1
|
Chen G, Rosolina S, Padilla-Crespo E, He G, Chen Q, Arosemena A, Rosado-Maldonado BE, Swift CM, Coelho PB, Whelton AJ, Taggart D, Löffler FE. Natural Attenuation Potential of Vinyl Chloride and Butyl Acrylate Released in the East Palestine, Ohio Train Derailment Accident. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17743-17755. [PMID: 39344962 DOI: 10.1021/acs.est.4c04198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The East Palestine, Ohio train derailment released toxic vinyl chloride (VC) and butyl acrylate (BA), which entered the watershed. Streambed sediment, surface water, and private well water samples were collected 128 and 276 days postaccident to assess the natural attenuation potential of VC and BA by quantifying biodegradation biomarker genes and conducting microcosm treatability studies. qPCR detected the aerobic VC degradation biomarkers etnC in ∼40% and etnE in ∼27% of sediments collected in both sampling campaigns in abundances reaching 105 gene copies g-1. The 16S rRNA genes of organohalide-respiring Dehalococcoides and Dehalogenimonas were, respectively, detected in 50 and 64% of sediment samples collected 128 days postaccident and in 63 and 88% of sediment samples collected 276 days postaccident, in abundances reaching 107 cells g-1. Elevated detection frequencies of VC degradation biomarker genes were measured immediately downstream of the accident site (i.e., Sulphur Run). Aerobic VC degradation occurred in all sediment microcosms and coincided with increases of etnC/etnE genes and Mycobacterium, a genus comprising aerobic VC degraders. The conversion of VC to ethene and an increased abundance of VC reductive dechlorination biomarker genes were observed in microcosms established with sediments collected from Sulphur Run. All anoxic microcosms rapidly degraded BA to innocuous products with intermediate formation of n-butanol and acrylate. The results indicate that microbiomes in the East Palestine watershed have natural attenuation capacity for VC and BA. Recommendations are made to improve first-response actions in future contaminant release accidents of this magnitude.
Collapse
Affiliation(s)
- Gao Chen
- Department of Civil and Environmental Engineering, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Sam Rosolina
- Microbial Insights, Incorporated, 10515 Research Drive, Knoxville, Tennessee 37932, United States
| | - Elizabeth Padilla-Crespo
- Science and Technology Department, Inter American University of Puerto Rico, Aguadilla 00605, Puerto Rico
| | - Guang He
- Department of Civil and Environmental Engineering, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Qiao Chen
- Department of Civil and Environmental Engineering, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Ana Arosemena
- Science and Technology Department, Inter American University of Puerto Rico, Aguadilla 00605, Puerto Rico
| | - Bryan E Rosado-Maldonado
- Science and Technology Department, Inter American University of Puerto Rico-Metropolitan Campus, San Juan 00926, Puerto Rico
| | - Cynthia M Swift
- Department of Civil and Environmental Engineering, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Paula Belmont Coelho
- Division of Environmental and Ecological Engineering, College of Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Andrew J Whelton
- Division of Environmental and Ecological Engineering, College of Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dora Taggart
- Microbial Insights, Incorporated, 10515 Research Drive, Knoxville, Tennessee 37932, United States
| | - Frank E Löffler
- Department of Civil and Environmental Engineering, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
- Department of Microbiology, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
- Department of Biosystems Engineering and Soil Science, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| |
Collapse
|
2
|
May AL, Xie Y, Kara Murdoch F, Michalsen MM, Löffler FE, Campagna SR. Metabolome patterns identify active dechlorination in bioaugmentation consortium SDC-9™. Front Microbiol 2022; 13:981994. [PMID: 36386687 PMCID: PMC9641191 DOI: 10.3389/fmicb.2022.981994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/22/2022] [Indexed: 12/01/2023] Open
Abstract
Ultra-high performance liquid chromatography-high-resolution mass spectrometry (UPHLC-HRMS) is used to discover and monitor single or sets of biomarkers informing about metabolic processes of interest. The technique can detect 1000's of molecules (i.e., metabolites) in a single instrument run and provide a measurement of the global metabolome, which could be a fingerprint of activity. Despite the power of this approach, technical challenges have hindered the effective use of metabolomics to interrogate microbial communities implicated in the removal of priority contaminants. Herein, our efforts to circumvent these challenges and apply this emerging systems biology technique to microbiomes relevant for contaminant biodegradation will be discussed. Chlorinated ethenes impact many contaminated sites, and detoxification can be achieved by organohalide-respiring bacteria, a process currently assessed by quantitative gene-centric tools (e.g., quantitative PCR). This laboratory study monitored the metabolome of the SDC-9™ bioaugmentation consortium during cis-1,2-dichloroethene (cDCE) conversion to vinyl chloride (VC) and nontoxic ethene. Untargeted metabolomics using an UHPLC-Orbitrap mass spectrometer and performed on SDC-9™ cultures at different stages of the reductive dechlorination process detected ~10,000 spectral features per sample arising from water-soluble molecules with both known and unknown structures. Multivariate statistical techniques including partial least squares-discriminate analysis (PLSDA) identified patterns of measurable spectral features (peak patterns) that correlated with dechlorination (in)activity, and ANOVA analyses identified 18 potential biomarkers for this process. Statistical clustering of samples with these 18 features identified dechlorination activity more reliably than clustering of samples based only on chlorinated ethene concentration and Dhc 16S rRNA gene abundance data, highlighting the potential value of metabolomic workflows as an innovative site assessment and bioremediation monitoring tool.
Collapse
Affiliation(s)
- Amanda L. May
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - Yongchao Xie
- Department of Civil and Environmental Engineering, Tickle College of Engineering, University of Tennessee, Knoxville, TN, United States
| | - Fadime Kara Murdoch
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - Mandy M. Michalsen
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, United States
| | - Frank E. Löffler
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
- Department of Civil and Environmental Engineering, Tickle College of Engineering, University of Tennessee, Knoxville, TN, United States
- Department of Microbiology, College of Arts and Sciences, The University of Tennessee, Knoxville, TN, United States
- Department of Biosystems Engineering and Soil Science, Herbert College of Agriculture, The University of Tennessee, Knoxville, TN, United States
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
| | - Shawn R. Campagna
- Department of Chemistry, College of Arts and Sciences, The University of Tennessee, Knoxville, TN, United States
- Biological and Small Molecule Mass Spectrometry Core, College of Arts and Sciences, The University of Tennessee, Knoxville, TN, United States
- University of Tennessee-Oak Ridge Innovation Institute, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
3
|
Di Franca ML, Matturro B, Crognale S, Zeppilli M, Dell’Armi E, Majone M, Petrangeli Papini M, Rossetti S. Microbiome Composition and Dynamics of a Reductive/Oxidative Bioelectrochemical System for Perchloroethylene Removal: Effect of the Feeding Composition. Front Microbiol 2022; 13:951911. [PMID: 35923400 PMCID: PMC9340161 DOI: 10.3389/fmicb.2022.951911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Chlorinated solvents still represent an environmental concern that requires sustainable and innovative bioremediation strategies. This study describes the microbiome composition of a novel bioelectrochemical system (BES) based on sequential reductive/oxidative dechlorination for complete perchloroethylene (PCE) removal occurring in two separate but sequential chambers. The BES has been tested under various feeding compositions [i.e., anaerobic mineral medium (MM), synthetic groundwater (SG), and real groundwater (RG)] differing in presence of sulfate, nitrate, and iron (III). In addition, the main biomarkers of the dechlorination process have been monitored in the system under various conditions. Among them, Dehalococcoides mccartyi 16S rRNA and reductive dehalogenase genes (tceA, bvcA, and vcrA) involved in anaerobic dechlorination have been quantified. The etnE and etnC genes involved in aerobic dechlorination have also been quantified. The feeding composition affected the microbiome, in particular when the BES was fed with RG. Sulfuricurvum, enriched in the reductive compartment, operated with MM and SG, suggesting complex interactions in the sulfur cycle mostly including sulfur oxidation occurring at the anodic counter electrode (MM) or coupled to nitrate reduction (SG). Moreover, the known Mycobacterium responsible for natural attenuation of VC by aerobic degradation was found abundant in the oxidative compartment fed with RG, which was in line with the high VC removal observed (92 ± 2%). D. mccartyi was observed in all the tested conditions ranging from 8.78E + 06 (with RG) to 2.35E + 07 (with MM) 16S rRNA gene copies/L. tceA was found as the most abundant reductive dehalogenase gene in all the conditions explored (up to 2.46 E + 07 gene copies/L in MM). The microbiome dynamics and the occurrence of biomarkers of dechlorination, along with the kinetic performance of the system under various feeding conditions, suggested promising implications for the scale-up of the BES, which couples reductive with oxidative dechlorination to ensure the complete removal of highly chlorinated ethylene and mobile low-chlorinated by-products.
Collapse
Affiliation(s)
- Maria L. Di Franca
- Water Research Institute-National Research Council (IRSA-CNR), Rome, Italy
| | - Bruna Matturro
- Water Research Institute-National Research Council (IRSA-CNR), Rome, Italy
| | - Simona Crognale
- Water Research Institute-National Research Council (IRSA-CNR), Rome, Italy
| | - Marco Zeppilli
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | | - Mauro Majone
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | | - Simona Rossetti
- Water Research Institute-National Research Council (IRSA-CNR), Rome, Italy
| |
Collapse
|
4
|
Dehalogenation of Chlorinated Ethenes to Ethene by a Novel Isolate, " Candidatus Dehalogenimonas etheniformans". Appl Environ Microbiol 2022; 88:e0044322. [PMID: 35674428 DOI: 10.1128/aem.00443-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dehalococcoides mccartyi strains harboring vinyl chloride (VC) reductive dehalogenase (RDase) genes are keystone bacteria for VC detoxification in groundwater aquifers, and bioremediation monitoring regimens focus on D. mccartyi biomarkers. We isolated a novel anaerobic bacterium, "Candidatus Dehalogenimonas etheniformans" strain GP, capable of respiratory dechlorination of VC to ethene. This bacterium couples formate and hydrogen (H2) oxidation to the reduction of trichloro-ethene (TCE), all dichloroethene (DCE) isomers, and VC with acetate as the carbon source. Cultures that received formate and H2 consumed the two electron donors concomitantly at similar rates. A 16S rRNA gene-targeted quantitative PCR (qPCR) assay measured growth yields of (1.2 ± 0.2) × 108 and (1.9 ± 0.2) × 108 cells per μmol of VC dechlorinated in cultures with H2 or formate as electron donor, respectively. About 1.5-fold higher cell numbers were measured with qPCR targeting cerA, a single-copy gene encoding a putative VC RDase. A VC dechlorination rate of 215 ± 40 μmol L-1 day-1 was measured at 30°C, with about 25% of this activity occurring at 15°C. Increasing NaCl concentrations progressively impacted VC dechlorination rates, and dechlorination ceased at 15 g NaCl L-1. During growth with TCE, all DCE isomers were intermediates. Tetrachloroethene was not dechlorinated and inhibited dechlorination of other chlorinated ethenes. Carbon monoxide formed and accumulated as a metabolic by-product in dechlorinating cultures and impacted reductive dechlorination activity. The isolation of a new Dehalogenimonas species able to effectively dechlorinate toxic chlorinated ethenes to benign ethene expands our understanding of the reductive dechlorination process, with implications for bioremediation and environmental monitoring. IMPORTANCE Chlorinated ethenes are risk drivers at many contaminated sites, and current bioremediation efforts focus on organohalide-respiring Dehalococcoides mccartyi strains to achieve detoxification. We isolated and characterized the first non-Dehalococcoides bacterium, "Candidatus Dehalogenimonas etheniformans" strain GP, capable of metabolic reductive dechlorination of TCE, all DCE isomers, and VC to environmentally benign ethene. In addition to hydrogen, the new isolate utilizes formate as electron donor for reductive dechlorination, providing opportunities for more effective electron donor delivery to the contaminated subsurface. The discovery that a broader microbial diversity can achieve detoxification of toxic chlorinated ethenes in anoxic aquifers illustrates the potential of naturally occurring microbes for biotechnological applications.
Collapse
|
5
|
Murdoch RW, Chen G, Kara Murdoch F, Mack EE, Villalobos Solis MI, Hettich RL, Löffler FE. Identification and widespread environmental distribution of a gene cassette implicated in anaerobic dichloromethane degradation. GLOBAL CHANGE BIOLOGY 2022; 28:2396-2412. [PMID: 34967079 DOI: 10.1111/gcb.16068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Anthropogenic activities and natural processes release dichloromethane (DCM, methylene chloride), a toxic chemical with substantial ozone-depleting capacity. Specialized anaerobic bacteria metabolize DCM; however, the genetic basis for this process has remained elusive. Comparative genomics of the three known anaerobic DCM-degrading bacterial species revealed a homologous gene cluster, designated the methylene chloride catabolism (mec) gene cassette, comprising 8-10 genes encoding proteins with 79.6%-99.7% amino acid identities. Functional annotation identified genes encoding a corrinoid-dependent methyltransferase system, and shotgun proteomics applied to two DCM-catabolizing cultures revealed high expression of proteins encoded on the mec gene cluster during anaerobic growth with DCM. In a DCM-contaminated groundwater plume, the abundance of mec genes strongly correlated with DCM concentrations (R2 = 0.71-0.85) indicating their potential value as process-specific bioremediation biomarkers. mec gene clusters were identified in metagenomes representing peat bogs, the deep subsurface, and marine ecosystems including oxygen minimum zones (OMZs), suggesting a capacity for DCM degradation in diverse habitats. The broad distribution of anaerobic DCM catabolic potential infers a role for DCM as an energy source in various environmental systems, and implies that the global DCM flux (i.e., the rate of formation minus the rate of consumption) might be greater than emission measurements suggest.
Collapse
Affiliation(s)
- Robert W Murdoch
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA
| | - Gao Chen
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Fadime Kara Murdoch
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - E Erin Mack
- Corteva Environmental Remediation, Corteva Agriscience, Wilmington, Delaware, USA
| | | | - Robert L Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Frank E Löffler
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
6
|
Waseem H, Ali J, Syed JH, Jones KC. Establishing the relationship between molecular biomarkers and biotransformation rates: Extension of knowledge for dechlorination of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114676. [PMID: 33618452 DOI: 10.1016/j.envpol.2020.114676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 06/12/2023]
Abstract
Anaerobic reductive treatment technologies offer cost-effective and large-scale treatment of chlorinated compounds, including polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs). The information about the degradation rates of these compounds in natural settings is critical but difficult to obtain because of slow degradation processes. Establishing a relationship between biotransformation rate and abundance of biomarkers is one of the most critical challenges faced by the bioremediation industry. When solved for a given contaminant, it may result in significant cost savings because of serving as a basis for action. In the current review, we have summarized the studies highlighting the use of biomarkers, particularly DNA and RNA, as a proxy for reductive dechlorination of chlorinated ethenes. As the use of biomarkers for predicting biotransformation rates has not yet been executed for PCDD/Fs, we propose the extension of the same knowledge for dioxins, where slow degradation rates further necessitate the need for developing the biomarker-rate relationship. For this, we have first retrieved and calculated the bioremediation rates of different PCDD/Fs and then highlighted the key sequences that can be used as potential biomarkers. We have also discussed the implications and hurdles in developing such a relationship. Improvements in current techniques and collaboration with some other fields, such as biokinetic modeling, can improve the predictive capability of the biomarkers so that they can be used for effectively predicting biotransformation rates of dioxins and related compounds. In the future, a valid and established relationship between biomarkers and biotransformation rates of dioxin may result in significant cost savings, whilst also serving as a basis for action.
Collapse
Affiliation(s)
- Hassan Waseem
- Department of Civil & Environmental Engineering, Michigan State University, East Lansing, MI, 48823, USA; Department of Biotechnology, University of Sialkot, Sialkot, Punjab 51310, Pakistan
| | - Jafar Ali
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
| | - Jabir Hussain Syed
- Department of Meteorology, COMSATS University, Tarlai Kalan Park Road, Islamabad, 45550, Pakistan.
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
7
|
Dang H, Kanitkar YH, Stedtfeld RD, Hatzinger PB, Hashsham SA, Cupples AM. Abundance of Chlorinated Solvent and 1,4-Dioxane Degrading Microorganisms at Five Chlorinated Solvent Contaminated Sites Determined via Shotgun Sequencing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13914-13924. [PMID: 30427665 DOI: 10.1021/acs.est.8b04895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Shotgun sequencing was used for the quantification of taxonomic and functional biomarkers associated with chlorinated solvent bioremediation in 20 groundwater samples (five sites), following bioaugmentation with SDC-9. The analysis determined the abundance of (1) genera associated with chlorinated solvent degradation, (2) reductive dehalogenase (RDases) genes, (3) genes associated with 1,4-dioxane removal, (4) genes associated with aerobic chlorinated solvent degradation, and (5) D. mccartyi genes associated with hydrogen and corrinoid metabolism. The taxonomic analysis revealed numerous genera previously linked to chlorinated solvent degradation, including Dehalococcoides, Desulfitobacterium, and Dehalogenimonas. The functional gene analysis indicated vcrA and tceA from D. mccartyi were the RDases with the highest relative abundance. Reads aligning with both aerobic and anaerobic biomarkers were observed across all sites. Aerobic solvent degradation genes, etnC or etnE, were detected in at least one sample from each site, as were pmoA and mmoX. The most abundant 1,4-dioxane biomarker detected was Methylosinus trichosporium OB3b mmoX. Reads aligning to thmA or Pseudonocardia were not found. The work illustrates the importance of shotgun sequencing to provide a more complete picture of the functional abilities of microbial communities. The approach is advantageous over current methods because an unlimited number of functional genes can be quantified.
Collapse
Affiliation(s)
- Hongyu Dang
- Department of Civil and Environmental Engineering , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Yogendra H Kanitkar
- Department of Civil and Environmental Engineering , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Robert D Stedtfeld
- Department of Civil and Environmental Engineering , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Paul B Hatzinger
- APTIM , 17 Princess Road , Lawrenceville , New Jersey 08648 , United States
| | - Syed A Hashsham
- Department of Civil and Environmental Engineering , Michigan State University , East Lansing , Michigan 48824 , United States
- Center for Microbial Ecology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Alison M Cupples
- Department of Civil and Environmental Engineering , Michigan State University , East Lansing , Michigan 48824 , United States
| |
Collapse
|
8
|
Clark K, Taggart DM, Baldwin BR, Ritalahti KM, Murdoch RW, Hatt JK, Löffler FE. Normalized Quantitative PCR Measurements as Predictors for Ethene Formation at Sites Impacted with Chlorinated Ethenes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13410-13420. [PMID: 30365883 PMCID: PMC6945293 DOI: 10.1021/acs.est.8b04373] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Quantitative PCR (qPCR) targeting Dehalococcoides mccartyi ( Dhc) biomarker genes supports effective management at sites impacted with chlorinated ethenes. To establish correlations between Dhc biomarker gene abundances and ethene formation (i.e., detoxification), 859 groundwater samples representing 62 sites undergoing monitored natural attenuation or enhanced remediation were analyzed. Dhc 16S rRNA genes and the vinyl chloride (VC) reductive dehalogenase genes bvcA and vcrA were detected in 88% and 61% of samples, respectively, from wells with ethene. Dhc 16S rRNA, bvcA, vcrA, and tceA (implicated in cometabolic reductive VC dechlorination) gene abundances all positively correlated with ethene formation. Significantly greater ethene concentrations were observed when Dhc 16S rRNA gene and VC RDase gene abundances exceeded 107 and 106 copies L-1, respectively, and when Dhc 16S rRNA- and bvcA + vcrA-to-total bacterial 16S rRNA gene ratios exceeded 0.1%. Dhc 16S rRNA gene-to- vcrA/ bvcA ratios near unity also indicated elevated ethene; however, no increased ethene was observed in 19 wells where vcrA and/or bvcA gene copy numbers exceeded Dhc cell numbers 10- to 10 000-fold. Approximately one-third of samples with detectable ethene lacked bvcA, vcrA, and tceA, suggesting that comprehensive understanding of VC detoxification biomarkers has not been achieved. Although the current biomarker suite is incomplete, the data analysis corroborates the value of the available Dhc DNA biomarkers for prognostic and diagnostic groundwater monitoring at sites impacted with chlorinated ethenes.
Collapse
Affiliation(s)
- Katherine Clark
- Microbial Insights, Incorporated, 10515 Research Drive, Knoxville, Tennessee 37932, United States
| | - Dora M. Taggart
- Microbial Insights, Incorporated, 10515 Research Drive, Knoxville, Tennessee 37932, United States
| | - Brett R. Baldwin
- Microbial Insights, Incorporated, 10515 Research Drive, Knoxville, Tennessee 37932, United States
| | - Kirsti M. Ritalahti
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Robert W. Murdoch
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Janet K. Hatt
- School of Civil and Environmental Engineering, Atlanta, Georgia 30332-0512
| | - Frank E. Löffler
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division and Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge Tennessee 37831, United States
| |
Collapse
|
9
|
Pérez-de-Mora A, Lacourt A, McMaster ML, Liang X, Dworatzek SM, Edwards EA. Chlorinated Electron Acceptor Abundance Drives Selection of Dehalococcoides mccartyi ( D. mccartyi) Strains in Dechlorinating Enrichment Cultures and Groundwater Environments. Front Microbiol 2018; 9:812. [PMID: 29867784 PMCID: PMC5968391 DOI: 10.3389/fmicb.2018.00812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/10/2018] [Indexed: 01/23/2023] Open
Abstract
Dehalococcoides mccartyi (D. mccartyi) strains differ primarily from one another by the number and identity of the reductive dehalogenase homologous catalytic subunit A (rdhA) genes within their respective genomes. While multiple rdhA genes have been sequenced, the activity of the corresponding proteins has been identified in only a few cases. Examples include the enzymes whose substrates are groundwater contaminants such as trichloroethene (TCE), cis-dichloroethene (cDCE) and vinyl chloride (VC). The associated rdhA genes, namely tceA, bvcA, and vcrA, along with the D. mccartyi 16S rRNA gene are often used as biomarkers of growth in field samples. In this study, we monitored an additional 12 uncharacterized rdhA sequences identified in the metagenome in the mixed D. mccartyi-containing culture KB-1 to monitor population shifts in more detail. Quantitative PCR (qPCR) assays were developed for 15 D. mccartyi rdhA genes and used to measure population diversity in 11 different sub-cultures of KB-1, each enriched on different chlorinated ethenes and ethanes. The proportion of rdhA gene copies relative to D. mccartyi 16S rRNA gene copies revealed the presence of multiple distinct D. mccartyi strains in each culture, many more than the two strains inferred from 16S rRNA analysis. The specific electron acceptor amended to each culture had a major influence on the distribution of D. mccartyi strains and their associated rdhA genes. We also surveyed the abundance of rdhA genes in samples from two bioaugmented field sites (Canada and United Kingdom). Growth of the dominant D. mccartyi strain in KB-1 was detected at the United Kingdom site. At both field sites, the measurement of relative rdhA abundances revealed D. mccartyi population shifts over time as dechlorination progressed from TCE through cDCE to VC and ethene. These shifts indicate a selective pressure of the most abundant chlorinated electron acceptor, as was also observed in lab cultures. These results also suggest that reductive dechlorination at contaminated sites is brought about by multiple strains of D. mccartyi whether or not the site is bioaugmented. Understanding the driving forces behind D. mccartyi population selection and activity is improving predictability of remediation performance at chlorinated solvent contaminated sites.
Collapse
Affiliation(s)
- Alfredo Pérez-de-Mora
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, Canada.,Research Unit Analytical Biogeochemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anna Lacourt
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | | | - Xiaoming Liang
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | | | - Elizabeth A Edwards
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Nobre RCM, Nobre MMM, Campos TMP, Ogles D. In-situ biodegradation potential of 1,2-DCA and VC at sites with different hydrogeological settings. JOURNAL OF HAZARDOUS MATERIALS 2017; 340:417-426. [PMID: 28743073 DOI: 10.1016/j.jhazmat.2017.07.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
This paper investigates the feasibility of applying in-situ Bioremediation (ISB) to three sites contaminated with vinyl chloride and/or chlorinated alkanes such as 1,2-DCA and 1,1,2-TCA, presenting distinct hydrogeological settings and history of contaminant loading. Biotransformation of these compounds is well established in laboratory studies and pure cultures. Due to confidential aspects, however, few field data are available to support real case studies to the predictability of their fate and lifetime in soil and groundwater. Bio-Trap® In Situ Microcosm (ISM) studies were performed in selected monitoring wells, and consisted of a control unit which simulated Monitored Natural Attenuation conditions and other units which were amended with either lactate, emulsified vegetable oil (EVO) or molasses as electron donors. For wells with moderate Dhc counts, the ISM study demonstrated that electron donor addition could stimulate further growth of Dhc and enhance reductive dechlorination. Conversely, for wells with high population counts, substrate addition did not alter results significantly. Site-specific determining factors that most influenced the biodegradation results were microbial activity, soil texture and presence of organic matter, site pH, redox conditions and presence of free phase.
Collapse
Affiliation(s)
- R C M Nobre
- Universidade Federal de Alagoas, IGDEMA/UFAL, BR-104, Maceio, AL, Brazil.
| | - M M M Nobre
- Universidade Federal de Alagoas, IGDEMA/UFAL, BR-104, Maceio, AL, Brazil.
| | - T M P Campos
- Pontifícia Universidade Católica do Rio de Janeiro, PUC-Rio, Brazil.
| | - D Ogles
- Microbial Insights, Knoxville, TN, USA.
| |
Collapse
|
11
|
Kanitkar YH, Stedtfeld RD, Hatzinger PB, Hashsham SA, Cupples AM. Development and application of a rapid, user-friendly, and inexpensive method to detect Dehalococcoides sp. reductive dehalogenase genes from groundwater. Appl Microbiol Biotechnol 2017; 101:4827-4835. [PMID: 28238079 DOI: 10.1007/s00253-017-8203-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 10/20/2022]
Abstract
TaqMan probe-based quantitative polymerase chain reaction (qPCR) specific to the biomarker reductive dehalogenase (RDase) genes is a widely accepted molecular biological tool (MBT) for determining the abundance of Dehalococcoides sp. in groundwater samples from chlorinated solvent-contaminated sites. However, there are significant costs associated with this MBT. In this study, we describe an approach that requires only low-cost laboratory equipment (a bench top centrifuge and a water bath) and requires less time and resources compared to qPCR. The method involves the concentration of biomass from groundwater, without DNA extraction, and loop-mediated isothermal amplification (LAMP) of the cell templates. The amplification products are detected by a simple visual color change (orange/green). The detection limits of the assay were determined using groundwater from a contaminated site. In addition, the assay was tested with groundwater from three additional contaminated sites. The final approach to detect RDase genes, without DNA extraction or a thermal cycler, was successful to 1.8 × 105 gene copies per L for vcrA and 1.3 × 105 gene copies per L for tceA. Both values are below the threshold recommended for effective in situ dechlorination.
Collapse
Affiliation(s)
- Yogendra H Kanitkar
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA
| | - Robert D Stedtfeld
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA
| | - Paul B Hatzinger
- CB&I Federal Services, 17 Princess Road, Lawrenceville, NJ, 08648, USA
| | - Syed A Hashsham
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA.,Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA.
| |
Collapse
|
12
|
Wilson FP, Liu X, Mattes TE, Cupples AM. Nocardioides, Sediminibacterium, Aquabacterium, Variovorax, and Pseudomonas linked to carbon uptake during aerobic vinyl chloride biodegradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:19062-19070. [PMID: 27343076 DOI: 10.1007/s11356-016-7099-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
Vinyl chloride (VC) is a frequent groundwater contaminant and a known human carcinogen. Bioremediation is a potential cleanup strategy for contaminated sites; however, little is known about the bacteria responsible for aerobic VC degradation in mixed microbial communities. In attempts to address this knowledge gap, the microorganisms able to assimilate labeled carbon ((13)C) from VC within a mixed culture capable of rapid VC degradation (120 μmol in 7 days) were identified using stable isotope probing (SIP). For this, at two time points during VC degradation (days 3 and 7), DNA was extracted from replicate cultures initially supplied with labeled or unlabeled VC. The extracted DNA was ultracentrifuged, fractioned, and the fractions of greater buoyant density (heavy fractions, 1.758 to 1.780 g mL(-1)) were subject to high-throughput sequencing. Following this, specific primers were designed for the most abundant phylotypes in the heavy fractions. Then, quantitative PCR (qPCR) was used across the buoyant density gradient to confirm label uptake by these phylotypes. From qPCR and/or sequencing data, five phylotypes were found to be dominant in the heavy fractions, including Nocardioides (∼40 %), Sediminibacterium (∼25 %), Aquabacterium (∼17 %), Variovorax (∼6 %), and Pseudomonas (∼1 %). The abundance of two functional genes (etnC and etnE) associated with VC degradation was also investigated in the SIP fractions. Peak shifts of etnC and etnE gene abundance toward heavier fractions were observed, indicating uptake of (13)C into the microorganisms harboring these genes. Analysis of the total microbial community indicated a significant dominance of Nocardioides over the other label-enriched phylotypes. Overall, the data indicate Nocardioides is primarily responsible for VC degradation in this mixed culture, with the other putative VC degraders generating a small growth benefit from VC degradation. The specific primers designed toward the putative VC degraders may be of use for investigating VC degradation potential at contaminated sites.
Collapse
Affiliation(s)
- Fernanda Paes Wilson
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, 48824, MI, USA
| | - Xikun Liu
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, 52242, IA, USA
| | - Timothy E Mattes
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, 52242, IA, USA
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, 48824, MI, USA.
| |
Collapse
|
13
|
Jugder BE, Ertan H, Bohl S, Lee M, Marquis CP, Manefield M. Organohalide Respiring Bacteria and Reductive Dehalogenases: Key Tools in Organohalide Bioremediation. Front Microbiol 2016; 7:249. [PMID: 26973626 PMCID: PMC4771760 DOI: 10.3389/fmicb.2016.00249] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/15/2016] [Indexed: 01/31/2023] Open
Abstract
Organohalides are recalcitrant pollutants that have been responsible for substantial contamination of soils and groundwater. Organohalide-respiring bacteria (ORB) provide a potential solution to remediate contaminated sites, through their ability to use organohalides as terminal electron acceptors to yield energy for growth (i.e., organohalide respiration). Ideally, this process results in non- or lesser-halogenated compounds that are mostly less toxic to the environment or more easily degraded. At the heart of these processes are reductive dehalogenases (RDases), which are membrane bound enzymes coupled with other components that facilitate dehalogenation of organohalides to generate cellular energy. This review focuses on RDases, concentrating on those which have been purified (partially or wholly) and functionally characterized. Further, the paper reviews the major bacteria involved in organohalide breakdown and the evidence for microbial evolution of RDases. Finally, the capacity for using ORB in a bioremediation and bioaugmentation capacity are discussed.
Collapse
Affiliation(s)
- Bat-Erdene Jugder
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, NSW, Australia
| | - Haluk Ertan
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia; Department of Molecular Biology and Genetics, Istanbul UniversityIstanbul, Turkey
| | - Susanne Bohl
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia; Department of Biotechnology, Mannheim University of Applied SciencesMannheim, Germany
| | - Matthew Lee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, NSW, Australia
| | - Christopher P Marquis
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, NSW, Australia
| | - Michael Manefield
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
14
|
Kanitkar YH, Stedtfeld RD, Steffan RJ, Hashsham SA, Cupples AM. Loop-Mediated Isothermal Amplification (LAMP) for Rapid Detection and Quantification of Dehalococcoides Biomarker Genes in Commercial Reductive Dechlorinating Cultures KB-1 and SDC-9. Appl Environ Microbiol 2016; 82:1799-1806. [PMID: 26746711 PMCID: PMC4784023 DOI: 10.1128/aem.03660-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/27/2015] [Indexed: 12/23/2022] Open
Abstract
Real-time quantitative PCR (qPCR) protocols specific to the reductive dehalogenase (RDase) genes vcrA, bvcA, and tceA are commonly used to quantify Dehalococcoides spp. in groundwater from chlorinated solvent-contaminated sites. In this study, loop-mediated isothermal amplification (LAMP) was developed as an alternative approach for the quantification of these genes. LAMP does not require a real-time thermal cycler (i.e., amplification is isothermal), allowing the method to be performed using less-expensive and potentially field-deployable detection devices. Six LAMP primers were designed for each of three RDase genes (vcrA, bvcA, and tceA) using Primer Explorer V4. The LAMP assays were compared to conventional qPCR approaches using plasmid standards, two commercially available bioaugmentation cultures, KB-1 and SDC-9 (both contain Dehalococcoides species). DNA was extracted over a growth cycle from KB-1 and SDC-9 cultures amended with trichloroethene and vinyl chloride, respectively. All three genes were quantified for KB-1, whereas only vcrA was quantified for SDC-9. A comparison of LAMP and qPCR using standard plasmids indicated that quantification results were similar over a large range of gene concentrations. In addition, the quantitative increase in gene concentrations over one growth cycle of KB-1 and SDC-9 using LAMP was comparable to that of qPCR. The developed LAMP assays for vcrA and tceA genes were validated by comparing quantification on the Gene-Z handheld platform and a real-time thermal cycler using DNA isolated from eight groundwater samples obtained from an SDC-9-bioaugmented site (Tulsa, OK). These assays will be particularly useful at sites subject to bioaugmentation with these two commonly used Dehalococcoides species-containing cultures.
Collapse
Affiliation(s)
- Yogendra H Kanitkar
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Robert D Stedtfeld
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Robert J Steffan
- Biotechnology Development and Applications Group, CB&I Federal Services, LLC, Lawrenceville, New Jersey, USA
| | - Syed A Hashsham
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, USA
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, USA
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
15
|
Yoon S, Cruz-García C, Sanford R, Ritalahti KM, Löffler FE. Denitrification versus respiratory ammonification: environmental controls of two competing dissimilatory NO3(-)/NO2(-) reduction pathways in Shewanella loihica strain PV-4. THE ISME JOURNAL 2015; 9:1093-104. [PMID: 25350157 PMCID: PMC4409154 DOI: 10.1038/ismej.2014.201] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 08/30/2014] [Accepted: 09/05/2014] [Indexed: 11/09/2022]
Abstract
Denitrification and respiratory ammonification are two competing, energy-conserving NO3(-)/NO2(-) reduction pathways that have major biogeochemical consequences for N retention, plant growth and climate. Batch and continuous culture experiments using Shewanella loihica strain PV-4, a bacterium possessing both the denitrification and respiratory ammonification pathways, revealed factors that determine NO3(-)/NO2(-) fate. Denitrification dominated at low carbon-to-nitrogen (C/N) ratios (that is, electron donor-limiting growth conditions), whereas ammonium was the predominant product at high C/N ratios (that is, electron acceptor-limiting growth conditions). pH and temperature also affected NO3(-)/NO2(-) fate, and incubation above pH 7.0 and temperatures of 30 °C favored ammonium formation. Reverse-transcriptase real-time quantitative PCR analyses correlated the phenotypic observations with nirK and nosZ transcript abundances that decreased up to 1600-fold and 27-fold, respectively, under conditions favoring respiratory ammonification. Of the two nrfA genes encoded on the strain PV-4 genome, nrfA0844 transcription decreased only when the chemostat reactor received medium with the lowest C/N ratio of 1.5, whereas nrfA0505 transcription occurred at low levels (≤3.4 × 10(-2) transcripts per cell) under all growth conditions. At intermediate C/N ratios, denitrification and respiratory ammonification occurred concomitantly, and both nrfA0844 (5.5 transcripts per cell) and nirK (0.88 transcripts per cell) were transcribed. Recent findings suggest that organisms with both the denitrification and respiratory ammonification pathways are not uncommon in soil and sediment ecosystems, and strain PV-4 offers a tractable experimental system to explore regulation of dissimilatory NO3(-)/NO2(-) reduction pathways.
Collapse
Affiliation(s)
- Sukhwan Yoon
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Claribel Cruz-García
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Robert Sanford
- Department of Geology, University of Illinois, Urbana, IL, USA
| | - Kirsti M Ritalahti
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
- University of Tennessee and Oak Ridge National Laboratory (UT-ORNL) Joint Institute for Biological Sciences (JIBS) and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Frank E Löffler
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
- University of Tennessee and Oak Ridge National Laboratory (UT-ORNL) Joint Institute for Biological Sciences (JIBS) and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
16
|
Nagarajan K, Loh KC. Molecular biology-based methods for quantification of bacteria in mixed culture: perspectives and limitations. Appl Microbiol Biotechnol 2014; 98:6907-19. [DOI: 10.1007/s00253-014-5870-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/30/2014] [Accepted: 05/31/2014] [Indexed: 02/07/2023]
|
17
|
Ravinesan DA, Gupta RS. Molecular signatures for members of the genus Dehalococcoides and the class Dehalococcoidia. Int J Syst Evol Microbiol 2014; 64:2176-2181. [PMID: 24676731 DOI: 10.1099/ijs.0.057919-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacteria belonging to the class Dehalococcoidia, due to their ability to dehalogenate chlorinated compounds, are of much interest for bioremediation of contaminated sites. We report here comparative analyses on different genes/proteins from the genomes of members of the class Dehalococcoidia. These studies have identified numerous novel molecular markers in the forms of conserved signature indels (CSIs) in broadly distributed proteins and conserved signature genes/proteins (CSPs), which are uniquely found in members of the class Dehalococcoidia, but except for an isolated exception, they are not found in other sequenced bacterial genomes. Of these molecular markers, nine CSIs in divergent proteins and 19 CSPs are specific for members of the genera Dehalococcoides and Dehalogenimonas, providing potential molecular markers for the bacterial class Dehalococcoidia. Additionally, four CSIs in divergent proteins and 28 CSPs are only found in all members of the genus Dehalococcoides for which genome sequences are available, but they are absent in Dehalogenimonas lykanthroporepellens and in other bacteria. The gene sequences of several of these CSPs exhibiting specificity for the genus Dehalococcoides or the class Dehalococcoidia are highly conserved and PCR primers based upon them provide a novel means for identification of other related bacteria. Two other CSIs identified in this study in the SecD and aspartate carbomyltransferase proteins weakly support an affiliation of the class Dehalococcoidia with the other members of the phylum Chloroflexi.
Collapse
Affiliation(s)
- Dasha A Ravinesan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| |
Collapse
|
18
|
Ryu H, Elk M, Khan IUH, Harwood VJ, Molina M, Edge TA, Domingo JS. Comparison of two poultry litter qPCR assays targeting the 16S rRNA gene of Brevibacterium sp. WATER RESEARCH 2014; 48:613-621. [PMID: 24169514 DOI: 10.1016/j.watres.2013.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/18/2013] [Accepted: 10/06/2013] [Indexed: 06/02/2023]
Abstract
Chicken feces commonly contain human pathogens and are also important sources of fecal pollution in environmental waters. Consequently, methods that can detect chicken fecal pollution are needed in public health and environmental monitoring studies. In this study, we compared a previously developed SYBR green qPCR assay (LA35) to a novel TaqMan qPCR assay (CL) for the environmental detection of poultry-associated fecal pollution. We tested both assays against chicken litter (n = 40), chicken fecal samples (n = 186), non-chicken fecal sources (n = 484), and environmental water samples (n = 323). Most chicken litter samples (i.e., ≥ 98%) were positive for both assays with relatively high signal intensities, whereas only 23% and 12% of poultry fecal samples (n = 186) were positive with the LA35 and the CL assays, respectively. Data using fecal samples from non-target animal species showed that the assays are highly host-associated (≥ 95%). Bayesian statistical models showed that the two assays are associated with relatively low probability of false-positive and false-negative signals in water samples. The CL marker had a lower prevalence than the LA35 assay when tested against environmental water samples (i.e., 21% vs. 31% positive signals). However, by combining the results from the two assays the detection levels increased to 41%, suggesting that using multiple assays can improve the detection of chicken-fecal pollution in environmental waters.
Collapse
Affiliation(s)
- Hodon Ryu
- National Risk Management Research Laboratory, Cincinnati, OH, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Identification and environmental distribution of dcpA, which encodes the reductive dehalogenase catalyzing the dichloroelimination of 1,2-dichloropropane to propene in organohalide-respiring chloroflexi. Appl Environ Microbiol 2013; 80:808-18. [PMID: 24242248 DOI: 10.1128/aem.02927-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dehalococcoides mccartyi strains KS and RC grow with 1,2-dichloropropane (1,2-D) as an electron acceptor in enrichment cultures derived from hydrocarbon-contaminated and pristine river sediments, respectively. Transcription, expression, enzymatic, and PCR analyses implicated the reductive dehalogenase gene dcpA in 1,2-D dichloroelimination to propene and inorganic chloride. Quantitative real-time PCR (qPCR) analyses demonstrated a D. mccartyi cell increase during growth with 1,2-D and suggested that both D. mccartyi strains carried a single dcpA gene copy per genome. D. mccartyi strain RC and strain KS produced 1.8 × 10(7) ± 0.1 × 10(7) and 1.4 × 10(7) ± 0.5 × 10(7) cells per μmol of propene formed, respectively. The dcpA gene was identified in 1,2-D-to-propene-dechlorinating microcosms established with sediment samples collected from different geographical locations in Europe and North and South America. Clone library analysis revealed two distinct dcpA phylogenetic clusters, both of which were captured by the dcpA gene-targeted qPCR assay, suggesting that the qPCR assay is useful for site assessment and bioremediation monitoring at 1,2-D-contaminated sites.
Collapse
|
20
|
Quantitative estimation of Dehalococcoides mccartyi at laboratory and field scale: Comparative study between CARD-FISH and Real Time PCR. J Microbiol Methods 2013; 93:127-33. [DOI: 10.1016/j.mimet.2013.02.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/28/2013] [Accepted: 02/28/2013] [Indexed: 11/22/2022]
|