1
|
Evaluation of a Highly Efficient DNA Extraction Method for Bacillus anthracis Endospores. Microorganisms 2020; 8:microorganisms8050763. [PMID: 32443768 PMCID: PMC7285266 DOI: 10.3390/microorganisms8050763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 11/19/2022] Open
Abstract
A variety of methods have been established in order to optimize the accessibility of DNA originating from Bacillusanthracis cells and endospores to facilitate highly sensitive molecular diagnostics. However, most endospore lysis techniques have not been evaluated in respect to their quantitative proficiencies. Here, we started by systematically assessing the efficiencies of 20 DNA extraction kits for vegetative B.anthracis cells. Of these, the Epicentre MasterPure kit gave the best DNA yields and quality suitable for further genomic analysis. Yet, none of the kits tested were able to extract reasonable quantities of DNA from cores of the endospores. Thus, we developed a mechanical endospore lysis protocol, facilitating the extraction of high-quality DNA. Transmission electron microscopy or the labelling of spores with the indicator dye propidium monoazide was utilized to assess lysis efficiency. Finally, the yield and quality of genomic spore DNA were quantified by PCR and they were found to be dependent on lysis matrix composition, instrumental parameters, and the method used for subsequent DNA purification. Our final standardized lysis and DNA extraction protocol allows for the quantitative detection of low levels (<50 CFU/mL) of B. anthracis endospores and it is suitable for direct quantification, even under resource-limited field conditions, where culturing is not an option.
Collapse
|
2
|
Rodríguez A, Vaneechoutte M. Comparison of the efficiency of different cell lysis methods and different commercial methods for RNA extraction from Candida albicans stored in RNAlater. BMC Microbiol 2019; 19:94. [PMID: 31088364 PMCID: PMC6515685 DOI: 10.1186/s12866-019-1473-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/03/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obtaining sufficient RNA yield and quality for comprehensive transcriptomic studies is cumbersome for clinical samples in which RNA from the pathogen is present in low numbers relative to the nucleic acids from the host, especially for pathogens, such as yeasts, with a solid cell wall. Therefore, yeast cell lysis including cell wall disruption constitutes an essential first step to maximize RNA yield. Moreover, during the last years, different methods for RNA extraction from yeasts have been developed, ranging from classic hot phenol methods to commercially available specific kits. They offer different RNA yield and quality, also depending on the original storage medium, such as RNAlater. RESULTS We observed that, for C. albicans cells stored in Tryptic Soy Broth with 15% glycerol, 10 min of bead beating in a horizontal position in RiboPure Lysis Buffer provided complete cell lysis. Cell lysis efficiency was decreased to 73.5% when cells were stored in RNAlater. In addition, the RiboPure Yeast Kit (Ambion) offered the highest RNA yield in comparison with the automated platform NucliSENS easyMAG total nucleic extraction (bioMérieux) and the RNeasy Mini Kit (Qiagen) according to NanoDrop and Fragment Analyzer. Moreover, we showed that, in spite of the decrease of cell lysis efficiency after RNAlater storage, as compared to storage in TSB + 15% glycerol, RNAlater increased RNA yield during RNA extraction with both RiboPure Yeast Kit and easyMAG, as confirmed by Fragment Analyzer analysis and by RT-qPCR of the RNA from the Internal Transcribed Spacer 2. CONCLUSIONS In our hands, the most efficient cell lysis and highest RNA yield from C. albicans cells stored in RNAlater was obtained by horizontal bead beating in RiboPure Lysis Buffer followed by RNA extraction with the RiboPure Yeast Kit.
Collapse
Affiliation(s)
- Antonio Rodríguez
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium.
| | - Mario Vaneechoutte
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium
| |
Collapse
|
3
|
Harbusch NS, Bozic M, Konrad PM, Winkler M, Kessler HH. Evaluation of a new extraction platform in combination with molecular assays useful for monitoring immunosuppressed patients. J Clin Virol 2018; 108:59-63. [PMID: 30248619 DOI: 10.1016/j.jcv.2018.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/10/2018] [Accepted: 09/09/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND In the immunosuppressed, detection of viral reactivation at the earliest convenience and molecular monitoring are of paramount importance. Nucleic acid extraction has a major impact on the reliability of results obtained from molecular assays. OBJECTIVES The aim of this study was to investigate the accuracy of the new EMAG® nucleic acid extraction platform and to compare the performance of the new platform to that of the standard NucliSENS® easyMAG® instrument in the routine clinical laboratory. STUDY DESIGN For accuracy testing, reference material and for comparison studies, clinical specimens were used. In addition, a lab-flow analysis including estimation of hands-on time and that for automated extraction was performed. RESULTS When accuracy was tested, all 89 results obtained were found to be concordant with the results expected. When 648 clinical results were compared, 85.7% were found to be within ±0.5 log10 unit, 9.5% between ±0.5 and ±1.0 log10 unit, and 4.8% more than ±1.0 log10 unit. The overall time required for nucleic acid extraction of 8 samples in parallel was 94 min for the fully automated extraction mode and 82 min for the partly automated mode with the new platform, and 73 min with the standard instrument. Hands-on time was found to be shorter with the new platform. CONCLUSIONS The extraction performance of both platforms was found to be similar for EDTA whole blood, BAL, and urine specimens. The total turn-around time for nucleic acid extraction was found to be longer with the EMAG® platform, whereas hands-on time was reduced.
Collapse
Affiliation(s)
- Nora S Harbusch
- Research Unit Molecular Diagnostics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| | - Michael Bozic
- Research Unit Molecular Diagnostics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| | - Petra M Konrad
- Research Unit Molecular Diagnostics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| | - Michaela Winkler
- Research Unit Molecular Diagnostics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| | - Harald H Kessler
- Research Unit Molecular Diagnostics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria.
| |
Collapse
|
4
|
Shahin K, Gustavo Ramirez-Paredes J, Harold G, Lopez-Jimena B, Adams A, Weidmann M. Development of a recombinase polymerase amplification assay for rapid detection of Francisella noatunensis subsp. orientalis. PLoS One 2018; 13:e0192979. [PMID: 29444148 PMCID: PMC5812721 DOI: 10.1371/journal.pone.0192979] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/01/2018] [Indexed: 11/18/2022] Open
Abstract
Francisella noatunensis subsp. orientalis (Fno) is the causative agent of piscine francisellosis in warm water fish including tilapia. The disease induces chronic granulomatous inflammation with high morbidity and can result in high mortality. Early and accurate detection of Fno is crucial to set appropriate outbreak control measures in tilapia farms. Laboratory detection of Fno mainly depends on bacterial culture and molecular techniques. Recombinase polymerase amplification (RPA) is a novel isothermal technology that has been widely used for the molecular diagnosis of various infectious diseases. In this study, a recombinase polymerase amplification (RPA) assay for rapid detection of Fno was developed and validated. The RPA reaction was performed at a constant temperature of 42°C for 20 min. The RPA assay was performed using a quantitative plasmid standard containing a unique Fno gene sequence. Validation of the assay was performed not only by using DNA from Fno, closely related Francisella species and other common bacterial pathogens in tilapia farms, but also by screening 78 Nile tilapia and 5 water samples. All results were compared with those obtained by previously established real-time qPCR. The developed RPA showed high specificity in detection of Fno with no cross-detection of either the closely related Francisella spp. or the other tested bacteria. The Fno-RPA performance was highly comparable to the published qPCR with detection limits at 15 and 11 DNA molecules detected, respectively. The RPA gave quicker results in approximately 6 min in contrast to the qPCR that needed about 90 min to reach the same detection limit, taking only 2.7–3 min to determine Fno in clinical samples. Moreover, RPA was more tolerant to reaction inhibitors than qPCR when tested with field samples. The fast reaction, simplicity, cost-effectiveness, sensitivity and specificity make the RPA an attractive diagnostic tool that will contribute to controlling the infection through prompt on-site detection of Fno.
Collapse
Affiliation(s)
- Khalid Shahin
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
- Aquatic Animal Diseases Lab, Division of Aquaculture, National Institute of Oceanography and Fisheries, Suez, Egypt
- * E-mail:
| | - Jose Gustavo Ramirez-Paredes
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Graham Harold
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Benjamin Lopez-Jimena
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Alexandra Adams
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Manfred Weidmann
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| |
Collapse
|
5
|
Tan JJL, Balne PK, Leo YS, Tong L, Ng LFP, Agrawal R. Persistence of Zika virus in conjunctival fluid of convalescence patients. Sci Rep 2017; 7:11194. [PMID: 28894118 PMCID: PMC5594005 DOI: 10.1038/s41598-017-09479-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/26/2017] [Indexed: 11/29/2022] Open
Abstract
A widespread epidemic of Zika fever, caused by Zika virus (ZIKAV) has spread throughout the Pacific islands, the Americas and Southeast Asia. The increased incidences of ocular anomalies observed in ZIKAV-infected infants and adults may be associated with the rapid spread of ZIKAV. The objective of this study was to check if ZIKAV could be detected in human tears after the first week of infection. Twenty-nine patients with PCR confirmed ZIKAV infection during the Singapore August 2016 ZIKAV outbreak were enrolled for the study. Detection and quantification of ZIKAV RNA was performed on conjunctival swabs collected from both eyes of these patients at the late convalescent phase (30 days post-illness). Efficiency of viral isolation from swab samples was confirmed by the limit of detection (as low as 0.1 PFU/µL, equivalent to copy number of 4.9) in spiked swabs with different concentrations of ZIKAV (PFU/µL). Samples from three patients were found positive by qRT-PCR for ZIKAV and the viral RNA copy numbers detected in conjunctival swabs ranged from 5.2 to 9.3 copies respectively. ZIKAV could persist in the tears of infected patients for up to 30 days post-illness, and may therefore possess a potential public health risk of transmission.
Collapse
Affiliation(s)
- Jeslin J L Tan
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Praveen K Balne
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
| | - Yee-Sin Leo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Infectious Disease and Epidemiology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Louis Tong
- Singapore Eye Research Institute, Singapore, Singapore
- Institute of Infectious Disease and Epidemiology, Tan Tock Seng Hospital, Singapore, Singapore
- Singapore National Eye Center, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Lisa F P Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.
| | - Rupesh Agrawal
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore.
- Singapore Eye Research Institute, Singapore, Singapore.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Farid AH, Rupasinghe PP. A fast and accurate method of detecting Aleutian mink disease virus in blood and tissues of chronically infected mink. Can J Microbiol 2017; 63:341-349. [PMID: 28177788 DOI: 10.1139/cjm-2016-0567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to assess the sensitivity of the Omni Klentaq-LA DNA polymerase for detecting Aleutian mink disease virus (AMDV) in mink blood and tissues by PCR without DNA extraction. The presence of AMDV DNA was directly tested by Klentaq in the plasma, serum, whole blood, and spleen homogenates of 188 mink 4 and 16 months after inoculation with the virus. Samples from bone marrow, small intestine, liver, lungs, kidneys, and lymph nodes of 20 of the same mink were also tested by Klentaq. DNA was extracted from paired samples of plasma and the aforesaid tissues by a commercial nucleic acid extraction kit (Dynabeads Silane) and tested by PCR. Compared with the extracted DNA, Klentaq detected a significantly greater number of samples in the whole blood, serum, plasma, spleen, and small intestine. It was concluded that Klentaq is a preferred system for directly detecting AMDV DNA in mink blood and tissues. The lower success rate of extracted DNA compared with Klentaq could be the result of DNA losses during the extraction process. This is an important factor in chronically infected mink, which have a low AMDV copy number in the bloodstream. Direct AMDV detection also reduces the cost of PCR amplification and lowers the risk of sample contamination.
Collapse
Affiliation(s)
- A H Farid
- Department of Animal Science and Aquaculture, Dalhousie University Faculty of Agriculture, Truro, NS B2N 5E3, Canada.,Department of Animal Science and Aquaculture, Dalhousie University Faculty of Agriculture, Truro, NS B2N 5E3, Canada
| | - P P Rupasinghe
- Department of Animal Science and Aquaculture, Dalhousie University Faculty of Agriculture, Truro, NS B2N 5E3, Canada.,Department of Animal Science and Aquaculture, Dalhousie University Faculty of Agriculture, Truro, NS B2N 5E3, Canada
| |
Collapse
|
7
|
Targeted next-generation sequencing for the detection of ciprofloxacin resistance markers using molecular inversion probes. Sci Rep 2016; 6:25904. [PMID: 27174456 PMCID: PMC4865750 DOI: 10.1038/srep25904] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/25/2016] [Indexed: 02/07/2023] Open
Abstract
Antibiotic resistance (AR) is an epidemic of increasing magnitude requiring rapid identification and profiling for appropriate and timely therapeutic measures and containment strategies. In this context, ciprofloxacin is part of the first-line of countermeasures against numerous high consequence bacteria. Significant resistance can occur via single nucleotide polymorphisms (SNP) and deletions within ciprofloxacin targeted genes. Ideally, use of ciprofloxacin would be prefaced with AR determination to avoid overuse or misuse of the antibiotic. Here, we describe the development and evaluation of a panel of 44 single-stranded molecular inversion probes (MIPs) coupled to next-generation sequencing (NGS) for the detection of genetic variants known to confer ciprofloxacin resistance in Bacillus anthracis, Yersinia pestis, and Francisella tularensis. Sequencing results demonstrate MIPs capture and amplify targeted regions of interest at significant levels of coverage. Depending on the genetic variant, limits of detection (LOD) for high-throughput pooled sequencing ranged from approximately 300–1800 input genome copies. LODs increased 10-fold in the presence of contaminating human genome DNA. In addition, we show that MIPs can be used as an enrichment step with high resolution melt (HRM) real-time PCR which is a sensitive assay with a rapid time-to-answer. Overall, this technology is a multiplexable upfront enrichment applicable with multiple downstream molecular assays for the detection of targeted genetic regions.
Collapse
|
8
|
|
9
|
Abstract
BACKGROUND Effective upstream preparation of nucleic acid (NA) is important for molecular techniques that detect unique DNA or RNA sequences. The isolated NA should be extracted efficiently and purified away from inhibitors of a downstream molecular assay. CONTENT Many NA sample preparation techniques and commercial kits are available. Techniques for cell lysis and isolation or purification of NA were discovered in early NA characterization studies, evolved in the 20th century with molecular techniques, and still serve as the foundation for current methods. Advances in solid phase extraction methods with nonhazardous chemicals and automated systems have changed the way NA is prepared. Factors to consider when selecting NA preparation methods for molecular detection include lysis (from sources as diverse as human cells, viruses, bacterial spores, or protozoan oocysts), DNA vs RNA, sample background, appropriate preparation chemicals, and required detection limits. Methods are also selected on the basis of requirements for a particular application, such as sample volume or removal of inhibitors. Sometimes tradeoffs are made. SUMMARY Good automated and manual methods are available to effectively prepare NA for molecular detection in under an hour. Numerous systems are available for various applications, including techniques that are flexible for multiple sample types, are capable of processing large batches, can be performed in <10 min, or that can yield high-purity NA. When methods are selected using the most applicable combination of lysis isolation efficiency and concentration, NA preparation can be very effective, even for molecular detection of multiple targets from the same sample.
Collapse
|
10
|
Tan JJL, Capozzoli M, Sato M, Watthanaworawit W, Ling CL, Mauduit M, Malleret B, Grüner AC, Tan R, Nosten FH, Snounou G, Rénia L, Ng LFP. An integrated lab-on-chip for rapid identification and simultaneous differentiation of tropical pathogens. PLoS Negl Trop Dis 2014; 8:e3043. [PMID: 25078474 PMCID: PMC4117454 DOI: 10.1371/journal.pntd.0003043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/10/2014] [Indexed: 01/03/2023] Open
Abstract
Tropical pathogens often cause febrile illnesses in humans and are responsible for considerable morbidity and mortality. The similarities in clinical symptoms provoked by these pathogens make diagnosis difficult. Thus, early, rapid and accurate diagnosis will be crucial in patient management and in the control of these diseases. In this study, a microfluidic lab-on-chip integrating multiplex molecular amplification and DNA microarray hybridization was developed for simultaneous detection and species differentiation of 26 globally important tropical pathogens. The analytical performance of the lab-on-chip for each pathogen ranged from 102 to 103 DNA or RNA copies. Assay performance was further verified with human whole blood spiked with Plasmodium falciparum and Chikungunya virus that yielded a range of detection from 200 to 4×105 parasites, and from 250 to 4×107 PFU respectively. This lab-on-chip was subsequently assessed and evaluated using 170 retrospective patient specimens in Singapore and Thailand. The lab-on-chip had a detection sensitivity of 83.1% and a specificity of 100% for P. falciparum; a sensitivity of 91.3% and a specificity of 99.3% for P. vivax; a positive 90.0% agreement and a specificity of 100% for Chikungunya virus; and a positive 85.0% agreement and a specificity of 100% for Dengue virus serotype 3 with reference methods conducted on the samples. Results suggested the practicality of an amplification microarray-based approach in a field setting for high-throughput detection and identification of tropical pathogens. Tropical diseases consist of a group of debilitating and fatal infections that occur primarily in rural and urban settings of tropical and subtropical countries. While the primary indices of an infection are mostly the presentation of clinical signs and symptoms, outcomes due to an infection with tropical pathogens are often unspecific. Accurate diagnosis is crucial for timely intervention, appropriate and adequate treatments, and patient management to prevent development of sequelae and transmission. Although, multiplex assays are available for the simultaneous detection of tropical pathogens, they are generally of low throughput. Performing parallel assays to cover the detection for a comprehensive scope of tropical infections that include protozoan, bacterial and viral infections is undoubtedly labor-intensive and time consuming. We present an integrated lab-on-chip using microfluidics technology coupled with reverse transcription (RT), PCR amplification, and microarray hybridization for the simultaneous identification and differentiation of 26 tropical pathogens that cause 14 globally important tropical diseases. Such diagnostics capacity would facilitate evidence-based management of patients, improve the specificity of treatment and, in some cases, even allow contact tracing and other disease-control measures.
Collapse
Affiliation(s)
- Jeslin J. L. Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Monica Capozzoli
- CI Group, Molecular Diagnostic Business Unit, Microfluidics Division, ST Microelectronics, Catania, Italy
| | - Mitsuharu Sato
- Veredus Laboratories Pte Ltd, Singapore Science Park, Singapore
| | - Wanitda Watthanaworawit
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Clare L. Ling
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Marjorie Mauduit
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Benoît Malleret
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Anne-Charlotte Grüner
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Rosemary Tan
- Veredus Laboratories Pte Ltd, Singapore Science Park, Singapore
| | - François H. Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Georges Snounou
- Université Pierre et Marie Curie (Paris VI), Centre Hospitalo-Universitaire Pitié-Salpêtrière, Paris, France
- INSERM UMR S 945, Paris, France
| | - Laurent Rénia
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
- * E-mail: (LR); (LFPN)
| | - Lisa F. P. Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- * E-mail: (LR); (LFPN)
| |
Collapse
|
11
|
Stabilization of biothreat diagnostic samples through vitrification matrices. J Microbiol Methods 2014; 101:81-5. [DOI: 10.1016/j.mimet.2014.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 04/03/2014] [Accepted: 04/03/2014] [Indexed: 11/22/2022]
|
12
|
Comparative assessment of automated nucleic acid sample extraction equipment for biothreat agents. J Clin Microbiol 2014; 52:1232-4. [PMID: 24452173 DOI: 10.1128/jcm.03453-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Magnetic beads offer superior impurity removal and nucleic acid selection over older extraction methods. The performances of nucleic acid extraction of biothreat agents in blood or buffer by easyMAG, MagNA Pure, EZ1 Advanced XL, and Nordiag Arrow were evaluated. All instruments showed excellent performance in blood; however, the easyMAG had the best precision and versatility.
Collapse
|
13
|
Cross-institute evaluations of inhibitor-resistant PCR reagents for direct testing of aerosol and blood samples containing biological warfare agent DNA. Appl Environ Microbiol 2013; 80:1322-9. [PMID: 24334660 DOI: 10.1128/aem.03478-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid pathogen detection is crucial for the timely introduction of therapeutics. Two groups (one in the United Kingdom and one in the United States) independently evaluated inhibitor-resistant PCR reagents for the direct testing of substrates. In the United Kingdom, a multiplexed Bacillus anthracis (target) and Bacillus subtilis (internal-control) PCR was used to evaluate 4 reagents against 5 PCR inhibitors and down-selected the TaqMan Fast Virus 1-Step master mix (Life Technologies Inc.). In the United States, four real-time PCR assays (targeting B. anthracis, Brucella melitensis, Venezuelan equine encephalitis virus [VEEV], and Orthopoxvirus spp.) were used to evaluate 5 reagents (plus the Fast Virus master mix) against buffer, blood, and soil samples and down-selected the KAPA Blood Direct master mix (KAPA Biosystems Inc.) with added Platinum Taq (Life Technologies). The down-selected reagents underwent further testing. In the United Kingdom experiments, both reagents were tested against seven contrived aerosol collector samples containing B. anthracis Ames DNA and B. subtilis spores from a commercial formulation (BioBall). In PCR assays with reaction mixtures containing 40% crude sample, an airfield-collected sample induced inhibition of the B. subtilis PCR with the KAPA reagent and complete failure of both PCRs with the Fast Virus reagent. However, both reagents allowed successful PCR for all other samples-which inhibited PCRs with a non-inhibitor-resistant reagent. In the United States, a cross-assay limit-of-detection (LoD) study in blood was conducted. The KAPA Blood Direct reagent allowed the detection of agent DNA (by four PCRs) at higher concentrations of blood in the reaction mixture (2.5%) than the Fast Virus reagent (0.5%), although LoDs differed between assays and reagent combinations. Across both groups, the KAPA Blood Direct reagent was determined to be the optimal reagent for inhibition relief in PCR.
Collapse
|
14
|
Evaluation of inhibitor-resistant real-time PCR methods for diagnostics in clinical and environmental samples. PLoS One 2013; 8:e73845. [PMID: 24040090 PMCID: PMC3767612 DOI: 10.1371/journal.pone.0073845] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/24/2013] [Indexed: 11/25/2022] Open
Abstract
Polymerase chain reaction (PCR) is commonly used for pathogen detection in clinical and environmental samples. These sample matrices often contain inhibitors of PCR, which is a primary reason for sample processing; however, the purification process is highly inefficient, becoming unacceptable at lower signature concentrations. One potential solution is direct PCR assessment without sample processing. Here, we evaluated nine inhibitor-resistant PCR reagents for direct detection of Francisella tularensis in seven different clinical and environmental samples using an established real-time PCR assay to assess ability to overcome PCR inhibition. While several of these reagents were designed for standard PCR, the described inhibitor resistant properties (ex. Omni Klentaq can amplify target DNA samples of up to 20% whole blood or soil) led to our evaluation with real-time PCR. A preliminary limit of detection (LOD) was determined for each chemistry in whole blood and buffer, and LODs (20 replicates) were determined for the top five chemistries in each matrix (buffer, whole blood, sputum, stool, swab, soil, and sand). Not surprisingly, no single chemistry performed the best across all of the different matrices evaluated. For instance, Phusion Blood Direct PCR Kit, Phire Hot Start DNA polymerase, and Phire Hot Start DNA polymerase with STR Boost performed best for direct detection in whole blood while Phire Hot Start DNA polymerase with STR Boost were the only reagents to yield an LOD in the femtogram range for soil. Although not the best performer across all matrices, KAPA Blood PCR kit produced the most consistent results among the various conditions assessed. Overall, while these inhibitor resistant reagents show promise for direct amplification of complex samples by real-time PCR, the amount of template required for detection would not be in a clinically relevant range for most matrices.
Collapse
|
15
|
Oldham AL, Drilling HS, Stamps BW, Stevenson BS, Duncan KE. Automated DNA extraction platforms offer solutions to challenges of assessing microbial biofouling in oil production facilities. AMB Express 2012; 2:60. [PMID: 23168231 PMCID: PMC3539857 DOI: 10.1186/2191-0855-2-60] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 11/16/2012] [Indexed: 12/20/2022] Open
Abstract
The analysis of microbial assemblages in industrial, marine, and medical systems can inform decisions regarding quality control or mitigation. Modern molecular approaches to detect, characterize, and quantify microorganisms provide rapid and thorough measures unbiased by the need for cultivation. The requirement of timely extraction of high quality nucleic acids for molecular analysis is faced with specific challenges when used to study the influence of microorganisms on oil production. Production facilities are often ill equipped for nucleic acid extraction techniques, making the preservation and transportation of samples off-site a priority. As a potential solution, the possibility of extracting nucleic acids on-site using automated platforms was tested. The performance of two such platforms, the Fujifilm QuickGene-Mini80™ and Promega Maxwell®16 was compared to a widely used manual extraction kit, MOBIO PowerBiofilm™ DNA Isolation Kit, in terms of ease of operation, DNA quality, and microbial community composition. Three pipeline biofilm samples were chosen for these comparisons; two contained crude oil and corrosion products and the third transported seawater. Overall, the two more automated extraction platforms produced higher DNA yields than the manual approach. DNA quality was evaluated for amplification by quantitative PCR (qPCR) and end-point PCR to generate 454 pyrosequencing libraries for 16S rRNA microbial community analysis. Microbial community structure, as assessed by DGGE analysis and pyrosequencing, was comparable among the three extraction methods. Therefore, the use of automated extraction platforms should enhance the feasibility of rapidly evaluating microbial biofouling at remote locations or those with limited resources.
Collapse
Affiliation(s)
- Athenia L Oldham
- The Department of Microbiology and Plant Biology, University of Oklahoma, 770 Van Vleet Oval GLCH #136, Norman, OK 73019, USA
- University of Oklahoma Biocorrosion Center, Norman, OK 73019, USA
- The Institute for Energy and the Environment, University of Oklahoma, 100 E. Boyd Street, Norman, OK, 73019, USA
| | - Heather S Drilling
- The Department of Microbiology and Plant Biology, University of Oklahoma, 770 Van Vleet Oval GLCH #136, Norman, OK 73019, USA
- University of Oklahoma Biocorrosion Center, Norman, OK 73019, USA
| | - Blake W Stamps
- The Department of Microbiology and Plant Biology, University of Oklahoma, 770 Van Vleet Oval GLCH #136, Norman, OK 73019, USA
- University of Oklahoma Biocorrosion Center, Norman, OK 73019, USA
| | - Bradley S Stevenson
- The Department of Microbiology and Plant Biology, University of Oklahoma, 770 Van Vleet Oval GLCH #136, Norman, OK 73019, USA
- University of Oklahoma Biocorrosion Center, Norman, OK 73019, USA
| | - Kathleen E Duncan
- The Department of Microbiology and Plant Biology, University of Oklahoma, 770 Van Vleet Oval GLCH #136, Norman, OK 73019, USA
- University of Oklahoma Biocorrosion Center, Norman, OK 73019, USA
- The Institute for Energy and the Environment, University of Oklahoma, 100 E. Boyd Street, Norman, OK, 73019, USA
| |
Collapse
|