1
|
Kawai M, Ota A, Takemura T, Nakai T, Maruyama F. Continuation and replacement of Vibrio cholerae non-O1 clonal genomic groups isolated from Plecoglossus altivelis fish in freshwaters. Environ Microbiol 2020; 22:4473-4484. [PMID: 33448654 DOI: 10.1111/1462-2920.15199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 01/14/2023]
Abstract
The dissemination and abundances of Vibrio species in aquatic environments are of interest, as some species cause emerging diseases in humans and in aquatic organisms like fish. It is suggested that Vibrio cholerae non-O1 infections of Plecoglossus altivelis ('ayu') were spread to various parts of Japan through the annual transplantation of juvenile fish. To investigate this, we used genome-aided tracing of 17 V. cholerae strains isolated from ayu between the 1970s and 1990s in different Japanese freshwater systems. The strains formed a genomic clade distinct from all known clades, which we designate as the Ayu clade. Two clonal genomic groups identified within the clade, Ayu-1 and Ayu-2, persisted for a few years (between 1977 to 1979 and 1987 to 1990, respectively), and clonal replacement of Ayu-1 by Ayu-2 took place over an 8-year period. Despite the high similarity between Ayu-1 and Ayu-2 (> 99.9% identity and > 97% fraction of genomes shared), differences in their gene repertoires were found, raising the possibility that they are phenotypically distinct. These results highlight the importance of genome-based studies for understanding the long-term dynamics of populations over the timescale of years.
Collapse
Affiliation(s)
- Mikihiko Kawai
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Atsushi Ota
- Office of Industry-Academia-Government and Community Collaboration, Hiroshima University, Higashihiroshima, Japan
| | - Taichiro Takemura
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Toshihiro Nakai
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, Japan
| | - Fumito Maruyama
- Office of Industry-Academia-Government and Community Collaboration, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
2
|
Dorman MJ, Domman D, Uddin MI, Sharmin S, Afrad MH, Begum YA, Qadri F, Thomson NR. High quality reference genomes for toxigenic and non-toxigenic Vibrio cholerae serogroup O139. Sci Rep 2019; 9:5865. [PMID: 30971707 PMCID: PMC6458141 DOI: 10.1038/s41598-019-41883-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/13/2019] [Indexed: 01/09/2023] Open
Abstract
Toxigenic Vibrio cholerae of the O139 serogroup have been responsible for several large cholera epidemics in South Asia, and continue to be of clinical and historical significance today. This serogroup was initially feared to represent a new, emerging V. cholerae clone that would lead to an eighth cholera pandemic. However, these concerns were ultimately unfounded. The majority of clinically relevant V. cholerae O139 isolates are closely related to serogroup O1, biotype El Tor V. cholerae, and comprise a single sublineage of the seventh pandemic El Tor lineage. Although related, these V. cholerae serogroups differ in several fundamental ways, in terms of their O-antigen, capsulation phenotype, and the genomic islands found on their chromosomes. Here, we present four complete, high-quality genomes for V. cholerae O139, obtained using long-read sequencing. Three of these sequences are from toxigenic V. cholerae, and one is from a bacterium which, although classified serologically as V. cholerae O139, lacks the CTXφ bacteriophage and the ability to produce cholera toxin. We highlight fundamental genomic differences between these isolates, the V. cholerae O1 reference strain N16961, and the prototypical O139 strain MO10. These sequences are an important resource for the scientific community, and will improve greatly our ability to perform genomic analyses of non-O1 V. cholerae in the future. These genomes also offer new insights into the biology of a V. cholerae serogroup that, from a genomic perspective, is poorly understood.
Collapse
Affiliation(s)
- Matthew J Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom
| | - Daryl Domman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom
| | - Muhammad Ikhtear Uddin
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Salma Sharmin
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Mokibul Hassan Afrad
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Yasmin Ara Begum
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh.
| | - Nicholas R Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom.
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom.
| |
Collapse
|
3
|
Lockwood S, Brayton KA, Daily JA, Broschat SL. Whole Proteome Clustering of 2,307 Proteobacterial Genomes Reveals Conserved Proteins and Significant Annotation Issues. Front Microbiol 2019; 10:383. [PMID: 30873148 PMCID: PMC6403173 DOI: 10.3389/fmicb.2019.00383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/13/2019] [Indexed: 11/24/2022] Open
Abstract
We clustered 8.76 M protein sequences deduced from 2,307 completely sequenced Proteobacterial genomes resulting in 707,311 clusters of one or more sequences of which 224,442 ranged in size from 2 to 2,894 sequences. To our knowledge this is the first study of this scale. We were surprised to find that no single cluster contained a representative sequence from all the organisms in the study. Given the minimal genome concept, we expected to find a shared set of proteins. To determine why the clusters did not have universal representation we chose four essential proteins, the chaperonin GroEL, DNA dependent RNA polymerase subunits beta and beta′ (RpoB/RpoB′), and DNA polymerase I (PolA), representing fundamental cellular functions, and examined their cluster distribution. We found these proteins to be remarkably conserved with certain caveats. Although the groEL gene was universally conserved in all the organisms in the study, the protein was not represented in all the deduced proteomes. The genes for RpoB and RpoB′ were missing from two genomes and merged in 88, and the sequences were sufficiently divergent that they formed separate clusters for 18 RpoB proteins (seven clusters) and 14 RpoB′ proteins (three clusters). For PolA, 52 organisms lacked an identifiable sequence, and seven sequences were sufficiently divergent that they formed five separate clusters. Interestingly, organisms lacking an identifiable PolA and those with divergent RpoB/RpoB′ were predominantly endosymbionts. Furthermore, we present a range of examples of annotation issues that caused the deduced proteins to be incorrectly represented in the proteome. These annotation issues made our task of determining protein conservation more difficult than expected and also represent a significant obstacle for high-throughput analyses.
Collapse
Affiliation(s)
- Svetlana Lockwood
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, United States
| | - Kelly A Brayton
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, United States.,Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States.,Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States
| | - Jeff A Daily
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Shira L Broschat
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, United States.,Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States.,Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States
| |
Collapse
|
4
|
Abstract
The expanding field of bacterial genomics has revolutionized our understanding of microbial diversity, biology and phylogeny. For most species, DNA extracted from culture material is used as the template for genome sequencing; however, the majority of microbes are actually uncultivable, and others, such as obligate intracellular bacteria, require laborious tissue culture to yield sufficient genomic material for sequencing. Chlamydiae are one such group of obligate intracellular microbes whose characterization has been hampered by this requirement. To circumvent these challenges, researchers have developed culture-independent sample preparation methods that can be applied to the sample directly or to genomic material extracted from the sample. These methods, which encompass both targeted [immunomagnetic separation-multiple displacement amplification (IMS-MDA) and sequence capture] and non-targeted approaches (host methylated DNA depletion-microbial DNA enrichment and cell-sorting-MDA), have been applied to a range of clinical and environmental samples to generate whole genomes of novel chlamydial species and strains. This review aims to provide an overview of the application, advantages and limitations of these targeted and non-targeted approaches in the chlamydial context. The methods discussed also have broad application to other obligate intracellular bacteria or clinical and environmental samples.
Collapse
Affiliation(s)
- Alyce Taylor-Brown
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Danielle Madden
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| |
Collapse
|
5
|
Xu X, Huang L, Su Y, Yan Q. The complete genome sequence of Vibrio aestuarianus W-40 reveals virulence factor genes. Microbiologyopen 2018; 7:e00568. [PMID: 29314726 PMCID: PMC6011983 DOI: 10.1002/mbo3.568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 12/27/2022] Open
Abstract
Vibrio aestuarianus is an opportunistic environmental pathogen that has been associated with epidemics in cultured shrimp Penaeus vannamei. Hepatopancreas microsporidian (HPM) and monodon slow growth syndrome (MSGS) have been reported in cultured P. vannamei. In this study, we sequenced and assembled the whole genome of V. aestuarianus strain W‐40, a strain that was originally isolated from the intestines of an infected P. vannamei. The genome of V. aestuarianus strain W‐40 contains two circular chromosomes of 483,7307 bp with a 46.23% GC content. We identified 4,457 open reading frames (ORFs) that occupy 86.35% of the genome. Vibrio aestuarianus strain W‐40 consists primarily of the ATP‐binding cassette (ABC) transporter system and the phosphotransferase system (PTS). CagA is a metabolism system that includes bacterial extracellular solute‐binding protein. Glutathione reductase can purge superoxide radicals (O22−) and hydrogen peroxide (H2O2) damage in V. aestuarianus strain W‐40. The presence of two compete type I restriction‐modification systems was confirmed. A total of 42 insertion sequences (IS) elements and 16 IS elements were identified. Our results revealed a host of virulence factors that likely contribute to the pathogenicity of V. aestuarianus strain W‐40, including the virulence factor genes vacA, clpC, and bvgA, which are important for biofilm dispersion. Several bacitracin and tetracycline antibiotic resistance‐encoding genes and type VI secretion systems were also identified in the genome. The complete genome sequence will aid future studies of the pathogenesis of V. aestuarianus strain W‐40 and allow for new strategies to control disease to be developed.
Collapse
Affiliation(s)
- Xiaojin Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China.,College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China
| |
Collapse
|
6
|
Bonnin-Jusserand M, Copin S, Le Bris C, Brauge T, Gay M, Brisabois A, Grard T, Midelet-Bourdin G. Vibrio species involved in seafood-borne outbreaks (Vibrio cholerae, V. parahaemolyticus and V. vulnificus): Review of microbiological versus recent molecular detection methods in seafood products. Crit Rev Food Sci Nutr 2017; 59:597-610. [DOI: 10.1080/10408398.2017.1384715] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maryse Bonnin-Jusserand
- Univ. Littoral Côte d'Opale, convention ANSES, EA 7394 – ICV – Institut Charles Viollette, Boulogne-sur-Mer, France
- INRA, France
- Univ. Lille, Lille, France
- ISA, Lille, France
- Univ. Artois, Arras, France
| | - Stéphanie Copin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratory for Food Safety, Boulevard du Bassin Napoléon, Boulogne-sur-Mer, France
| | - Cédric Le Bris
- Univ. Littoral Côte d'Opale, convention ANSES, EA 7394 – ICV – Institut Charles Viollette, Boulogne-sur-Mer, France
| | - Thomas Brauge
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratory for Food Safety, Boulevard du Bassin Napoléon, Boulogne-sur-Mer, France
| | - Mélanie Gay
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratory for Food Safety, Boulevard du Bassin Napoléon, Boulogne-sur-Mer, France
| | - Anne Brisabois
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratory for Food Safety, Boulevard du Bassin Napoléon, Boulogne-sur-Mer, France
| | - Thierry Grard
- Univ. Littoral Côte d'Opale, convention ANSES, EA 7394 – ICV – Institut Charles Viollette, Boulogne-sur-Mer, France
| | - Graziella Midelet-Bourdin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratory for Food Safety, Boulevard du Bassin Napoléon, Boulogne-sur-Mer, France
| |
Collapse
|
7
|
Domman D, Quilici ML, Dorman MJ, Njamkepo E, Mutreja A, Mather AE, Delgado G, Morales-Espinosa R, Grimont PAD, Lizárraga-Partida ML, Bouchier C, Aanensen DM, Kuri-Morales P, Tarr CL, Dougan G, Parkhill J, Campos J, Cravioto A, Weill FX, Thomson NR. Integrated view of Vibrio cholerae in the Americas. Science 2017; 358:789-793. [DOI: 10.1126/science.aao2136] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/10/2017] [Indexed: 01/24/2023]
Abstract
Latin America has experienced two of the largest cholera epidemics in modern history; one in 1991 and the other in 2010. However, confusion still surrounds the relationships between globally circulating pandemic Vibrio cholerae clones and local bacterial populations. We used whole-genome sequencing to characterize cholera across the Americas over a 40-year time span. We found that both epidemics were the result of intercontinental introductions of seventh pandemic El Tor V. cholerae and that at least seven lineages local to the Americas are associated with disease that differs epidemiologically from epidemic cholera. Our results consolidate historical accounts of pandemic cholera with data to show the importance of local lineages, presenting an integrated view of cholera that is important to the design of future disease control strategies.
Collapse
Affiliation(s)
- Daryl Domman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Marie-Laure Quilici
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Paris, 75015, France
| | - Matthew J. Dorman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Elisabeth Njamkepo
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Paris, 75015, France
| | - Ankur Mutreja
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0SP, UK
| | - Alison E. Mather
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Gabriella Delgado
- Department of Microbiology and Parasitology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico, D.F., Mexico
| | - Rosario Morales-Espinosa
- Department of Microbiology and Parasitology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico, D.F., Mexico
| | - Patrick A. D. Grimont
- Institut Pasteur, Unité Biodiversité des Bactéries Pathogènes Emergentes, Paris, 75015, France
| | | | | | - David M. Aanensen
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Pablo Kuri-Morales
- Subsecretaría de Prevención y Promoción de la Salud, Secretaría de Salud, Ciudad de México, Mexico
| | - Cheryl L. Tarr
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0SP, UK
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Josefina Campos
- Instituto Nacional de Enfermedades Infecciosas, ANLIS, Buenos Aires, Argentina
| | - Alejandro Cravioto
- Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico, D.F., Mexico
| | - François-Xavier Weill
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Paris, 75015, France
| | - Nicholas R. Thomson
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
8
|
Pretzer C, Druzhinina IS, Amaro C, Benediktsdóttir E, Hedenström I, Hervio-Heath D, Huhulescu S, Schets FM, Farnleitner AH, Kirschner AKT. High genetic diversity of Vibrio cholerae in the European lake Neusiedler See is associated with intensive recombination in the reed habitat and the long-distance transfer of strains. Environ Microbiol 2017; 19:328-344. [PMID: 27871138 PMCID: PMC5718291 DOI: 10.1111/1462-2920.13612] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 10/27/2016] [Accepted: 11/10/2016] [Indexed: 11/29/2022]
Abstract
Coastal marine Vibrio cholerae populations usually exhibit high genetic diversity. To assess the genetic diversity of abundant V. cholerae non-O1/non-O139 populations in the Central European lake Neusiedler See, we performed a phylogenetic analysis based on recA, toxR, gyrB and pyrH loci sequenced for 472 strains. The strains were isolated from three ecologically different habitats in a lake that is a hot-spot of migrating birds and an important bathing water. We also analyzed 76 environmental and human V. cholerae non-O1/non-O139 isolates from Austria and other European countries and added sequences of seven genome-sequenced strains. Phylogenetic analysis showed that the lake supports a unique endemic diversity of V. cholerae that is particularly rich in the reed stand. Phylogenetic trees revealed that many V. cholerae isolates from European countries were genetically related to the strains present in the lake belonging to statistically supported monophyletic clades. We hypothesize that the observed phenomena can be explained by the high degree of genetic recombination that is particularly intensive in the reed stand, acting along with the long distance transfer of strains most probably via birds and/or humans. Thus, the Neusiedler See may serve as a bioreactor for the appearance of new strains with new (pathogenic) properties.
Collapse
Affiliation(s)
- Carina Pretzer
- Medical University Vienna, Institute for Hygiene and Applied Immunology, Vienna, Austria.,Vienna University of Technology, Institute of Chemical Engineering, Vienna, Austria
| | - Irina S Druzhinina
- Vienna University of Technology, Institute of Chemical Engineering, Vienna, Austria
| | - Carmen Amaro
- ERI BioTecMed University of Valencia, Valencia, Spain
| | - Eva Benediktsdóttir
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | | | | | | | - Franciska M Schets
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Andreas H Farnleitner
- Vienna University of Technology, Institute of Chemical Engineering, Vienna, Austria.,Interuniversity Cooperation Centre for Water & Health, (www.waterandhealth.at), Vienna, Austria
| | - Alexander K T Kirschner
- Medical University Vienna, Institute for Hygiene and Applied Immunology, Vienna, Austria.,Interuniversity Cooperation Centre for Water & Health, (www.waterandhealth.at), Vienna, Austria
| |
Collapse
|
9
|
Liang W, Wang L, Liang P, Zheng X, Zhou H, Zhang J, Zhang L, Kan B. Sequence polymorphisms of rfbT among the Vibrio cholerae O1 strains in the Ogawa and Inaba serotype shifts. BMC Microbiol 2013; 13:173. [PMID: 23889924 PMCID: PMC3727987 DOI: 10.1186/1471-2180-13-173] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 07/25/2013] [Indexed: 11/22/2022] Open
Abstract
Background Vibrio cholerae serogroup O1 has two major serotypes, Ogawa and Inaba, which may alternate among cholera epidemics. The rfbT gene is responsible for the conversion between the two serotypes. In this study, we surveyed the sequence variance of rfbT in the Ogawa and Inaba strains in China over a 48-year (1961-2008) period in which serotype shifts occurred among epidemic years. Results Various mutation events including single nucleotide, short fragment insertions/deletions and transposases insertions, were found in the rfbT gene of the Inaba strains. Ectopically introducing an intact rfbT could overcome the mutations by converting the Inaba serotype to the Ogawa serotype, suggesting the effects of these mutations on the function of RfbT. Characteristic rfbT mutations were recognized in the Inaba strains among Inaba serotype dominant epidemic years which were separate from the Ogawa dominant epidemics. Three distinguishable mutation sites in rfbT between the classical and the El Tor biotype strains were identified and could serve as biotype-specific biomarkers. Conclusions Our results provide a comprehensive picture of the rfbT gene mutations among the V. cholerae O1 strains in different epidemic periods, which could be further used as the tracing markers in clonality analysis and dissemination surveillance of the epidemic strains.
Collapse
Affiliation(s)
- Weili Liang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Umemura M, Koyama Y, Takeda I, Hagiwara H, Ikegami T, Koike H, Machida M. Fine de novo sequencing of a fungal genome using only SOLiD short read data: verification on Aspergillus oryzae RIB40. PLoS One 2013; 8:e63673. [PMID: 23667655 PMCID: PMC3646829 DOI: 10.1371/journal.pone.0063673] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 04/05/2013] [Indexed: 11/18/2022] Open
Abstract
The development of next-generation sequencing (NGS) technologies has dramatically increased the throughput, speed, and efficiency of genome sequencing. The short read data generated from NGS platforms, such as SOLiD and Illumina, are quite useful for mapping analysis. However, the SOLiD read data with lengths of <60 bp have been considered to be too short for de novo genome sequencing. Here, to investigate whether de novo sequencing of fungal genomes is possible using only SOLiD short read sequence data, we performed de novo assembly of the Aspergillus oryzae RIB40 genome using only SOLiD read data of 50 bp generated from mate-paired libraries with 2.8- or 1.9-kb insert sizes. The assembled scaffolds showed an N50 value of 1.6 Mb, a 22-fold increase than those obtained using only SOLiD short read in other published reports. In addition, almost 99% of the reference genome was accurately aligned by the assembled scaffold fragments in long lengths. The sequences of secondary metabolite biosynthetic genes and clusters, whose products are of considerable interest in fungal studies due to their potential medicinal, agricultural, and cosmetic properties, were also highly reconstructed in the assembled scaffolds. Based on these findings, we concluded that de novo genome sequencing using only SOLiD short reads is feasible and practical for molecular biological study of fungi. We also investigated the effect of filtering low quality data, library insert size, and k-mer size on the assembly performance, and recommend for the assembly use of mild filtered read data where the N50 was not so degraded and the library has an insert size of ∼2.0 kb, and k-mer size 33.
Collapse
Affiliation(s)
- Myco Umemura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | - Yoshinori Koyama
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Itaru Takeda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Hiroko Hagiwara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Tsutomu Ikegami
- Information Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Hideaki Koike
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Masayuki Machida
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| |
Collapse
|
11
|
Seth-Smith HMB, Harris SR, Skilton RJ, Radebe FM, Golparian D, Shipitsyna E, Duy PT, Scott P, Cutcliffe LT, O'Neill C, Parmar S, Pitt R, Baker S, Ison CA, Marsh P, Jalal H, Lewis DA, Unemo M, Clarke IN, Parkhill J, Thomson NR. Whole-genome sequences of Chlamydia trachomatis directly from clinical samples without culture. Genome Res 2013; 23:855-66. [PMID: 23525359 PMCID: PMC3638141 DOI: 10.1101/gr.150037.112] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The use of whole-genome sequencing as a tool for the study of infectious bacteria is of growing clinical interest. Chlamydia trachomatis is responsible for sexually transmitted infections and the blinding disease trachoma, which affect hundreds of millions of people worldwide. Recombination is widespread within the genome of C. trachomatis, thus whole-genome sequencing is necessary to understand the evolution, diversity, and epidemiology of this pathogen. Culture of C. trachomatis has, until now, been a prerequisite to obtain DNA for whole-genome sequencing; however, as C. trachomatis is an obligate intracellular pathogen, this procedure is technically demanding and time consuming. Discarded clinical samples represent a large resource for sequencing the genomes of pathogens, yet clinical swabs frequently contain very low levels of C. trachomatis DNA and large amounts of contaminating microbial and human DNA. To determine whether it is possible to obtain whole-genome sequences from bacteria without the need for culture, we have devised an approach that combines immunomagnetic separation (IMS) for targeted bacterial enrichment with multiple displacement amplification (MDA) for whole-genome amplification. Using IMS-MDA in conjunction with high-throughput multiplexed Illumina sequencing, we have produced the first whole bacterial genome sequences direct from clinical samples. We also show that this method can be used to generate genome data from nonviable archived samples. This method will prove a useful tool in answering questions relating to the biology of many difficult-to-culture or fastidious bacteria of clinical concern.
Collapse
Affiliation(s)
- Helena M B Seth-Smith
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
De Bari H, Berry EA. Structure of Vibrio cholerae ribosome hibernation promoting factor. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:228-36. [PMID: 23519794 PMCID: PMC3606564 DOI: 10.1107/s1744309113000961] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/10/2013] [Indexed: 11/10/2022]
Abstract
The X-ray crystal structure of ribosome hibernation promoting factor (HPF) from Vibrio cholerae is presented at 2.0 Å resolution. The crystal was phased by two-wavelength MAD using cocrystallized cobalt. The asymmetric unit contained two molecules of HPF linked by four Co atoms. The metal-binding sites observed in the crystal are probably not related to biological function. The structure of HPF has a typical β-α-β-β-β-α fold consistent with previous structures of YfiA and HPF from Escherichia coli. Comparison of the new structure with that of HPF from E. coli bound to the Thermus thermophilus ribosome [Polikanov et al. (2012), Science, 336, 915-918] shows that no significant structural changes are induced in HPF by binding.
Collapse
Affiliation(s)
- Heather De Bari
- Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Avenue, Syracuse, NY 13210, USA
| | | |
Collapse
|