1
|
Shi Y, Tan Z, Wu D, Wu Y, Li G. Pyrococcus furiosus argonaute based Alicyclobacillus acidoterrestrsis detection in fruit juice. Food Microbiol 2024; 120:104475. [PMID: 38431321 DOI: 10.1016/j.fm.2024.104475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 03/05/2024]
Abstract
Alicyclobacillus acidoterrestris is the major threat to fruit juice for its off-odor producing characteristic. In this study, Pyrococcus furiosus Argonaute (PfAgo), a novel endonuclease with precise DNA cleavage activity, was used for A. acidoterrestrisdetection, termed as PAD. The partially amplified 16 S rRNA gene of A. acidoterrestris can be cleaved by PfAgo activated by a short 5'-phosphorylated single strand DNA, producing a new guide DNA (gDNA). Then, PfAgo was activated by the new gDNA to cut a molecular beacon (MB) with fluorophore-quencher reporter, resulting in the recovery of fluorescence. The fluorescent intensity is positively related with the concentration of A. acidoterrestris. The PAD assay showed excellent specificity and sensitivity as low as 101 CFU/mL, which can be a powerful tool for on-site detection of A. acidoterrestris in fruit juice industry in the future, reducing the economic loss.
Collapse
Affiliation(s)
- Yiheng Shi
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zishan Tan
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, United Kingdom
| | - Yongning Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
2
|
Roth K, Tran D, Joelsson A, Green S, Snyder AB. Detection of Alicyclobacillus spp. and Identification of Guaiacol Production Using the GENE-UP® PRO ACB, IFU Method No. 12, and Cosmo Bio Assays. J Food Prot 2023; 86:100114. [PMID: 37295499 DOI: 10.1016/j.jfp.2023.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Some species of Alicyclobacillus spoil beverages by producing guaiacol. Current culture-based methods detect the presence of Alicyclobacillus spp. and a subsequent peroxidase assay determines if the isolate can produce guaiacol. However, these methods are time-consuming and can yield false negatives due to differences in growth optima among species. The purpose of this study was to compare a RT-PCR-based method, the GENE-UP® PRO ACB assay, to the IFU Method No. 12 Enumeration and Enrichment methods. Ten species of Alicyclobacillus were detected using the tested RT-PCR assay, while A. dauci and A. kakegewensis were not detected using either IFU protocol. Low concentrations (1-10, 10-100, and 100-1,000 CFU/10 mL) of A. acidoterrestris, A. suci, and A. acidocaldarius were tested in five matrices. The proportion of positive samples identified using the tested RT-PCR assay (62/84) or the IFU Enrichment protocol (62/84) did not differ significantly from the proportion of inoculated samples (63/84). However, the IFU Enumeration method (32/84) detected statistically fewer positives. Additionally, methods identifying guaiacol production were compared. The proportion of correctly identified guaiacol producers using the tested RT-PCR assay (51/63) was not significantly different than those identified using the 3 h Cosmo Bio assay (54/63). Finally, four commercial samples of orange juice and sucrose solution were tested. Alicyclobacillus spp. were identified in all four samples using the IFU Enrichment method and in two samples using the tested RT-PCR assay. However, Alicyclobacillus was not detected in any sample using the IFU Enumeration method. Overall, this study showed consistent detection of Alicyclobacillus spp. using either the IFU Enrichment protocol or the tested RT-PCR assay, which both outperformed the IFU Enumeration protocol. Both the 3 h guaiacol bioassay and the tested RT-PCR assays consistently differentiated guaiacol-producing and nonproducing strains.
Collapse
Affiliation(s)
- Katerina Roth
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Derrick Tran
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | | | | | - Abigail B Snyder
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
3
|
Li H, Chen H, Liu B, Cai R, Jiang N, Yue T, Wang Z. Establishment of quantitative PCR assays for the rapid detection of Alicyclobacillus spp. that can produce guaiacol in apple juice. Int J Food Microbiol 2021; 360:109329. [PMID: 34275638 DOI: 10.1016/j.ijfoodmicro.2021.109329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022]
Abstract
Alicyclobacillus species are one of the most significant qualities and safety factors in fruit juice and beverages. The growth of some Alicyclobacillus genus can lead to sour spoilage with the off-odor of medicinal, phenolic or antiseptic, which is mainly caused by the metabolites of guaiacol, dihalophenol and dibromophenol. Especially, guaiacol is regarded as the predominant taint in Alicyclobacillus-spoiled products. In this study, quantitative PCR (qPCR) assays were proposed for the detection of A. acidoterrestris, A. acidiphilus, A. cycloheptanicus and A. herbarius that can produce guaiacol in fruit juice. The 16S rDNA sequences of these four kinds of Alicyclobacillus species were identified and the primers suitable for the qPCR assay were obtained. The sensitivity and specificity of the established methods were evaluated. The results indicated that the developed qPCR approaches were distinctive enough to detect A. acidoterrestris, A. acidiphilus, A. cycloheptanicus and A. herbarius with the sensitivity of 2.6 × 102 CFU/mL, 74 CFU/mL, 2.8 × 102 CFU/mL and 3.1 × 102 CFU/mL, respectively. The correlation coefficients of standard curves were from 0.9807 to 0.9985. Based on the pretreatment of filtration-culture, these bacteria with the initial concentration of 10-1 CFU/mL, 100 CFU/mL and 101 CFU/mL can be effectively detected in 2-20 h, which depended on the target bacteria and their initial concentration. The results displayed that the proposed procedures were effective for the rapid detection of Alicyclobacillus species that can produce guaiacol in apple juice.
Collapse
Affiliation(s)
- Hui Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Hong Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Bin Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Nan Jiang
- Rushan R & D Center of SDIC Zhonglu Fruit Juice Co., Ltd, Weihai 264500, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Kapetanakou AE, Passiou KE, Chalkou K, Skandamis PN. Assessment of Spoilage Potential Posed by Alicyclobacillus spp. in Plant-Based Dairy Beverages Mixed with Fruit Juices during Storage. J Food Prot 2021; 84:497-508. [PMID: 33064148 DOI: 10.4315/jfp-20-298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/15/2020] [Indexed: 01/09/2023]
Abstract
ABSTRACT The scope of the present study was to assess the spoilage potential of different Alicyclobacillus spp. in commercial pasteurized (ambient-stable) plant-based dairy beverages mixed with fruit juices at different inoculation levels and storage temperatures. Different products (coconut and berry [CB]; almond, mango, and passionfruit [AMP]; and oat, strawberry, and banana [OSB]) were inoculated with 10 or 2 × 103 spores per mL of either Alicyclobacillus acidoterrestris, Alicyclobacillus fastidiosus, or Alicyclobacillus acidocaldarius strain composites, whereas noninoculated samples served as controls. Samples inoculated with A. acidoterrestris and A. fastidiosus were stored at 30 and 45°C, whereas A. acidocaldarius storage took place at 50°C for 240 days. Gas composition, Alicyclobacillus spp. populations, total viable counts, pH, water activity, color, and guaiacol off-taste were monitored. CB and AMP supported growth of A. acidoterrestris and A. fastidiosus, reaching populations of 4.0 to 5.0 log CFU/mL. In OSB, populations of A. fastidiosus remained close to the initial inoculation levels during storage at 30°C, whereas at 45°C, the populations declined <1 CFU/mL. A. acidocaldarius growth was supported in CB samples, but not in AMP and OSB samples, reaching ca. 3.0 log CFU/mL at 50°C, regardless of initial inoculum size. Total color change was increased during storage; however, the instrumentally recorded color changes were not macroscopically visible. Spoilage in terms of guaiacol off-taste was identified only in CB and AMP samples inoculated with A. acidoterrestris after 60 days at 30 and 45°C. The increased popularity of these products along with the scarcity of existing literature related to their spoilage by Alicyclobacillus spp., render the contribution of the findings and data of present study critical for assessing the significance of Alicyclobacillus spp. as a potential spoilage hazard in these products and for assisting in the design and implementation of effective mitigation strategies by the beverage industry. HIGHLIGHTS
Collapse
Affiliation(s)
- Anastasia E Kapetanakou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece (ORCID: https://orcid.org/0000-0001-7878-5897 [P.N.S.])
| | - Konstantina E Passiou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece (ORCID: https://orcid.org/0000-0001-7878-5897 [P.N.S.])
| | - Kalliopi Chalkou
- Department of Quality and Food Safety, Group QSE Function, CCHBC, 9, Fragoklissias Street, Maroussi 15125, Greece
| | - Panagiotis N Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece (ORCID: https://orcid.org/0000-0001-7878-5897 [P.N.S.])
| |
Collapse
|
5
|
A novel developed method based on single primer isothermal amplification for rapid detection of Alicyclobacillus acidoterrestris in apple juice. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Detection of Alicyclobacillus spp. in Fruit Juice by Combination of Immunomagnetic Separation and a SYBR Green I Real-Time PCR Assay. PLoS One 2015; 10:e0141049. [PMID: 26488469 PMCID: PMC4619346 DOI: 10.1371/journal.pone.0141049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/01/2015] [Indexed: 02/07/2023] Open
Abstract
An approach based on immunomagnetic separation (IMS) and SYBR Green I real-time PCR (real-time PCR) with species-specific primers and melting curve analysis was proposed as a rapid and effective method for detecting Alicyclobacillus spp. in fruit juices. Specific primers targeting the 16S rDNA sequences of Alicyclobacillus spp. were designed and then confirmed by the amplification of DNA extracted from standard strains and isolates. Spiked samples containing known amounts of target bacteria were used to obtain standard curves; the correlation coefficient was greater than 0.986 and the real-time PCR amplification efficiencies were 98.9%- 101.8%. The detection limit of the testing system was 2.8×101 CFU/mL. The coefficient of variation for intra-assay and inter-assay variability were all within the acceptable limit of 5%. Besides, the performance of the IMS-real-time PCR assay was further investigated by detecting naturally contaminated kiwi fruit juice; the sensitivity, specificity and accuracy were 91.7%, 95.9% and 95.3%, respectively. The established IMS-real-time PCR procedure provides a new method for identification and quantitative detection of Alicyclobacillus spp. in fruit juice.
Collapse
|
7
|
Wang Z, Cai R, Yuan Y, Niu C, Hu Z, Yue T. An immunomagnetic separation-real-time PCR system for the detection of Alicyclobacillus acidoterrestris in fruit products. Int J Food Microbiol 2014; 175:30-5. [PMID: 24531036 DOI: 10.1016/j.ijfoodmicro.2014.01.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 01/10/2014] [Accepted: 01/22/2014] [Indexed: 11/18/2022]
Abstract
Alicyclobacillus acidoterrestris is the most important spoilage species within the Alicyclobacillus genus and has become a major issue in the pasteurized fruit juice industry. The aim of this study was to develop a method combining immunomagnetic separation (IMS) with real-time PCR system (IMS-PCR) for rapid and specific detection of A. acidoterrestris in fruit products. A real-time PCR with the TaqMan system was designed to target the 16S rDNA genes with specific primer and probe set. The specificity of the assay was confirmed using 9 A. acidoterrestris strains and 21 non-A. acidoterrestris strains. The results indicated that no combination of the designed primers and probe was found in any Alicyclobacillus genus except A. acidoterrestris. The detection limit of the established IMS-PCR was less than 10CFU/mL and the testing process was accomplished in 2-3h. For the three types of samples (sterile water, apple juice and kiwi juice), the correlation coefficient of standard curves was greater than 0.991, and the calculated PCR efficiencies were from 108% to 109%. As compared with the standard culture method performed concurrently on the same set of samples, the sensitivity, specificity and accuracy of IMS-PCR for 196 naturally contaminated fruit products were 90.0%, 98.3% and 97.5%, respectively. The results exhibited that the proposed IMS-PCR method was effective for the rapid detection of A. acidoterrestris in fruit products.
Collapse
Affiliation(s)
- Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chen Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhongqiu Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Wang Z, Wang J, Yue T, Yuan Y, Cai R, Niu C. Immunomagnetic separation combined with polymerase chain reaction for the detection of Alicyclobacillus acidoterrestris in apple juice. PLoS One 2013; 8:e82376. [PMID: 24349270 PMCID: PMC3857787 DOI: 10.1371/journal.pone.0082376] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 10/29/2013] [Indexed: 11/23/2022] Open
Abstract
A combination of immunomagnetic separation (IMS) and polymerase chain reaction (PCR) was used to detect Alicyclobacillus acidoterrestris (A. acidoterrestris) in apple juice. The optimum technological parameters of the IMS system were investigated. The results indicated that the immunocapture reactions could be finished in 60 min and the quantity of IMPs used for IMS was 2.5 mg/mL. Then the combined IMS-PCR procedure was assessed by detecting A. acidoterrestris in apple juice samples. The agarose gel electrophoresis results of 20 different strains showed that the IMS-PCR procedure presented high specificity to the A. acidoterrestris. The sensitivity of the IMS-PCR was 2×101 CFU/mL and the total detection time was 3 to 4 h. Of the 78 naturally contaminated apple juice samples examined, the sensitivity, specificity and accuracy of IMS-PCR compared with the standardized pour plate method were 90.9%, 97.0% and 96.2%, respectively. The results exhibited that the developed IMS-PCR method will be a valuable tool for detecting A. acidoterrestris and improving food quality in juice samples.
Collapse
Affiliation(s)
- Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Wang
- College of Food Science and Engineering, XuChang University, XuChang, Henan, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Chen Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
9
|
Wang Z, Yue T, Yuan Y, Cai R, Niu C, Guo C. Preparation of immunomagnetic nanoparticles for the separation and enrichment of Alicyclobacillus spp. in apple juice. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.07.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|