenes. Microorganisms 2024; 12:706. [PMID: 38674649 PMCID: PMC11052473 DOI: 10.3390/microorganisms12040706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
High-energy-density liquid fuels (HED fuels) are essential for volume-limited aerospace vehicles and could serve as energetic additives for conventional fuels. Terpene-derived HED biofuel is an important research field for green fuel synthesis. The direct extraction of terpenes from natural plants is environmentally unfriendly and costly. Designing efficient synthetic pathways in microorganisms to achieve high yields of terpenes shows great potential for the application of terpene-derived fuels. This review provides an overview of the current research progress of terpene-derived HED fuels, surveying terpene fuel properties and the current status of biosynthesis. Additionally, we systematically summarize the engineering strategies for biosynthesizing terpenes, including mining and engineering terpene synthases, optimizing metabolic pathways and cell-level optimization, such as the subcellular localization of terpene synthesis and adaptive evolution. This article will be helpful in providing insight into better developing terpene-derived HED fuels.
Collapse
Affiliation(s)
- Jiajia Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (J.L.)
| | - Man Lin
- College of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644005, China
| | - Penggang Han
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (J.L.)
| | - Ge Yao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (J.L.)
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (J.L.)
| |
Collapse
|
12
|
Peng W, Huang Q, Ke X, Wang W, Chen Y, Sang Z, Chen C, Qin S, Zheng Y, Tan H, Zou Z. Koningipyridines A and B, two nitrogen-containing polyketides from the fungus Trichoderma koningiopsis SC-5. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:8. [PMID: 38206497 PMCID: PMC10784257 DOI: 10.1007/s13659-024-00429-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
Two novel koninginin derivatives, koningipyridines A and B (1 and 2), along with four known compounds (3-6) were isolated from the EtOAc extract of the endophytic fungus Trichoderma koningiopsis SC-5. Among them, koningipyridine A featured an unprecedented pentacyclic ketal skeleton with the formation of a fascinating 6/6/5/6/5 fused ring system and shared a characteristic pyridine core, which represents the first example of nitrogen-containing koninginin-type natural product. Moreover, koningipyridine B was the first member in the koninginin family sharing a unique 6/6/5 dihydropyridine skeleton, and it was suggested to be the critical biosynthetic precursor of koningipyridine A. The structures of 1 and 2 were elucidated by the interpretation of 1D and 2D NMR spectroscopy, HRESIMS data, as well as theoretical calculations of 13C NMR and electronic circular dichroism (ECD). Moreover, all isolates were screened for antimicrobial activities against Staphylococcus aureus, MRSA, and Escherichia coli as well as the cytotoxic effects against three cancer cell lines (A549, Hela, and HepG2).
Collapse
Affiliation(s)
- Weiwei Peng
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, State Key Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Qi Huang
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, People's Republic of China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Xin Ke
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, State Key Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Wenxuan Wang
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, People's Republic of China
| | - Yan Chen
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, State Key Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Zihuan Sang
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, State Key Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Chen Chen
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, State Key Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Siyu Qin
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, People's Republic of China
| | - Yuting Zheng
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, People's Republic of China
| | - Haibo Tan
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, People's Republic of China.
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, 341000, People's Republic of China.
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, State Key Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China.
| | - Zhenxing Zou
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, People's Republic of China.
| |
Collapse
|
13
|
Patra GK, Acharya GK, Panigrahi J, Mukherjee AK, Rout GR. The soil-borne fungal pathogen Athelia rolfsii: past, present, and future concern in legumes. Folia Microbiol (Praha) 2023; 68:677-690. [PMID: 37615849 DOI: 10.1007/s12223-023-01086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Legumes are ubiquitous, low-cost meals that are abundant in protein, vitamins, minerals, and calories. Several biotic constraints are to blame for the global output of legumes not meeting expectations. Fungi, in particular, are substantial restrictions that not only hinder production but also pose a serious health risk to both human and livestock consumption. Athelia rolfsii (Syn. Sclerotium rolfsii) is a dangerous pathogenic fungus that attacks most crops, causing massive yield losses. Legumes are no longer immune to this dreadful fungus, which can potentially result in a 100% yield loss. The initial disease symptoms based on the formation of brown color lesions at the point of infection and further development of mycelia, followed by yellowing and wilting of the whole plant. To tackle such situation, various strategies, i.e., management in cultural practices, disease-free plant growth, genetic changes, crop hybridization and in vitro culture techniques have been undertaken. This present review encapsulates the entire situation, from sclerotial dissemination through infection development and control in legume crops, with the goal of developing a tangible understanding of sustainable legume production improvements. Further study in this area might be led in an integrated manner as a result of this information, which could contribute to a better understanding of the processes of disease incidence, resistance mechanism, and its control, and fostering greater inventiveness in the production of legumes.
Collapse
Affiliation(s)
- Gyanendra K Patra
- Department of Agril. Biotechnology, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, India
| | - Gobinda K Acharya
- Central Horticultural Experiment Station, ICAR-IIHR, Bhubaneswar, India
| | - J Panigrahi
- Department of Biotechnology, Berhampur University, Berhampur, India
| | | | - Gyana R Rout
- Department of Molecular Biology & Biotechnology, Institute of Agricultural Sciences, S'O'A Deemed to be University, Bhubaneswar, Odisha, India.
| |
Collapse
|
14
|
Liu Y, Chai Z, Haixia Y. Identification of pressed and extracted vegetable oils by headspace GC-MS. Heliyon 2023; 9:e18532. [PMID: 37576238 PMCID: PMC10412762 DOI: 10.1016/j.heliyon.2023.e18532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
Edible vegetable oils are produced either by mechanical pressing or extraction. Although pressing retains the inherent flavor and nutritional value of the oil, the oil yield is low and the process expensive. Extraction methods have high oil yields, low processing costs, and economic benefits; however, No. 6 solvent, which may pose potential risks to human health, is commonly used in the extraction and cleaning process. Differentiating extracted oil containing these solvents from pressed oil, for quality control, based on visual appearance is difficult. Hence, in this study, an identification method using the characteristic components of solvent No. 6 under optimized headspace Gas chromatography-mass spectrometry (GC-MS) conditions was established. It also provided a reference for quality control of industrial production by estimating the amount of solvent present in the oil. Results showed that, in addition to five main components (2-methylpentane, 3-methylpentane, and n-hexane, Methylcyclopentane, Cyclohexane), accounting for 97% of the solvent, No. 6 solvent also contains 16 types of organic substances, such as olefins, aromatic hydrocarbons, and polycyclic aromatic hydrocarbons. Under optimized headspace GC-MS conditions (headspace sampler equilibrium temperature = 150 °C), the No. 6 solvent exhibits high linearity over a concentration range of 0.05-1 mg/kg with a correlation coefficient of 0.999 and a detection limit of 0.01 mg/kg. Pressed and extracted oils can be determined as follows: If three or fewer main components of the No. 6 solvent are detected, and the total content of No. 6 solvent is less than 0.5 mg/kg, it is a pressed oil; if four or more main components of No. 6 solvent are detected, or the total content of No. 6 solvent is ≥0.5 mg/kg, it is confirmed as an extracted oil.
Collapse
Affiliation(s)
- Yang Liu
- Zhejiang Academy of Forestry (Zhejiang Provincial Key Laboratory of Biological and Chemical Utilization of Forest Resources), 399 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China
| | - Zhenlin Chai
- Zhejiang Academy of Forestry (Zhejiang Provincial Key Laboratory of Biological and Chemical Utilization of Forest Resources), 399 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China
| | - Yu Haixia
- Zhejiang Academy of Forestry (Zhejiang Provincial Key Laboratory of Biological and Chemical Utilization of Forest Resources), 399 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China
| |
Collapse
|
15
|
Missbach K, Flatschacher D, Bueschl C, Samson JM, Leibetseder S, Marchetti-Deschmann M, Zeilinger S, Schuhmacher R. Light-Induced Changes in Secondary Metabolite Production of Trichoderma atroviride. J Fungi (Basel) 2023; 9:785. [PMID: 37623556 PMCID: PMC10456024 DOI: 10.3390/jof9080785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
Many studies aim at maximizing fungal secondary metabolite production but the influence of light during cultivation has often been neglected. Here, we combined an untargeted isotope-assisted liquid chromatography-high-resolution mass spectrometry-based metabolomics approach with standardized cultivation of Trichoderma atroviride under three defined light regimes (darkness (PD), reduced light (RL) exposure, and 12/12 h light/dark cycle (LD)) to systematically determine the effect of light on secondary metabolite production. Comparative analyses revealed a similar metabolite profile upon cultivation in PD and RL, whereas LD treatment had an inhibiting effect on both the number and abundance of metabolites. Additionally, the spatial distribution of the detected metabolites for PD and RL was analyzed. From the more than 500 detected metabolites, only 25 were exclusively produced upon fungal growth in darkness and 85 were significantly more abundant in darkness. The majority were detected under both cultivation conditions and annotation revealed a cluster of substances whose production followed the pattern observed for the well-known T. atroviride metabolite 6-pentyl-alpha-pyrone. We conclude that cultivation of T. atroviride under RL can be used to maximize secondary metabolite production.
Collapse
Affiliation(s)
- Kristina Missbach
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), 3430 Tulln, Austria; (K.M.)
- Department of Microbiology, Universität Innsbruck, 6020 Innsbruck, Austria
| | | | - Christoph Bueschl
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), 3430 Tulln, Austria; (K.M.)
| | - Jonathan Matthew Samson
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), 3430 Tulln, Austria; (K.M.)
| | - Stefan Leibetseder
- Institute of Chemical Technologies and Analytics, TU Wien, 1060 Vienna, Austria; (S.L.)
| | | | - Susanne Zeilinger
- Department of Microbiology, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), 3430 Tulln, Austria; (K.M.)
| |
Collapse
|
16
|
Imran M, Abo-Elyousr KAM, Mousa MAA, Saad MM. Use of Trichoderma culture filtrates as a sustainable approach to mitigate early blight disease of tomato and their influence on plant biomarkers and antioxidants production. FRONTIERS IN PLANT SCIENCE 2023; 14:1192818. [PMID: 37528983 PMCID: PMC10388550 DOI: 10.3389/fpls.2023.1192818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/19/2023] [Indexed: 08/03/2023]
Abstract
Introduction Alternaria solani is a challenging pathogen in the tomato crop globally. Chemical control is a rapid approach, but emerging fungicide resistance has become a severe threat. The present study investigates the use of culture filtrates (CFs) of three species of Trichoderma spp. to control this disease. Methods Highly virulent A. solani strain and three Trichoderma fungal strains viz., T. harzianum (Accession No: MW590687), T. atroviride (Accession No: MW590689) and T. longibrachiatum (Accession No: MW590688) previously isolated by authors were used in this study. The efficacy of culture filtrates (CFs) to mitigate early blight disease were tested under greenhouse and field conditions, experiments were conducted in different seasons of 2020 using a tomato variety "doucen". Results and discussion The CFs of T. harzianum, T. longibrachiatum, and T. atroviride significantly inhibited the in vitro mycelial growth of A. solani (62.5%, 48.73%, and 57.82%, respectively, followed by control 100%). In the GC-MS analysis of Trichoderma CF volatile compounds viz., harzianic acid (61.86%) in T. harzianum, linoleic acid (70.02%) in T. atroviride, and hydroxymethylfurfural (68.08%) in the CFs of T. longibrachiatum, were abundantly present. Foliar application of CFs in the greenhouse considerably reduced the disease severity (%) in all treatments, viz., T. harzianum (18.03%), T. longibrachiatum (31.91%), and T. atroviride (23.33%), followed by infected control (86.91%), and positively affected the plant biomarkers. In the greenhouse, the plants treated with CFs demonstrated higher flavonoids after 6 days of inoculation, whereas phenolic compounds increased after 2 days. The CF-treated plants demonstrated higher antioxidant enzymes, i.e., phenylalanine ammonia-lyase (PAL) and peroxidase (POD), after 4 days, whereas polyphenol oxidase (PPO) was higher after 6 days of inoculation, followed by healthy and infected controls. In open field conditions, disease severity in CF-treated plants was reduced in both seasons as compared to naturally infected plants, whereas CF-treated plants exhibited a higher fruit yield than controls. The present results conclude that CFs can be a potential biocontrol candidate and a promising alternative to the early blight pathogen for sustainable production.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Agriculture, Faculty of Environmental Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kamal A. M. Abo-Elyousr
- Department of Agriculture, Faculty of Environmental Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Plant Pathology, Faculty of Agriculture, University of Assiut, Assiut, Egypt
| | - Magdi A. A. Mousa
- Department of Agriculture, Faculty of Environmental Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Vegetable Crops, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Maged M. Saad
- DARWIN21, Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
17
|
Wang X, Wang Q, Li W, Zhang D, Fang W, Li Y, Wang Q, Cao A, Yan D. Long-term effects of chloropicrin fumigation on soil microbe recovery and growth promotion of Panax notoginseng. Front Microbiol 2023; 14:1225944. [PMID: 37520348 PMCID: PMC10375714 DOI: 10.3389/fmicb.2023.1225944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Panax notoginseng is a precious Chinese medicinal material. Soil fumigation can control soil-borne disease and overcome the continuous cropping obstacles of P. notoginseng. However, chloropicrin (CP) fumigation can kill non-target soil microorganisms and reduce microbial diversity, but the long-time impacts of CP fumigation on soil microbial are less reported. Methods We studied the long-term effects of CP fumigation on soil microbes with high-throughput gene sequencing, and correlated the changes in the composition of microbial communities with environmental factors like soil physicochemical properties and soil enzyme activities. This study mainly focuses on the recovery characteristics of soil microbe after soil fumigation by evaluating the ecological restoration of P. notoginseng soil, its sustained control effect on plant diseases, and its promotion effect on crop growth by focusing on the CP fumigation treatment. Results The results showed that CP fumigation significantly increased soil available phosphorus (P) to 34.6 ~ 101.6 mg/kg and electrical conductivity (EC) by 18.7% ~ 34.1%, respectively. High-throughput gene sequencing showed that soil fumigation with CP altered the relative abundance of Trichoderma, Chaetomium, Proteobacteria, and Chloroflexi in the soil while inhibiting a lot of Fusarium and Phytophthora. The inhibition rate of Phytophthora spp. was still 75.0% in the third year after fumigation. Fumigation with CP enhanced P. notoginseng's survival rate and stimulated plant growth, ensuring P. notoginseng's healthy in the growth period. The impact of fumigation on microbial community assembly and changes in microbial ecological niches were characterized using normalized stochasticity ratio (NST) and Levins' niche breadth index. Stochasticity dominated bacterial community assembly, while the fungal community was initially dominated by stochasticity and later by determinism. Fumigation with CP reduced the ecological niches of both fungi and bacteria. Conclusion In summary, the decrease in microbial diversity and niche caused by CP fumigation could be recovered over time, and the control of soil pathogens by CP fumigation remained sustainable. Moreover, CP fumigation could overcome continuous cropping obstacles of P. notoginseng and promote the healthy growth of P. notoginseng.
Collapse
|
18
|
El Jaddaoui I, Rangel DEN, Bennett JW. Fungal volatiles have physiological properties. Fungal Biol 2023; 127:1231-1240. [PMID: 37495313 DOI: 10.1016/j.funbio.2023.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
All fungi emit mixtures of volatile organic compounds (VOCs) during growth. The qualitative and quantitative composition of these volatile mixtures vary with the species of fungus, the age of the fungus, and the environmental parameters attending growth. In nature, fungal VOCs are found as combinations of alcohols, aldehydes, acids, ethers, esters, ketones, terpenes, thiols and their derivatives, and are responsible for the characteristic odors associated with molds, mushrooms and yeasts. One of the single most common fungal volatiles is 1-octen-3-ol also known as "mushroom alcohol" or "matsutake alcohol." Many volatiles, including 1-octen-3-ol, serve as communication agents and display biological activity as germination inhibitors, plant growth retardants or promoters, and as semiochemicals ("infochemicals") in interactions with arthropods. Volatiles are understudied and underappreciated elements of the chemical lives of fungi. This review gives a brief introduction to fungal volatiles in hopes of raising awareness of the physiological importance of these gas phase fungal metabolites to encourage mycologists and other biologists to stop "throwing away the head space."
Collapse
Affiliation(s)
- Islam El Jaddaoui
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Drauzio E N Rangel
- Universidade Tecnológica Federal do Paraná, Dois Vizinhos, Paraná, Brazil
| | - Joan Wennstrom Bennett
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
19
|
Rubio MB, Monti MM, Gualtieri L, Ruocco M, Hermosa R, Monte E. Trichoderma harzianum Volatile Organic Compounds Regulated by the THCTF1 Transcription Factor Are Involved in Antifungal Activity and Beneficial Plant Responses. J Fungi (Basel) 2023; 9:654. [PMID: 37367590 DOI: 10.3390/jof9060654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
The transcription factor THCTF1 from Trichoderma harzianum, previously linked to the production of 6-pentyl-2H-pyran-2-one (6-PP) derivatives and antifungal activity against Fusarium oxysporum, has been related in this study to conidiation, production of an array of volatile organic compounds (VOCs) and expression of methyltransferase genes. VOCs emitted by three T. harzianum strains (wild type T34, transformant ΔD1-38 that is disrupted in the Thctf1 gene encoding the transcription factor THCTF1, and ectopic integration transformant ΔJ3-16) were characterized by Proton Transfer Reaction-Quadrupole interface-Time-Of-Flight-Mass Spectrometry (PTR-Qi-TOF-MS). Thctf1 disruption affected the production of numerous VOCs such as the antifungal volatiles 2-pentyl furan and benzaldehyde which were under-emitted, and acetoine, a plant systemic defense inductor, which was over-emitted. Biological assays show that VOCs regulated by THCTF1 are involved in the T. harzianum antifungal activity against Botrytis cinerea and in the beneficial effects leading to Arabidopsis plant development. The VOC blend from the disruptant ΔD1-38: (i) inhibited Arabidopsis seed germination for at least 26 days and (ii) when applied to Arabidopsis seedlings resulted in increased jasmonic acid- and salicylic acid-dependent defenses.
Collapse
Affiliation(s)
- María Belén Rubio
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Campus de Villamayor, C/Duero, 12, 37185 Salamanca, Spain
| | - Maurilia Maria Monti
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Naples, Italy
| | - Liberata Gualtieri
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Naples, Italy
| | - Michelina Ruocco
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Naples, Italy
| | - Rosa Hermosa
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Campus de Villamayor, C/Duero, 12, 37185 Salamanca, Spain
| | - Enrique Monte
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Campus de Villamayor, C/Duero, 12, 37185 Salamanca, Spain
| |
Collapse
|
20
|
Oliveira-Alves SC, Andrade F, Sousa J, Bento-Silva A, Duarte B, Caçador I, Salazar M, Mecha E, Serra AT, Bronze MR. Soilless Cultivated Halophyte Plants: Volatile, Nutritional, Phytochemical, and Biological Differences. Antioxidants (Basel) 2023; 12:1161. [PMID: 37371891 PMCID: PMC10295272 DOI: 10.3390/antiox12061161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The use of halophyte plants appears as a potential solution for degraded soil, food safety, freshwater scarcity, and coastal area utilization. These plants have been considered an alternative crop soilless agriculture for sustainable use of natural resources. There are few studies carried out with cultivated halophytes using a soilless cultivation system (SCS) that report their nutraceutical value, as well as their benefits on human health. The objective of this study was to evaluate and correlate the nutritional composition, volatile profile, phytochemical content, and biological activities of seven halophyte species cultivated using a SCS (Disphyma crassifolium L., Crithmum maritimum L., Inula crithmoides L., Mesembryanthemum crystallinum L., Mesembryanthemum nodiflorum L., Salicornia ramosissima J. Woods, and Sarcocornia fruticosa (Mill.) A. J. Scott.). Among these species, results showed that S. fruticosa had a higher content in protein (4.44 g/100 g FW), ash (5.70 g/100 g FW), salt (2.80 g/100 g FW), chloride (4.84 g/100 g FW), minerals (Na, K, Fe, Mg, Mn, Zn, Cu), total phenolics (0.33 mg GAE/g FW), and antioxidant activity (8.17 µmol TEAC/g FW). Regarding the phenolic classes, S. fruticosa and M. nodiflorum were predominant in the flavonoids, while M. crystallinum, C. maritimum, and S. ramosissima were in the phenolic acids. Moreover, S. fruticosa, S. ramosissima, M. nodiflorum, M. crystallinum, and I. crithmoides showed ACE-inhibitory activity, an important target control for hypertension. Concerning the volatile profile, C. maritimum, I. crithmoides, and D. crassifolium were abundant in terpenes and esters, while M. nodiflorum, S. fruticosa, and M. crystallinum were richer in alcohols and aldehydes, and S. ramosissima was richer in aldehydes. Considering the environmental and sustainable roles of cultivated halophytes using a SCS, these results indicate that these species could be considered an alternative to conventional table salt, due to their added nutritional and phytochemical composition, with potential contribution for the antioxidant and anti-hypertensive effects.
Collapse
Affiliation(s)
- Sheila C. Oliveira-Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Fábio Andrade
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
| | - João Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
| | - Andreia Bento-Silva
- Faculdade de Farmácia, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Bernardo Duarte
- MARE—Marine and Environmental Sciences Centre & ARNET–Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (B.D.); (I.C.)
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Isabel Caçador
- MARE—Marine and Environmental Sciences Centre & ARNET–Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (B.D.); (I.C.)
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Miguel Salazar
- Riafresh, Sítio do Besouro, CX 547-B, 8005-421 Faro, Portugal;
- MED—Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Elsa Mecha
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria Rosário Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- Faculdade de Farmácia, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal;
| |
Collapse
|
21
|
Woo SL, Hermosa R, Lorito M, Monte E. Trichoderma: a multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nat Rev Microbiol 2023; 21:312-326. [PMID: 36414835 DOI: 10.1038/s41579-022-00819-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/24/2022]
Abstract
Trichoderma is a cosmopolitan and opportunistic ascomycete fungal genus including species that are of interest to agriculture as direct biological control agents of phytopathogens. Trichoderma utilizes direct antagonism and competition, particularly in the rhizosphere, where it modulates the composition of and interactions with other microorganisms. In its colonization of plants, on the roots or as an endophyte, Trichoderma has evolved the capacity to communicate with the plant and produce numerous multifaceted benefits to its host. The intricacy of this plant-microorganism association has stimulated a marked interest in research on Trichoderma, ranging from its capacity as a plant growth promoter to its ability to prime local and systemic defence responses against biotic and abiotic stresses and to activate transcriptional memory affecting plant responses to future stresses. This Review discusses the ecophysiology and diversity of Trichoderma and the complexity of its relationships in the agroecosystem, highlighting its potential as a direct and indirect biological control agent, biostimulant and biofertilizer, which are useful multipurpose properties for agricultural applications. We also highlight how the present legislative framework might accommodate the demonstrated evidence of Trichoderma proficiency as a plant-beneficial microorganism contributing towards eco-sustainable agriculture.
Collapse
Affiliation(s)
- Sheridan L Woo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy.
| | - Rosa Hermosa
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Salamanca, Spain
| | - Matteo Lorito
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Enrique Monte
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Salamanca, Spain
| |
Collapse
|
22
|
Ajmal M, Hussain A, Ali A, Chen H, Lin H. Strategies for Controlling the Sporulation in Fusarium spp. J Fungi (Basel) 2022; 9:jof9010010. [PMID: 36675831 PMCID: PMC9861637 DOI: 10.3390/jof9010010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Fusarium species are the most destructive phytopathogenic and toxin-producing fungi, causing serious diseases in almost all economically important plants. Sporulation is an essential part of the life cycle of Fusarium. Fusarium most frequently produces three different types of asexual spores, i.e., macroconidia, chlamydospores, and microconidia. It also produces meiotic spores, but fewer than 20% of Fusaria have a known sexual cycle. Therefore, the asexual spores of the Fusarium species play an important role in their propagation and infection. This review places special emphasis on current developments in artificial anti-sporulation techniques as well as features of Fusarium's asexual sporulation regulation, such as temperature, light, pH, host tissue, and nutrients. This description of sporulation regulation aspects and artificial anti-sporulation strategies will help to shed light on the ways to effectively control Fusarium diseases by inhibiting the production of spores, which eventually improves the production of food plants.
Collapse
Affiliation(s)
- Maria Ajmal
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Adil Hussain
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Asad Ali
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Hongge Chen
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Hui Lin
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
- Correspondence:
| |
Collapse
|
23
|
Wang Y, Zeng L, Wu J, Jiang H, Mei L. Diversity and effects of competitive Trichoderma species in Ganoderma lucidum-cultivated soils. Front Microbiol 2022; 13:1067822. [PMID: 36569077 PMCID: PMC9772278 DOI: 10.3389/fmicb.2022.1067822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Ganoderma lucidum (GL) is a well-known medicinal mushroom that has been extensively cultivated. Our previous study has shown that abundant Trichoderma colonies grow on the casing soil surface, posing cultivation obstacles for GL. However, an understanding of species-level characteristics of Trichoderma strains and their adverse effects on GL growth is limited. This study aimed to investigate the diversity and potential effects of Trichoderma from GL-cultivated soils. Over 700 Trichoderma isolates were collected from two trails in Longquan Country, southeast China. Eight Trichoderma species, including T. atrioviride, T. guizhouense, T. hamatum, T. harzianum, T. koningiopsis, T. pleuroticola, T. sp. irale, and T. virens, were identified based on the combination alignment of tef-1α and rpb2 sequences. The number of Trichoderma colonies increased dramatically during GL cultivation, with an increase of 9.2-fold in the Lanju trail. T. virens accounted for the most colonies (33.33 and 32.50% in Lanju and Chengbei, respectively) at the end of GL cultivation. The Trichoderma species growth varied but was satisfactory under different temperature or pH conditions. Moreover, Trichoderma species showed different adverse effects on GL growth. The non-volatile metabolites from T. virens and volatile metabolites from T. atroviride displayed the strongest antagonistic activity. Furthermore, the volatile 6-pentyl-2H-pyran-2-one (6-PP) showed a significant inhibitory effect on GL growth with an 8.79 μl mL-1 headspace of 50% effective concentration. The different Trichoderma spp. produced different amounts of 6-PP. The most efficient 6-PP producer was T. atroviride. To the best of our knowledge, this study is the first to demonstrate the abundance of competitive Trichoderma species associated with GL cultivation. Our results would contribute to.
Collapse
Affiliation(s)
- Yongjun Wang
- Department of Forest Protection, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Linzhou Zeng
- Department of Forest Protection, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Jiayi Wu
- Department of Forest Protection, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Hong Jiang
- Department of Forest Protection, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Li Mei
- Department of Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
24
|
Mulatu A, Megersa N, Tolcha T, Alemu T, Vetukuri RR. Antifungal compounds, GC-MS analysis and toxicity assessment of methanolic extracts of Trichoderma species in an animal model. PLoS One 2022; 17:e0274062. [PMID: 36149851 PMCID: PMC9506656 DOI: 10.1371/journal.pone.0274062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022] Open
Abstract
Fungi of the genus Trichoderma have been marketed for the management of diseases of crops. However, some Trichoderma species may produce toxic secondary metabolites and it should receive due attention to ensure human safety. In this study, we investigated the in vitro antagonistic potential of T. asperellum AU131 and T. longibrachiatum AU158 as microbial biocontrol agents (MBCAs) against Fusarium xylarioides and the associated antagonistic mechanism with bioactive substances. Swiss albino mice were used to evaluate the in vivo toxicity and pathogenicity of T. asperellum AU131 and T. longibrachiatum AU158 methanolic extracts and spore suspensions, respectively, in a preliminary safety assessment for use as biofungicides. Gas Chromatography-Mass Spectrometry (GC-MS) was used to profile volatile organic metabolites (VOCs) present in the methanolic extracts. The agar diffusion assay of the methanolic extracts from both T. asperellum AU131 and T. longibrachiatum AU158 were effective at a concentration of 200 μg/mL (1×107 spores/mL), causing 62.5%, and 74.3% inhibition, respectively. A GC-MS analysis of methanolic extracts from both bioagents identified 23 VOCs which classified as alcohols, acids, sesquiterpenes, ketones and aromatic compounds. The oral administration of methanolic extracts and spore suspensions of each Trichoderma species to female Swiss albino mice over 14 days did not show any significant signs of toxicity, mortality or changes to body weight. It can be concluded that the tested spore suspensions and methanolic extracts were not pathogenic or toxic, respectively, when administered to Swiss albino mice at various doses.
Collapse
Affiliation(s)
- Afrasa Mulatu
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Negussie Megersa
- Department of Chemistry, Addis Ababa University, Addis Ababa, Ethiopia
| | - Teshome Tolcha
- Department of Chemistry, Kotebe University of Education, Addis Ababa, Ethiopia
| | - Tesfaye Alemu
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ramesh R. Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
- * E-mail:
| |
Collapse
|
25
|
Gualtieri L, Monti MM, Mele F, Russo A, Pedata PA, Ruocco M. Volatile Organic Compound (VOC) Profiles of Different Trichoderma Species and Their Potential Application. J Fungi (Basel) 2022; 8:jof8100989. [PMID: 36294554 PMCID: PMC9605199 DOI: 10.3390/jof8100989] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 12/04/2022] Open
Abstract
Fungi emit a broad spectrum of volatile organic compounds (VOCs), sometimes producing species-specific volatile profiles. Volatilomes have received over the last decade increasing attention in ecological, environmental and agricultural studies due to their potential to be used in the biocontrol of plant pathogens and pests and as plant growth-promoting factors. In the present study, we characterised and compared the volatilomes from four different Trichoderma species: T. asperellum B6; T. atroviride P1; T. afroharzianum T22; and T. longibrachiatum MK1. VOCs were collected from each strain grown both on PDA and in soil and analysed using proton transfer reaction quadrupole interface time-of-flight mass spectrometry (PTR-Qi-TOF-MS). Analysis of the detected volatiles highlighted a clear separation of the volatilomes of all the four species grown on PDA whereas the volatilomes of the soil-grown fungi could be only partially separated. Moreover, a limited number of species-specific peaks were found and putatively identified. In particular, each of the four Trichoderma species over-emitted somevolatiles involved in resistance induction, promotion of plant seed germination and seedling development and antimicrobial activity, as 2-pentyl-furan, 6PP, acetophenone and p-cymene by T. asperellum B6, T. atroviride P1, T. afroharzianum T22 and T. longibrachiatum MK1, respectively. Their potential role in interspecific interactions from the perspective of biological control is briefly discussed.
Collapse
Affiliation(s)
- Liberata Gualtieri
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Portici, Naples, Italy
| | - Maurilia Maria Monti
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Portici, Naples, Italy
- Correspondence: ; Tel.: +39-06-499-327-824
| | - Francesca Mele
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Portici, Naples, Italy
| | - Assunta Russo
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Portici, Naples, Italy
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy
| | - Paolo Alfonso Pedata
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Portici, Naples, Italy
| | - Michelina Ruocco
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Portici, Naples, Italy
| |
Collapse
|
26
|
A Routine and Sensitive Quantification of 2-Acetyl-1-Pyrroline in Shrimp by DSPE-DLLME Coupled to HPLC–UV. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02304-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
27
|
Rao Y, Zeng L, Jiang H, Mei L, Wang Y. Trichoderma atroviride LZ42 releases volatile organic compounds promoting plant growth and suppressing Fusarium wilt disease in tomato seedlings. BMC Microbiol 2022; 22:88. [PMID: 35382732 PMCID: PMC8981656 DOI: 10.1186/s12866-022-02511-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/30/2022] [Indexed: 11/17/2022] Open
Abstract
Background The promotion of plant growth and suppression of plant disease using beneficial microorganisms is considered an alternative to the application of chemical fertilizers or pesticides in the field. Results A coconut-scented antagonistic Trichoderma strain LZ42, previously isolated from Ganoderma lucidum-cultivated soil, was investigated for biostimulatory and biocontrol functions in tomato seedlings. Morphological and phylogenetic analyses suggested that strain LZ42 is closely related to T. atroviride. Tomato seedlings showed increased aerial and root dry weights in greenhouse trials after treatment with T. atroviride LZ42 formulated in talc, indicating the biostimulatory function of this fungus. T. atroviride LZ42 effectively suppressed Fusarium wilt disease in tomato seedlings, with an 82.69% control efficiency, which is similar to that of the carbendazim treatment. The volatile organic compounds (VOCs) emitted by T. atroviride LZ42 were found to affect the primary root growth direction and promote the root growth of tomato seedlings in root Y-tube olfactometer assays. The fungal VOCs from T. atroviride LZ42 were observed to significantly inhibit F. oxysporum in a sandwiched Petri dish assay. SPME–GC–MS analysis revealed several VOCs emitted by T. atroviride LZ42; the dominant compound was tentatively identified as 6-pentyl-2H-pyran-2-one (6-PP). The VOC 6-PP exhibited a stronger ability to influence the direction of the primary roots of tomato seedlings but not the length of the primary roots. The inhibitory effect of 6-PP on F. oxysporum was the highest among the tested pure VOCs, showing a 50% effective concentration (EC50) of 5.76 μL mL−1 headspace. Conclusions Trichoderma atroviride LZ42, which emits VOCs with multiple functions, is a promising agent for the biostimulation of vegetable plants and integrated management of Fusarium wilt disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02511-3.
Collapse
Affiliation(s)
- Yuxin Rao
- College of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou, 311300, China
| | - Linzhou Zeng
- College of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou, 311300, China
| | - Hong Jiang
- College of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou, 311300, China
| | - Li Mei
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, 311300, China
| | - Yongjun Wang
- College of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
28
|
González-Pérez E, Ortega-Amaro MA, Bautista E, Delgado-Sánchez P, Jiménez-Bremont JF. The entomopathogenic fungus Metarhizium anisopliae enhances Arabidopsis, tomato, and maize plant growth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 176:34-43. [PMID: 35217328 DOI: 10.1016/j.plaphy.2022.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/27/2022] [Accepted: 02/09/2022] [Indexed: 05/28/2023]
Abstract
Species of the entomopathogenic fungi Metarhizium are used worldwide as biocontrol agents. Recently, other lifestyles have been associated with some Metarhizium species, which include their role as saprophytes, endophytes, and plant growth promoters. Herein, the effect of three Metarhizium anisopliae strains on the growth of Arabidopsis thaliana plantlets was evaluated using an in vitro split system. Arabidopsis fresh weight and total chlorophyll content significantly increased 7 days post-inoculation with the three Metarhizium anisopliae strains evaluated. The primary root length was promoted by all fungal strains without physical contact, whereas in direct contact primary root growth was inhibited. Volatile organic compounds identification revealed that during the interaction of Arabidopsis with Ma-20 and Ma-25 strains only β-caryophyllene was produced, whereas in the Arabidopsis-Ma-28 interaction o-cymene was mainly emitted. The plant growth promoting effect induced by Metarhizium anisopliae strains was also achieved in Arabidopsis, tomato and maize plants grown in soil pots. Our results showed that three Metarhizium anisopliae strains were able to increase plant fresh weight, opening promising perspectives for field production, with the advantages of insect biocontrol and plant growth promotion induced by this species of fungus.
Collapse
Affiliation(s)
- Enrique González-Pérez
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, SLP, Mexico
| | - María Azucena Ortega-Amaro
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, SLP, Mexico; Coordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí, Salinas de Hidalgo, SLP, México
| | - Elihú Bautista
- CONACYT-Consorcio de Investigación, Innovación y Desarrollo para las Zonas Áridas (CIIDZA), Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, SLP, Mexico
| | - Pablo Delgado-Sánchez
- Laboratorio de Biotecnología, Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, Soledad de Graciano Sánchez, SLP, Mexico
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, SLP, Mexico.
| |
Collapse
|
29
|
Mycofumigation of postharvest blueberries with volatile compounds from Trichoderma atroviride IC-11 is a promising tool to control rots caused by Botrytis cinerea. Food Microbiol 2022; 106:104040. [DOI: 10.1016/j.fm.2022.104040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022]
|
30
|
Biological Control and Plant Growth Promotion by Volatile Organic Compounds of Trichoderma koningiopsis T-51. J Fungi (Basel) 2022; 8:jof8020131. [PMID: 35205885 PMCID: PMC8875031 DOI: 10.3390/jof8020131] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Trichoderma spp. are widely used in plant disease control and growth promotion due to their high efficacy and multiple biocontrol mechanisms. Trichoderma koningiopsis T-51 is an effective biocontrol agent against gray mold disease by direct contact. However, the indirect physical contact biocontrol potential of Trichoderma spp. is not clear. In this study, the volatile organic compounds (VOCs) produced by T-51 showed high inhibitory activity against plant pathogenic fungi Botrytis cinerea and Fusarium oxysporum. The percentage of B. cinerea and F. oxysporum mycelial growth inhibition by T-51 VOCs was 73.78% and 43.68%, respectively. In both B. cinerea and F. oxysporum, conidial germination was delayed, and germ tube elongation was suppressed when exposed to T-51 VOCs, and the final conidial germination rate of B. cinerea decreased significantly after T-51 treatment. The VOCs from T-51 reduced the Botrytis fruit rot of tomato compared with that noted when using the control. Moreover, the T-51 VOCs significantly increased the size and weight of Arabidopsis thaliana seedlings. Twenty-four possible compounds, which were identified as alkenes, alkanes, and esters, were detected in VOCs of T-51. These results indicate that T. koningiopsis T-51 can exert biological control by integrating actions to suppress plant disease and promote plant growth.
Collapse
|
31
|
Cerimi K, Jäckel U, Meyer V, Daher U, Reinert J, Klar S. In Vitro Systems for Toxicity Evaluation of Microbial Volatile Organic Compounds on Humans: Current Status and Trends. J Fungi (Basel) 2022; 8:75. [PMID: 35050015 PMCID: PMC8780961 DOI: 10.3390/jof8010075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Microbial volatile organic compounds (mVOC) are metabolic products and by-products of bacteria and fungi. They play an important role in the biosphere: They are responsible for inter- and intra-species communication and can positively or negatively affect growth in plants. But they can also cause discomfort and disease symptoms in humans. Although a link between mVOCs and respiratory health symptoms in humans has been demonstrated by numerous studies, standardized test systems for evaluating the toxicity of mVOCs are currently not available. Also, mVOCs are not considered systematically at regulatory level. We therefore performed a literature survey of existing in vitro exposure systems and lung models in order to summarize the state-of-the-art and discuss their suitability for understanding the potential toxic effects of mVOCs on human health. We present a review of submerged cultivation, air-liquid-interface (ALI), spheroids and organoids as well as multi-organ approaches and compare their advantages and disadvantages. Furthermore, we discuss the limitations of mVOC fingerprinting. However, given the most recent developments in the field, we expect that there will soon be adequate models of the human respiratory tract and its response to mVOCs.
Collapse
Affiliation(s)
- Kustrim Cerimi
- Unit 4.7 Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstraße 40–42, 10317 Berlin, Germany; (U.J.); (J.R.); (S.K.)
| | - Udo Jäckel
- Unit 4.7 Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstraße 40–42, 10317 Berlin, Germany; (U.J.); (J.R.); (S.K.)
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
| | - Ugarit Daher
- BIH Center for Regenerative Therapies (BCRT), BIH Stem Cell Core Facility, Berlin Institute of Health, Charité—Universitätsmedizin, 13353 Berlin, Germany;
| | - Jessica Reinert
- Unit 4.7 Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstraße 40–42, 10317 Berlin, Germany; (U.J.); (J.R.); (S.K.)
| | - Stefanie Klar
- Unit 4.7 Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstraße 40–42, 10317 Berlin, Germany; (U.J.); (J.R.); (S.K.)
| |
Collapse
|
32
|
Industrially Important Genes from Trichoderma. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Mishra N, Chauhan P, Verma P, Singh SP, Mishra A. Metabolomic Approaches to Study Trichoderma-Plant Interactions. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Wang H, Zhang R, Duan Y, Jiang W, Chen X, Shen X, Yin C, Mao Z. The Endophytic Strain Trichoderma asperellum 6S-2: An Efficient Biocontrol Agent against Apple Replant Disease in China and a Potential Plant-Growth-Promoting Fungus. J Fungi (Basel) 2021; 7:jof7121050. [PMID: 34947033 PMCID: PMC8705406 DOI: 10.3390/jof7121050] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 01/24/2023] Open
Abstract
A study was conducted for endophytic antagonistic fungi obtained from the roots of healthy apple trees growing in nine replanted orchards in Shandong Province, China. The fungi were assessed for their ability to inhibit Fusarium proliferatum f. sp. malus domestica MR5, a fungal strain associated with apple replant disease (ARD). An effective endophyte, designated as strain 6S-2, was isolated and identified as Trichoderma asperellum. Strain 6S-2 demonstrated protease, amylase, cellulase, and laccase activities, which are important for the parasitic and antagonistic functions of pathogenic fungi. The inhibition rate of 6S-2 against Fusarium proliferatum f. sp. malus domestica MR5 was 52.41%. Strain 6S-2 also secreted iron carriers, auxin, ammonia and was able to solubilize phosphorus. Its fermentation extract and volatile substances inhibited the growth of MR5, causing its hyphae to twist, shrink, swell, and rupture. The antifungal activity of the 6S-2 fermentation extract increased with increasing concentrations. It promoted the production and elongation of Arabidopsis thaliana lateral roots, and the strongest effects were seen at a concentration of 50 mg/mL. A GC-MS analysis of the 6S-2 fermentation extract and volatile substances showed that they comprised mainly alkanes, alcohols, and furanones, as well as the specific volatile substance 6-PP. The application of 6S-2 spore suspension to replanted apple orchard soils reduced plant oxidative damage and promoted plant growth in a pot experiment. Therefore, the endophytic strain T. asperellum 6S-2 has the potential to serve as an effective biocontrol fungus for the prevention of ARD in China, and appears to promote plant growth.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chengmiao Yin
- Correspondence: (C.Y.); (Z.M.); Tel.: +86-186-5388-0060 (C.Y.); +86-139-5382-2958 (Z.M.)
| | - Zhiquan Mao
- Correspondence: (C.Y.); (Z.M.); Tel.: +86-186-5388-0060 (C.Y.); +86-139-5382-2958 (Z.M.)
| |
Collapse
|
35
|
Antifungal activity of volatile compounds generated by endophytic fungi Sarocladium brachiariae HND5 against Fusarium oxysporum f. sp. cubense. PLoS One 2021; 16:e0260747. [PMID: 34855862 PMCID: PMC8639089 DOI: 10.1371/journal.pone.0260747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/16/2021] [Indexed: 11/19/2022] Open
Abstract
The soil-born filamentous fungal pathogen Fusarium oxysporum f. sp. cubense (FOC), which causes vascular wilt disease in banana plants, is one of the most economically important Fusarium species. Biocontrol using endophytic microorganisms is among the most effective methods for controlling banana Fusarium wilt. In this study, volatile organic compounds (VOCs) showed strong antifungal activity against FOC. Seventeen compounds were identified from the VOCs produced by endophytic fungi Sarocladium brachiariae HND5, and three (2-methoxy-4-vinylphenol, 3,4-dimethoxystyrol and caryophyllene) showed antifungal activity against FOC with 50% effective concentrations of 36, 60 and 2900 μL/L headspace, respectively. Transmission electron microscopy (TEM) and double fluorescence staining revealed that 2-methoxy-4-vinylphenol and 3,4-dimethoxystyrol damaged the plasma membranes, resulting in cell death. 3,4-dimethoxystyrol also could induce expression of chitin synthases genes and altered the cell walls of FOC hyphae. Dichloro-dihydro-fluorescein diacetate staining indicated the caryophyllene induced accumulation of reactive oxygen species (ROS) in FOC hyphae. FOC secondary metabolism also responded to active VOC challenge by producing less fusaric acid and expressions of genes related to fusaric acid production were interrupted at sublethal concentrations. These findings indicate the potential of S. brachiariae HND5 as a biocontrol agent against FOC and the antifungal VOCs as fumigants.
Collapse
|
36
|
Nartey LK, Pu Q, Zhu W, Zhang S, Li J, Yao Y, Hu X. Antagonistic and plant growth promotion effects of Mucor moelleri, a potential biocontrol agent. Microbiol Res 2021; 255:126922. [PMID: 34839169 DOI: 10.1016/j.micres.2021.126922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/10/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
With the increasing demand for high quality and environmentally safe or green food, Biological Control Agents (BCAs) are playing critical roles in green agriculture, which in turn has paved the way for the requirement of effective, appropriate microbial antagonists. In this study, Mucor moelleri AA1 was isolated and investigated for its growth promotion and antagonism against Athelia rolfsii and Colletotrichum gloeosporiodes. The results showed a high antagonistic activity of M. moelleri against A. rolfsii and C. gloeosporiodes with percentage inhibitions of 73 % and 86 % respectively using the dual plate method, and the same antagonistic activity was also observed in liquid cocultures. A pot study analysis showed significant suppression of the diseases as well as growth promotion on tomato. Scanning electron microscopy (SEM) indicated that M. moelleri inhibited the growth of mycelium and the production of web-like materials. Based on headspace-solid phase microextraction (HS-SPME) analysis, microbial volatile compounds were determined, which were mainly aromatic compounds and alkaloids. Also, several antagonistic enzymes, such as β-1, 3- glucanase, proteases, catalase and ACC deaminase as well as the phytohormone IAA, were found to be produced by M. moelleri. Overall, these results combine to make M. moelleri a good prospective candidate for biological control and as a plant growth-promoting agent. The present study appears to be the first report identifying M. moelleri as a biological control agent.
Collapse
Affiliation(s)
- Linda Korkor Nartey
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qian Pu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Weijing Zhu
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shuaishuai Zhang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jin Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yanlai Yao
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiufang Hu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
37
|
Agrawal S, Nandeibam J, Sarangthem I. Ultrastructural changes in methicillin-resistant Staphylococcus aureus (MRSA) induced by metabolites of thermophilous fungi Acrophialophora levis. PLoS One 2021; 16:e0258607. [PMID: 34648570 PMCID: PMC8516270 DOI: 10.1371/journal.pone.0258607] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/30/2021] [Indexed: 12/02/2022] Open
Abstract
Staphylococcus aureus and Methicillin-resistant S. aureus (MRSA) remains one of the major concerns of healthcare associated and community-onset infections worldwide. The number of cases of treatment failure for infections associated with resistant bacteria is on the rise, due to the decreasing efficacy of current antibiotics. Notably, Acrophialophora levis, a thermophilous fungus species, showed antibacterial activity, namely against S. aureus and clinical MRSA strains. The ethyl acetate extract of culture filtrate was found to display significant activity against S. aureus and MRSA with a minimum inhibitory concentration (MIC) of 1 μg/mL and 4 μg/mL, respectively. Scanning electron micrographs demonstrated drastic changes in the cellular architecture of metabolite treated cells of S. aureus and an MRSA clinical isolate. Cell wall disruption, membrane lysis and probable leakage of cytoplasmic are hallmarks of the antibacterial effect of fungal metabolites against MRSA. The ethyl acetate extract also showed strong antioxidant activity using two different complementary free radicals scavenging methods, DPPH and ABTS with efficiency of 55% and 47% at 1 mg/mL, respectively. The total phenolic and flavonoid content was found to be 50 mg/GAE and 20 mg/CAE, respectively. More than ten metabolites from different classes were identified: phenolic acids, phenylpropanoids, sesquiterpenes, tannins, lignans and flavonoids. In conclusion, the significant antibacterial activity renders this fungal strain as a bioresource for natural compounds an interesting alternative against resistant bacteria.
Collapse
Affiliation(s)
- Shivankar Agrawal
- Indian Council of Medical Research (ICMR), Delhi, India
- Department of Microbiology, Institute of Bioresources and Sustainable Development, A National Institute of Department of Biotechnology, Government of India, Imphal, Manipur, India
- * E-mail: (SA); (IS)
| | - Jusna Nandeibam
- Department of Microbiology, Institute of Bioresources and Sustainable Development, A National Institute of Department of Biotechnology, Government of India, Imphal, Manipur, India
| | - Indira Sarangthem
- Department of Microbiology, Institute of Bioresources and Sustainable Development, A National Institute of Department of Biotechnology, Government of India, Imphal, Manipur, India
- * E-mail: (SA); (IS)
| |
Collapse
|
38
|
Kang S, Lumactud R, Li N, Bell TH, Kim HS, Park SY, Lee YH. Harnessing Chemical Ecology for Environment-Friendly Crop Protection. PHYTOPATHOLOGY 2021; 111:1697-1710. [PMID: 33908803 DOI: 10.1094/phyto-01-21-0035-rvw] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Heavy reliance on synthetic pesticides for crop protection has become increasingly unsustainable, calling for robust alternative strategies that do not degrade the environment and vital ecosystem services. There are numerous reports of successful disease control by various microbes used in small-scale trials. However, inconsistent efficacy has hampered their large-scale application. A better understanding of how beneficial microbes interact with plants, other microbes, and the environment and which factors affect disease control efficacy is crucial to deploy microbial agents as effective and reliable pesticide alternatives. Diverse metabolites produced by plants and microbes participate in pathogenesis and defense, regulate the growth and development of themselves and neighboring organisms, help maintain cellular homeostasis under various environmental conditions, and affect the assembly and activity of plant and soil microbiomes. However, research on the metabolites associated with plant health-related processes, except antibiotics, has not received adequate attention. This review highlights several classes of metabolites known or suspected to affect plant health, focusing on those associated with biocontrol and belowground plant-microbe and microbe-microbe interactions. The review also describes how new insights from systematic explorations of the diversity and mechanism of action of bioactive metabolites can be harnessed to develop novel crop protection strategies.
Collapse
Affiliation(s)
- Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Rhea Lumactud
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Ningxiao Li
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Terrence H Bell
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Hye-Seon Kim
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL 61604, U.S.A
| | - Sook-Young Park
- Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
| |
Collapse
|
39
|
Lazazzara V, Vicelli B, Bueschl C, Parich A, Pertot I, Schuhmacher R, Perazzolli M. Trichoderma spp. volatile organic compounds protect grapevine plants by activating defense-related processes against downy mildew. PHYSIOLOGIA PLANTARUM 2021; 172:1950-1965. [PMID: 33783004 PMCID: PMC8360165 DOI: 10.1111/ppl.13406] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/22/2021] [Accepted: 03/19/2021] [Indexed: 05/04/2023]
Abstract
Volatile organic compounds (VOCs) are produced by soil-borne microorganisms and play crucial roles in fungal interactions with plants and phytopathogens. Although VOCs have been characterized in Trichoderma spp., the mechanisms against phytopathogens strongly differ according to the strain and pathosystem. This study aimed at characterizing VOCs produced by three Trichoderma strains used as biofungicides and to investigate their effects against grapevine downy mildew (caused by Plasmopara viticola). A VOC-mediated reduction of downy mildew severity was found in leaf disks treated with Trichoderma asperellum T34 (T34), T. harzianum T39 (T39), and T. atroviride SC1 (SC1) and 31 compounds were detected by head space-solid phase microextraction gas chromatography-mass spectrometry. Among the Trichoderma VOCs annotated, α-farnesene, cadinene, 1,3-octadiene, 2-pentylfuran, and 6-pentyl-2H-pyran-2-one reduced downy mildew severity on grapevine leaf disks. In particular, 6-pentyl-2H-pyran-2-one and 2-pentylfuran increased the accumulation of callose and enhanced the modulation of defense-related genes after P. viticola inoculation, indicating an induction of grapevine defense mechanisms. Moreover, 6-pentyl-2H-pyran-2-one activated the hypersensitive response after P. viticola inoculation, possibly to reinforce the grapevine defense reaction. These results indicate that Trichoderma VOCs can induce grapevine resistance, and these molecules could be further applied to control grapevine downy mildew.
Collapse
Affiliation(s)
- Valentina Lazazzara
- Department of Sustainable Agro‐ecosystems and BioresourcesResearch and Innovation Centre, Fondazione Edmund MachSan Michele all'AdigeItaly
| | - Bianca Vicelli
- Department of Sustainable Agro‐ecosystems and BioresourcesResearch and Innovation Centre, Fondazione Edmund MachSan Michele all'AdigeItaly
- Center Agriculture Food Environment (C3A)University of TrentoSan Michele all'AdigeItaly
| | - Christoph Bueschl
- Institute of Bioanalytics and Agro‐Metabolomics, Department of Agrobiotechnology (IFA‐Tulln)University of Natural Resources and Life Sciences, Vienna (BOKU)TullnAustria
| | - Alexandra Parich
- Institute of Bioanalytics and Agro‐Metabolomics, Department of Agrobiotechnology (IFA‐Tulln)University of Natural Resources and Life Sciences, Vienna (BOKU)TullnAustria
| | - Ilaria Pertot
- Department of Sustainable Agro‐ecosystems and BioresourcesResearch and Innovation Centre, Fondazione Edmund MachSan Michele all'AdigeItaly
- Center Agriculture Food Environment (C3A)University of TrentoSan Michele all'AdigeItaly
| | - Rainer Schuhmacher
- Institute of Bioanalytics and Agro‐Metabolomics, Department of Agrobiotechnology (IFA‐Tulln)University of Natural Resources and Life Sciences, Vienna (BOKU)TullnAustria
| | - Michele Perazzolli
- Department of Sustainable Agro‐ecosystems and BioresourcesResearch and Innovation Centre, Fondazione Edmund MachSan Michele all'AdigeItaly
- Center Agriculture Food Environment (C3A)University of TrentoSan Michele all'AdigeItaly
| |
Collapse
|
40
|
Delgado N, Olivera M, Cádiz F, Bravo G, Montenegro I, Madrid A, Fuentealba C, Pedreschi R, Salgado E, Besoain X. Volatile Organic Compounds (VOCs) Produced by Gluconobacter cerinus and Hanseniaspora osmophila Displaying Control Effect against Table Grape-Rot Pathogens. Antibiotics (Basel) 2021; 10:antibiotics10060663. [PMID: 34205962 PMCID: PMC8226828 DOI: 10.3390/antibiotics10060663] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/20/2022] Open
Abstract
Table grapes (Vitis vinifera) are affected by botrytis bunch rot and summer bunch rot, the latter a complex disease caused by Botrytis cinerea, Aspergillus spp., Penicillium expansum and Rhizopus stolonifer. To search for biocontrol alternatives, a new bioproduct composed of Gluconobacter cerinus and Hanseniaspora osmophila, a consortium called PUCV-VBL, was developed for the control of fungal rots in table grapes. Since this consortium presents new biocontrol species, the effect of their VOCs (volatile organic compounds) was evaluated under in vitro and in vivo conditions. The VOCs produced by the PUCV-VBL consortium showed the highest mycelial inhibition against Botrytis cinerea (86%). Furthermore, H. osmophila was able to inhibit sporulation of A. tubingensis and P. expansum. VOCs' effect in vivo was evaluated using berries from Red Globe, Thompson Seedless and Crimson Seedless grapes cultivars, demonstrating a mycelial inhibition by VOCs greater than 70% for all evaluated fungal species. The VOC identification of the PUCV-VBL consortium was analyzed by solid-phase microextraction coupled to gas chromatography-mass spectrometry (SPME-GCMS). A total 26 compounds were identified, including 1-butanol 3-methyl, propanoic acid ethyl ester, ethyl acetate, phenylethyl alcohol, isobutyl acetate and hexanoic acid ethyl ester. Our results show that VOCs are an important mode of action of the PUCV-VBL biological consortium.
Collapse
Affiliation(s)
- Ninoska Delgado
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile; (M.O.); (F.C.); (R.P.); (E.S.)
- Correspondence: (N.D.); (X.B.); Tel.: +56-32-237-2930 (X.B.)
| | - Matías Olivera
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile; (M.O.); (F.C.); (R.P.); (E.S.)
| | - Fabiola Cádiz
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile; (M.O.); (F.C.); (R.P.); (E.S.)
| | - Guillermo Bravo
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avda. España 1680, Valparaíso 2390123, Chile;
| | - Iván Montenegro
- Escuela de Obstetricia y Puericultura, Facultad de Medicina, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2520000, Chile;
| | - Alejandro Madrid
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile;
| | - Claudia Fuentealba
- Escuela de Alimentos, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Waddington 716, Valparaíso 2340000, Chile;
| | - Romina Pedreschi
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile; (M.O.); (F.C.); (R.P.); (E.S.)
| | - Eduardo Salgado
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile; (M.O.); (F.C.); (R.P.); (E.S.)
| | - Ximena Besoain
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile; (M.O.); (F.C.); (R.P.); (E.S.)
- Correspondence: (N.D.); (X.B.); Tel.: +56-32-237-2930 (X.B.)
| |
Collapse
|
41
|
Sensing Methodologies in Agriculture for Monitoring Biotic Stress in Plants Due to Pathogens and Pests. INVENTIONS 2021. [DOI: 10.3390/inventions6020029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Reducing agricultural losses is an effective way to sustainably increase agricultural output efficiency to meet our present and future needs for food, fiber, fodder, and fuel. Our ever-improving understanding of the ways in which plants respond to stress, biotic and abiotic, has led to the development of innovative sensing technologies for detecting crop stresses/stressors and deploying efficient measures. This article aims to present the current state of the methodologies applied in the field of agriculture towards the detection of biotic stress in crops. Key sensing methodologies for plant pathogen (or phytopathogen), as well as herbivorous insects/pests are presented, where the working principles are described, and key recent works discussed. The detection methods overviewed for phytopathogen-related stress identification include nucleic acid-based methods, immunological methods, imaging-based techniques, spectroscopic methods, phytohormone biosensing methods, monitoring methods for plant volatiles, and active remote sensing technologies. Whereas the pest-related sensing techniques include machine-vision-based methods, pest acoustic-emission sensors, and volatile organic compound-based stress monitoring methods. Additionally, Comparisons have been made between different sensing techniques as well as recently reported works, where the strengths and limitations are identified. Finally, the prospective future directions for monitoring biotic stress in crops are discussed.
Collapse
|
42
|
Speckbacher V, Zeilinger S, Zimmermann S, Mayhew CA, Wiesenhofer H, Ruzsanyi V. Monitoring the volatile language of fungi using gas chromatography-ion mobility spectrometry. Anal Bioanal Chem 2021; 413:3055-3067. [PMID: 33675374 PMCID: PMC8043876 DOI: 10.1007/s00216-021-03242-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 11/29/2022]
Abstract
Fusarium oxysporum is a plant pathogenic fungus leading to severe crop losses in agriculture every year. A sustainable way of combating this pathogen is the application of mycoparasites—fungi parasitizing other fungi. The filamentous fungus Trichoderma atroviride is such a mycoparasite that is able to antagonize phytopathogenic fungi. It is therefore frequently applied as a biological pest control agent in agriculture. Given that volatile metabolites play a crucial role in organismic interactions, the major aim of this study was to establish a method for on-line analysis of headspace microbial volatile organic compounds (MVOCs) during cultivation of different fungi. An ion mobility spectrometer with gas chromatographic pre-separation (GC-IMS) enables almost real-time information of volatile emissions with good selectivity. Here we illustrate the successful use of GC-IMS for monitoring the time- and light-dependent release of MVOCs by F. oxysporum and T. atroviride during axenic and co-cultivation. More than 50 spectral peaks were detected, which could be assigned to 14 volatile compounds with the help of parallel gas chromatography-mass spectrometric (GC-MS) measurements. The majority of identified compounds are alcohols, such as ethanol, 1-propanol, 2-methyl propanol, 2-methyl butanol, 3-methyl-1-butanol and 1-octen-3-ol. In addition to four ketones, namely acetone, 2-pentanone, 2-heptanone, 3-octanone, and 2-octanone; two esters, ethyl acetate and 1-butanol-3-methylacetate; and one aldehyde, 3-methyl butanal, showed characteristic profiles during cultivation depending on axenic or co-cultivation, exposure to light, and fungal species. Interestingly, 2-octanone was produced only in co-cultures of F. oxysporum and T. atroviride, but it was not detected in the headspace of their axenic cultures. The concentrations of the measured volatiles were predominantly in the low ppbv range; however, values above 100 ppbv were detected for several alcohols, including ethanol, 2-methylpropanol, 2-methyl butanol, 1- and 3-methyl butanol, and for the ketone 2-heptanone, depending on the cultivation conditions. Our results highlight that GC-IMS analysis can be used as a valuable analytical tool for identifying specific metabolite patterns for chemotaxonomic and metabolomic applications in near-to-real time and hence easily monitor temporal changes in volatile concentrations that take place in minutes.
Collapse
Affiliation(s)
- Verena Speckbacher
- Department of Microbiology, Leopold-Franzens-Universität, 6020, Innsbruck, Austria
| | - Susanne Zeilinger
- Department of Microbiology, Leopold-Franzens-Universität, 6020, Innsbruck, Austria
| | - Stefan Zimmermann
- Institute of Electrical Engineering and Measurement Technology, Leibniz Universität Hannover, 30167, Hannover, Germany
| | - Christopher A Mayhew
- Institute for Breath Research, Leopold-Franzens-Universität Innsbruck, Innrain 66, 6020, Innsbruck, Austria.,Tiroler Krebsforschungsinstitut (TKFI), Innrain 66, 6020, Innsbruck, Austria
| | - Helmut Wiesenhofer
- Institute for Breath Research, Leopold-Franzens-Universität Innsbruck, Innrain 66, 6020, Innsbruck, Austria.,Tiroler Krebsforschungsinstitut (TKFI), Innrain 66, 6020, Innsbruck, Austria
| | - Veronika Ruzsanyi
- Institute for Breath Research, Leopold-Franzens-Universität Innsbruck, Innrain 66, 6020, Innsbruck, Austria. .,Tiroler Krebsforschungsinstitut (TKFI), Innrain 66, 6020, Innsbruck, Austria.
| |
Collapse
|
43
|
Deciphering Trichoderma-Plant-Pathogen Interactions for Better Development of Biocontrol Applications. J Fungi (Basel) 2021; 7:jof7010061. [PMID: 33477406 PMCID: PMC7830842 DOI: 10.3390/jof7010061] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/18/2022] Open
Abstract
Members of the fungal genus Trichoderma (Ascomycota, Hypocreales, Hypocreaceae) are ubiquitous and commonly encountered as soil inhabitants, plant symbionts, saprotrophs, and mycoparasites. Certain species have been used to control diverse plant diseases and mitigate negative growth conditions. The versatility of Trichoderma’s interactions mainly relies on their ability to engage in inter- and cross-kingdom interactions. Although Trichoderma is by far the most extensively studied fungal biocontrol agent (BCA), with a few species already having been commercialized as bio-pesticides or bio-fertilizers, their wide application has been hampered by an unpredictable efficacy under field conditions. Deciphering the dialogues within and across Trichoderma ecological interactions by identification of involved effectors and their underlying effect is of great value in order to be able to eventually harness Trichoderma’s full potential for plant growth promotion and protection. In this review, we focus on the nature of Trichoderma interactions with plants and pathogens. Better understanding how Trichoderma interacts with plants, other microorganisms, and the environment is essential for developing and deploying Trichoderma-based strategies that increase crop production and protection.
Collapse
|
44
|
Trichoderma asperellum T76-14 Released Volatile Organic Compounds against Postharvest Fruit Rot in Muskmelons ( Cucumis melo) Caused by Fusarium incarnatum. J Fungi (Basel) 2021; 7:jof7010046. [PMID: 33445575 PMCID: PMC7827528 DOI: 10.3390/jof7010046] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 02/08/2023] Open
Abstract
Postharvest fruit rot caused by Fusarium incarnatum is a destructive postharvest disease of muskmelon (Cucumis melo). Biocontrol by antagonistic microorganisms is considered an alternative to synthetic fungicide application. The aim of this study was to investigate the mechanisms of action involved in the biocontrol of postharvest fruit rot in muskmelons by Trichoderma species. Seven Trichoderma spp. isolates were selected for in vitro testing against F. incarnatum in potato dextrose agar (PDA) by dual culture assay. In other relevant works, Trichoderma asperellum T76-14 showed a significantly higher percentage of inhibition (81%) than other isolates. Through the sealed plate method, volatile organic compounds (VOCs) emitted from T. asperellum T76-14 proved effective at inhibiting the fungal growth of F. incarnatum by 62.5%. Solid-phase microextraction GC/MS analysis revealed several VOCs emitted from T. asperellum T76-14, whereas the dominant compound was tentatively identified as phenylethyl alcohol (PEA). We have tested commercial volatile (PEA) against in vitro growth of F. incarnatum; the result showed PEA at a concentration of 1.5 mg mL−1 suppressed fungal growth with 56% inhibition. Both VOCs and PEA caused abnormal changes in the fungal mycelia. In vivo testing showed that the lesion size of muskmelons exposed to VOCs from T. asperellum T76-14 was significantly smaller than that of the control. Muskmelons exposed to VOCs from T. asperellum T76-14 showed no fruit rot after incubation at seven days compared to fruit rot in the control. This study demonstrated the ability of T. asperellum T76-14 to produce volatile antifungal compounds, showing that it can be a major mechanism involved in and responsible for the successful inhibition of F. incarnatum and control of postharvest fruit rot in muskmelons.
Collapse
|
45
|
Loulier J, Lefort F, Stocki M, Asztemborska M, Szmigielski R, Siwek K, Grzywacz T, Hsiang T, Ślusarski S, Oszako T, Klisz M, Tarakowski R, Nowakowska JA. Detection of Fungi and Oomycetes by Volatiles Using E-Nose and SPME-GC/MS Platforms. Molecules 2020; 25:E5749. [PMID: 33291490 PMCID: PMC7730677 DOI: 10.3390/molecules25235749] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 01/18/2023] Open
Abstract
Fungi and oomycetes release volatiles into their environment which could be used for olfactory detection and identification of these organisms by electronic-nose (e-nose). The aim of this study was to survey volatile compound emission using an e-nose device and to identify released molecules through solid phase microextraction-gas chromatography/mass spectrometry (SPME-GC/MS) analysis to ultimately develop a detection system for fungi and fungi-like organisms. To this end, cultures of eight fungi (Armillaria gallica, Armillaria ostoyae, Fusarium avenaceum, Fusarium culmorum, Fusarium oxysporum, Fusarium poae, Rhizoctonia solani, Trichoderma asperellum) and four oomycetes (Phytophthora cactorum, P. cinnamomi, P. plurivora, P. ramorum) were tested with the e-nose system and investigated by means of SPME-GC/MS. Strains of F. poae, R. solani and T. asperellum appeared to be the most odoriferous. All investigated fungal species (except R. solani) produced sesquiterpenes in variable amounts, in contrast to the tested oomycetes strains. Other molecules such as aliphatic hydrocarbons, alcohols, aldehydes, esters and benzene derivatives were found in all samples. The results suggested that the major differences between respective VOC emission ranges of the tested species lie in sesquiterpene production, with fungi emitting some while oomycetes released none or smaller amounts of such molecules. Our e-nose system could discriminate between the odors emitted by P. ramorum, F. poae, T. asperellum and R. solani, which accounted for over 88% of the PCA variance. These preliminary results of fungal and oomycete detection make the e-nose device suitable for further sensor design as a potential tool for forest managers, other plant managers, as well as regulatory agencies such as quarantine services.
Collapse
Affiliation(s)
- Jérémie Loulier
- InTNE (Plants & Pathogens Group), Hepia, University of Applied Sciences and Arts of Western Switzerland, 150 route de Presinge, 1254 Jussy, Switzerland;
| | - François Lefort
- InTNE (Plants & Pathogens Group), Hepia, University of Applied Sciences and Arts of Western Switzerland, 150 route de Presinge, 1254 Jussy, Switzerland;
| | - Marcin Stocki
- Institute of Forest Sciences, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland; (M.S.); (T.O.)
| | - Monika Asztemborska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.A.); (R.S.)
| | - Rafał Szmigielski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.A.); (R.S.)
| | - Krzysztof Siwek
- Faculty of Electrical Engineering, Warsaw University of Technology, Koszykowa 75, 00-661 Warsaw, Poland; (K.S.); (T.G.)
| | - Tomasz Grzywacz
- Faculty of Electrical Engineering, Warsaw University of Technology, Koszykowa 75, 00-661 Warsaw, Poland; (K.S.); (T.G.)
| | - Tom Hsiang
- Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Sławomir Ślusarski
- Forest Protection Department, Forest Research Institute, Braci Leśnej 3, 05-090 Sękocin Stary, Poland;
| | - Tomasz Oszako
- Institute of Forest Sciences, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland; (M.S.); (T.O.)
- Forest Protection Department, Forest Research Institute, Braci Leśnej 3, 05-090 Sękocin Stary, Poland;
| | - Marcin Klisz
- Department of Silviculture and Genetics, Forest Research Institute, Braci Leśnej 3, 05-090 Sękocin Stary, Poland;
| | - Rafał Tarakowski
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland;
| | - Justyna Anna Nowakowska
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3 Street, 01-938 Warsaw, Poland
| |
Collapse
|
46
|
Thambugala KM, Daranagama DA, Phillips AJL, Kannangara SD, Promputtha I. Fungi vs. Fungi in Biocontrol: An Overview of Fungal Antagonists Applied Against Fungal Plant Pathogens. Front Cell Infect Microbiol 2020; 10:604923. [PMID: 33330142 PMCID: PMC7734056 DOI: 10.3389/fcimb.2020.604923] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/23/2020] [Indexed: 11/21/2022] Open
Abstract
Plant pathogens cause severe losses or damage to crops worldwide and thereby significantly reduce the quality and quantity of agricultural commodities. World tendencies are shifting towards reducing the usage of chemically synthesized pesticides, while various biocontrol methods, strategies and approaches are being used in plant disease management. Fungal antagonists play a significant role in controlling plant pathogens and diseases and they are used as Biocontrol Agents (BCAs) throughout the world. This review provides a comprehensive list of fungal BCAs used against fungal plant pathogens according to modern taxonomic concepts, and clarifies their phylogenetic relationships because thewrong names are frequently used in the literature of biocontrol. Details of approximately 300 fungal antagonists belonging to 13 classes and 113 genera are listed together with the target pathogens and corresponding plant diseases. Trichoderma is identified as the genus with greatest potential comprising 25 biocontrol agents that have been used against a number of plant fungal diseases. In addition to Trichoderma, nine genera are recognized as significant comprising five or more known antagonistic species, namely, Alternaria, Aspergillus, Candida, Fusarium, Penicillium, Pichia, Pythium, Talaromyces, and Verticillium. A phylogenetic analysis based on partial sequences of the 28S nrRNA gene (LSU) of fungal antagonists was performed to establish their phylogenetic relationships.
Collapse
Affiliation(s)
- Kasun M Thambugala
- Department of Plant and Molecular Biology, Faculty of Science, University of Kelaniya, Kelaniya, Sri Lanka.,Genetics and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Dinushani A Daranagama
- Department of Plant and Molecular Biology, Faculty of Science, University of Kelaniya, Kelaniya, Sri Lanka
| | - Alan J L Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Lisbon, Portugal
| | - Sagarika D Kannangara
- Department of Plant and Molecular Biology, Faculty of Science, University of Kelaniya, Kelaniya, Sri Lanka
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
47
|
Walls LE, Rios-Solis L. Sustainable Production of Microbial Isoprenoid Derived Advanced Biojet Fuels Using Different Generation Feedstocks: A Review. Front Bioeng Biotechnol 2020; 8:599560. [PMID: 33195174 PMCID: PMC7661957 DOI: 10.3389/fbioe.2020.599560] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/09/2020] [Indexed: 01/17/2023] Open
Abstract
As the fastest mode of transport, the aircraft is a major driver for globalization and economic growth. The development of alternative advanced liquid fuels is critical to sustainable development within the sector. Such fuels should be compatible with existing infrastructure and derived from second generation feedstocks to avoid competition with food markets. With properties similar to petroleum based fuels, isoprenoid derived compounds such as limonene, bisabolane, farnesane, and pinene dimers are of increasing interest as "drop-in" replacement jet fuels. In this review potential isoprenoid derived jet fuels and progress toward their microbial production was discussed in detail. Although substantial advancements have been achieved, the use of first generation feedstocks remains ubiquitous. Lignocellulosic biomass is the most abundant raw material available for biofuel production, however, technological constraints associated with its pretreatment and saccharification hinder its economic feasibility for low-value commodity production. Non-conventional microbes with novel characteristics including cellulolytic bacteria and fungi capable of highly efficient lignocellulose degradation and xylose fermenting oleaginous yeast with enhanced lignin-associated inhibitor tolerance were investigated as alternatives to traditional model hosts. Finally, innovative bioprocessing methods including consolidated bioprocessing and sequential bioreactor approaches, with potential to capitalize on such unique natural capabilities were considered.
Collapse
Affiliation(s)
- Laura Ellen Walls
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, United Kingdom
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
48
|
Chun J, Na B, Kim DH. Characterization of a novel dsRNA mycovirus of Trichoderma atroviride NFCF377 reveals a member of "Fusagraviridae" with changes in antifungal activity of the host fungus. J Microbiol 2020; 58:1046-1053. [PMID: 33095387 DOI: 10.1007/s12275-020-0380-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022]
Abstract
Trichoderma atroviride is a common fungus found in various ecosystems that shows mycoparasitic ability on other fungi. A novel dsRNA virus was isolated from T. atroviride NFCF377 strain and its molecular features were analyzed. The viral genome consists of a single segmented double-stranded RNA and is 9,584 bp in length, with two discontinuous open reading frames (ORF1 and ORF2). A mycoviral structural protein and an RNA-dependent RNA polymerase (RdRp) are encoded by ORF1 and ORF2, respectively, between which is found a canonical shifty heptameric signal motif (AAAAAAC) followed by an RNA pseudoknot. Analysis of sequence similarity and phylogeny showed that it is closely related to members of the proposed family "Fusagraviridae", with a highest similarity to the Trichoderma atroviride mycovirus 1 (TaMV1). Although the sequence similarity of deduced amino acid to TaMV1 was evident, sequence deviations were distinctive at untranslated regions (UTRs) due to the extended size. Thus, we inferred this dsRNA to be a different strain of Trichoderma atroviride mycovirus 1 (TaMV1-NFCF377). Electron microscopy image exhibited an icosahedral viral particle of 40 nm diameter. Virus-cured isogenic isolates were generated and no differences in growth rate, colony morphology, or conidia production were observed between virus-infected and virus-cured strains. However, culture filtrates of TaMV1-NFCF377-infected strain showed enhanced antifungal activity against the plant pathogen Rhizoctonia solani but not to edible mushroom Pleurotus ostreatus. These results suggested that TaMV1-NFCF377 affected the metabolism of the fungal host to potentiate antifungal compounds against a plant pahogen, but this enhanced antifungal activity appeared to be species-specific.
Collapse
Affiliation(s)
- Jeesun Chun
- Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Byeonghak Na
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dae-Hyuk Kim
- Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
- Department of Molecular Biology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
49
|
Speckbacher V, Ruzsanyi V, Martinez-Medina A, Hinterdobler W, Doppler M, Schreiner U, Böhmdorfer S, Beccaccioli M, Schuhmacher R, Reverberi M, Schmoll M, Zeilinger S. The Lipoxygenase Lox1 Is Involved in Light- and Injury-Response, Conidiation, and Volatile Organic Compound Biosynthesis in the Mycoparasitic Fungus Trichoderma atroviride. Front Microbiol 2020; 11:2004. [PMID: 32973724 PMCID: PMC7482316 DOI: 10.3389/fmicb.2020.02004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
The necrotrophic mycoparasite Trichoderma atroviride is a biological pest control agent frequently applied in agriculture for the protection of plants against fungal phytopathogens. One of the main secondary metabolites produced by this fungus is 6-pentyl-α-pyrone (6-PP). 6-PP is an organic compound with antifungal and plant growth-promoting activities, whose biosynthesis was previously proposed to involve a lipoxygenase (Lox). In this study, we investigated the role of the single lipoxygenase-encoding gene lox1 encoded in the T. atroviride genome by targeted gene deletion. We found that light inhibits 6-PP biosynthesis but lox1 is dispensable for 6-PP production as well as for the ability of T. atroviride to parasitize and antagonize host fungi. However, we found Lox1 to be involved in T. atroviride conidiation in darkness, in injury-response, in the production of several metabolites, including oxylipins and volatile organic compounds, as well as in the induction of systemic resistance against the plant-pathogenic fungus Botrytis cinerea in Arabidopsis thaliana plants. Our findings give novel insights into the roles of a fungal Ile-group lipoxygenase and expand the understanding of a light-dependent role of these enzymes.
Collapse
Affiliation(s)
| | - Veronika Ruzsanyi
- Institute for Breath Research, University of Innsbruck, Innsbruck, Austria
| | - Ainhoa Martinez-Medina
- Plant-Microbe Interaction Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Wolfgang Hinterdobler
- Center for Health and Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | - Maria Doppler
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Ulrike Schreiner
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Stefan Böhmdorfer
- Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Tulln, Austria
| | | | - Rainer Schuhmacher
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Massimo Reverberi
- Department of Environmental Biology, Sapienza University, Rome, Italy
| | - Monika Schmoll
- Center for Health and Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | - Susanne Zeilinger
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
50
|
Elsherbiny EA, Amin BH, Aleem B, Kingsley KL, Bennett JW. Trichoderma Volatile Organic Compounds as a Biofumigation Tool against Late Blight Pathogen Phytophthora infestans in Postharvest Potato Tubers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8163-8171. [PMID: 32790355 DOI: 10.1021/acs.jafc.0c03150] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We tested the ability of 14 strains of Trichoderma to emit volatile compounds that decreased or stopped the growth of Phytophthora infestans. Volatile organic compounds (VOCs) emitted from Trichoderma strains designated T41 and T45 inhibited the mycelial growth of P. infestans grown on a laboratory medium by 80 and 81.4%, respectively, and on potato tubers by 93.1 and 94.1%, respectively. Using the DNA sequence analysis of the translation elongation factor region, both Trichoderma strains were identified as Trichoderma atroviride. VOCs emitted by the strains were analyzed, and 39 compounds were identified. The most abundant compounds were 3-methyl-1-butanol, 6-pentyl-2-pyrone, 2-methyl-1-propanol, and acetoin. Electron microscopy of the hyphae treated with T. atroviride VOCs revealed serious morphological and ultrastructural damages, including cell deformation, collapse, and degradation of cytoplasmic organelles. To our knowledge, this is the first report describing the ability of Trichoderma VOCs to suppress the growth of the late blight potato pathogen.
Collapse
Affiliation(s)
- Elsherbiny A Elsherbiny
- Plant Pathology Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Basma H Amin
- Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo 11651, Egypt
| | - Bushra Aleem
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 44000, Pakistan
| | - Kathryn L Kingsley
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Joan W Bennett
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| |
Collapse
|