1
|
Rees CE, Swift BM, Haldar P. State-of-the-art detection of Mycobacterium tuberculosis in blood during tuberculosis infection using phage technology. Int J Infect Dis 2024; 141S:106991. [PMID: 38447755 DOI: 10.1016/j.ijid.2024.106991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
Tuberculosis (TB), an aerosol-transmitted infection caused by Mycobacterium tuberculosis (Mtb), remains the commonest cause of death globally, from an infectious bacterial disease. Nine years on from the launch of the World Health Organization (WHO)'s END-TB strategy, disease incidence rates are stubbornly unchanged [1]. While this represents, in part, a reversal of improving trends caused by the COVID-19 pandemic, it also reflects the fragility and inadequacy of healthcare systems to sustain TB control [2]. Although multifactorial, a key reason for this is the ineffectiveness of existing clinical tools to meet the two key objectives of the END-TB strategy-(i) early diagnosis and treatment of TB disease (to limit onward transmission); and (ii) disease prevention through screening for asymptomatic TB infection (TBI). Meeting both objectives will rely on the development of new biomarkers with high accuracy, but the global nature of the TB problem also requires that new tests are rapid, low cost and can be measured in patients by sampling from universally accessible sites. In this review, we will present the accumulating evidence for circulating Mtb in both TB disease and asymptomatic TBI and discuss the potential utility of novel bacteriophage-based technology for blood-based detection of Mtb.
Collapse
Affiliation(s)
| | - Benjamin Mc Swift
- Royal Veterinary College, Department of Pathobiology and Population Sciences, Herts, UK
| | - Pranabashis Haldar
- NIHR Leicester Biomedical Research Centre, Department of Respiratory Sciences, University of Leicester, Leicester, UK.
| |
Collapse
|
2
|
Harman-McKenna VK, De Buck J. Effective Isolation and Characterization of Mycobacteriophages with the Ability to Lyse Mycobacterium avium subsp. paratuberculosis. Viruses 2023; 16:20. [PMID: 38257721 PMCID: PMC10819923 DOI: 10.3390/v16010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Johne's disease (JD), a chronic infectious enteritis of ruminants, causes major economic losses in the dairy industry globally. This enteritis is caused by Mycobacterium avium subsp. Paratuberculosis (MAP). Currently there is no cure for JD and test-based culling has proved ineffective at preventing the spread. To isolate new mycobacteriophages (mbps) that can potentially be used to control JD transmission and infection on dairy farms, we optimized an isolation protocol by fecal spiking and the testing of different isolation solution compositions. Using this protocol, we successfully enhanced the yield of mbps from spiked fecal samples, elevating it from less than 1% to 59%. With this method, we isolated 14 mbps from 475 environmental samples collected from MAP-positive dairy farms, after in-sample enrichment with MAP and the fast-growing M. smegmatis. The sample sources included soil, manure pits, lactation barns, feces, milk, and drain water. After fingerprinting these mbps by restriction enzyme profiling, we concluded that 12 were distinct and novel. Further characterization of their host range revealed that eight were capable of lysing multiple MAP strains. We also studied the cross-resistance, lysogeny, the effect of pH and their antimycobacterial properties in milk replacer. Each novel mbp showed limited cross-resistance and prophage immunity and showed no reduction in the titer in a range of pHs after 4 h. The novel phages were also able to reduce the mycobacterial counts to zero after 8 h in milk replacer. In conclusion, these novel mbps could be considered to be used in the control strategies of JD on farms.
Collapse
Affiliation(s)
| | - Jeroen De Buck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
3
|
Hosseiniporgham S, Sechi LA. A Review on Mycobacteriophages: From Classification to Applications. Pathogens 2022; 11:777. [PMID: 35890022 PMCID: PMC9317374 DOI: 10.3390/pathogens11070777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Mycobacterial infections are a group of life-threatening conditions triggered by fast- or slow-growing mycobacteria. Some mycobacteria, such as Mycobacterium tuberculosis, promote the deaths of millions of lives throughout the world annually. The control of mycobacterial infections is influenced by the challenges faced in the diagnosis of these bacteria and the capability of these pathogens to develop resistance against common antibiotics. Detection of mycobacterial infections is always demanding due to the intracellular nature of these pathogens that, along with the lipid-enriched structure of the cell wall, complicates the access to the internal contents of mycobacterial cells. Moreover, recent studies depicted that more than 20% of M. tuberculosis (Mtb) infections are multi-drug resistant (MDR), and only 50% of positive MDR-Mtb cases are responsive to standard treatments. Similarly, the susceptibility of nontuberculosis mycobacteria (NTM) to first-line tuberculosis antibiotics has also declined in recent years. Exploiting mycobacteriophages as viruses that infect mycobacteria has significantly accelerated the diagnosis and treatment of mycobacterial infections. This is because mycobacteriophages, regardless of their cycle type (temperate/lytic), can tackle barriers in the mycobacterial cell wall and make the infected bacteria replicate phage DNA along with their DNA. Although the infectivity of the majority of discovered mycobacteriophages has been evaluated in non-pathogenic M. smegmatis, more research is still ongoing to find mycobacteriophages specific to pathogenic mycobacteria, such as phage DS6A, which has been shown to be able to infect members of the M. tuberculosis complex. Accordingly, this review aimed to introduce some potential mycobacteriophages in the research, specifically those that are infective to the three troublesome mycobacteria, M. tuberculosis, M. avium subsp. paratuberculosis (MAP), and M. abscessus, highlighting their theranostic applications in medicine.
Collapse
Affiliation(s)
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Microbiology and Virology, Azienda Ospedaliera Universitaria (AOU) Sassari, 07100 Sassari, Italy
| |
Collapse
|
4
|
Rojas-Ponce G, Sauvageau D, Zemp R, Barkema HW, Evoy S. Use of uncoated magnetic beads to capture Mycobacterium smegmatis and Mycobacterium avium paratuberculosis prior detection by mycobacteriophage D29 and real-time-PCR. METHODS IN MICROBIOLOGY 2022; 197:106490. [PMID: 35595085 DOI: 10.1016/j.mimet.2022.106490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/25/2022]
Abstract
Uncoated tosyl-activated magnetic beads were evaluated to capture Mycobacterium smegmatis and Mycobacterium avium subspecies paratuberculosis (MAP) from spiked feces, milk, and urine. Centrifugation and uncoated magnetic beads recovered more than 99% and 93%, respectively, of 1.68 × 107 CFU/mL, 1.68 × 106 CFU/mL and 1.68 × 105 CFU/mL M. smegmatis cells resuspended in phosphate buffer saline. The use of magnetic beads was more efficient to concentrate cells from 1.68 × 104 CFU/mL of M. smegmatis than centrifugation. Likewise, the F57-qPCR detection of MAP cells was different whether they were recovered by beads or centrifugation; cycle threshold (Ct) was lower (p < 0.05) for the detection of MAP cells recovered by beads than centrifugation, indicative of greater recovery. Magnetic separation of MAP cells from milk, urine, and feces specimens was demonstrated by detection of F57 and IS900 sequences. Beads captured no less than 109 CFU/mL from feces and no less than 104 CFU/mL from milk and urine suspensions. In another detection strategy, M. smegmatis coupled to magnetic beads were infected by mycobacteriophage D29. Plaque forming units were observed after 24 h of incubation from urine samples containing 2 × 105 and 2 × 103 CFU/mL M. smegmatis. The results of this study provide a promising tool for diagnosis of tuberculosis and Johne's disease.
Collapse
Affiliation(s)
- Gabriel Rojas-Ponce
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada.
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Roger Zemp
- Department of Electrical and Computer Engineering, Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Stephane Evoy
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
A rapid phage assay for detection of viable Mycobacterium avium subsp. paratuberculosis in milk. Sci Rep 2022; 12:475. [PMID: 35013532 PMCID: PMC8748905 DOI: 10.1038/s41598-021-04451-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Paratuberculosis is an incurable gastroenteritis among ruminants that is promoted by Mycobacterium avium subsp. paratuberculosis (MAP), an acid-fast mycobacterium. To accelerate the detection of viable pathogen, a conventional (peptide mediated magnetic separation: PMS) and novel (phage-bead qPCR: PBQ) phage based assay was optimized. A superior limit of detection (LOD) of 10 MAP per 10 mL milk was suggested for PBQ compared to 100 cells/10 mL for PMS-phage assay. Via PBQ, viable MAP was found in 48.78% out 41 unpasteurized sheep and goat milk samples. Sheep milk samples (n = 29) that were tested by PMS-phage assay contained no viable MAP. The absence of viable MAP in milk collected from 21 of the recent sheep animals was also confirmed by PBQ after a 2-week gap. Although, the two phage assays comparably detected no viable MAP in the milk samples, MAP DNA and antibodies against MAP were recognized in milk and sera of some of these animals within two instances of sampling representing that some sheep animals were MAP shedders. In conclusion, PBQ and PMS-phage could be promising methods for the assessment of MAP viability in milk samples. However, PBQ was privileged over the PMS-phage assay due to the lower LOD, rapidity, higher sensitivity, lack of need to M. smegmatis and consequent virucidal treatment that are essential in PMS-phage assay for making lawn and inactivation of exogenous mycobacteriophages respectively.
Collapse
|
6
|
Shield CG, Swift BMC, McHugh TD, Dedrick RM, Hatfull GF, Satta G. Application of Bacteriophages for Mycobacterial Infections, from Diagnosis to Treatment. Microorganisms 2021; 9:2366. [PMID: 34835491 PMCID: PMC8617706 DOI: 10.3390/microorganisms9112366] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium tuberculosis and other non-tuberculous mycobacteria are responsible for a variety of different infections affecting millions of patients worldwide. Their diagnosis is often problematic and delayed until late in the course of disease, requiring a high index of suspicion and the combined efforts of clinical and laboratory colleagues. Molecular methods, such as PCR platforms, are available, but expensive, and with limited sensitivity in the case of paucibacillary disease. Treatment of mycobacterial infections is also challenging, typically requiring months of multiple and combined antibiotics, with associated side effects and toxicities. The presence of innate and acquired drug resistance further complicates the picture, with dramatic cases without effective treatment options. Bacteriophages (viruses that infect bacteria) have been used for decades in Eastern Europe for the treatment of common bacterial infections, but there is limited clinical experience of their use in mycobacterial infections. More recently, bacteriophages' clinical utility has been re-visited and their use has been successfully demonstrated both as diagnostic and treatment options. This review will focus specifically on how mycobacteriophages have been used recently in the diagnosis and treatment of different mycobacterial infections, as potential emerging technologies, and as an alternative treatment option.
Collapse
Affiliation(s)
- Christopher G. Shield
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK;
| | - Benjamin M. C. Swift
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK;
| | - Timothy D. McHugh
- Centre for Clinical Microbiology, University College London, London NW3 2PF, UK; (T.D.M.); (G.S.)
| | - Rebekah M. Dedrick
- Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA; (R.M.D.); (G.F.H.)
| | - Graham F. Hatfull
- Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA; (R.M.D.); (G.F.H.)
| | - Giovanni Satta
- Centre for Clinical Microbiology, University College London, London NW3 2PF, UK; (T.D.M.); (G.S.)
| |
Collapse
|
7
|
Beinhauerova M, Slana I. Application of the Actiphage® Assay to Detect Viable Mycobacterium avium subsp. paratuberculosis Cells in Fresh Sheep and Goat Milk and Previously Frozen Milk and In-Line Milk Filters. Front Vet Sci 2021; 8:752834. [PMID: 34708106 PMCID: PMC8542857 DOI: 10.3389/fvets.2021.752834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/15/2021] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is a well-known causative agent of paratuberculosis, a chronic infectious granulomatous enteritis of ruminants contributing to significant economic losses worldwide. Current conventional diagnostic tools are far from being sufficient to manage and control this disease. Therefore, increased attention has been paid to alternative approaches including phage-based assays employing lytic bacteriophage D29 to detect MAP cells. The aim of the present study was to assess the applicability and efficiency of the recently developed phage-based kit termed Actiphage® combined with IS900 real-time PCR (qPCR) for rapid detection and quantification of viable MAP in milk samples. We demonstrated that Actiphage® in combination with IS900 qPCR allows for rapid and sensitive detection and identification of viable MAP in milk samples with a limit of detection of 1 MAP per 50 ml milk. Using this method, the presence of viable MAP cells was successfully determined in 30.77% of fresh goat, sheep and cow milk samples originating from paratuberculosis-affected herds. We further used Actiphage assay to define the time-lapse aspect of testing naturally contaminated milk and milk filters frozen for various lengths of time by phage-based techniques. Viable MAP was detected in 13.04% of frozen milk samples and 28.57% of frozen milk filters using Actiphage-qPCR. The results suggest the ability to detect viable MAP in these samples following freezing for more than 1 year. The obtained results support the views of the beneficial role of this technology in the control or monitoring of paratuberculosis.
Collapse
Affiliation(s)
- Monika Beinhauerova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czechia.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Iva Slana
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czechia
| |
Collapse
|
8
|
Kubala A, Perehinec TM, Evans C, Pirovano A, Swift BMC, Rees CED. Development of a Method to Detect Mycobacterium paratuberculosis in the Blood of Farmed Deer Using Actiphage® Rapid. Front Vet Sci 2021; 8:665697. [PMID: 34395569 PMCID: PMC8358306 DOI: 10.3389/fvets.2021.665697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium avium subsp paratuberculosis (MAP) is the causative agent of Johne's disease, which is an economically and clinically relevant pathogen for commercial deer production. The purpose of this study was to develop a method that could be used to rapidly detect MAP infection in deer using the Actiphage Rapid blood test. This test has previously been used to detect MAP in cattle blood following the purification of buffy coat using Ficoll gradients, however this method is quite laborious and costly. The purpose of this study was to develop a simpler method of blood preparation that was also compatible with deer blood and the Actiphage test. Initially differential lysis of RBCs using Ammonium Chloride-Potassium (ACK) blood lysis buffer was compared with the Ficoll gradient centrifugation method using cattle blood samples for compatibility with the Actiphage reagents, and it was found that the simpler ACK method did not have an impact on the Actiphage test reagents, producing an equivalent sensitivity for detection of low levels of MAP. When the two methods were compared using clinical blood samples from farmed deer, the ACK lysis method resulted in a cleaner sample. When a blinded test of 132 animals from 4 different production groups was carried out, the majority of the positive test results were found to be from animals in just one group, with a small number identified in a second group. The test results were found to be reproducible when a small set of positive animals were tested again 1 month after their initial testing. Finally a set of negative animals which had been previously screened using an ELISA test, all animals gave a negative Actiphage result. This study shows that this improved sample preparation method and Actiphage blood testing can be used to test blood samples from deer, and the full diagnostic potential of the method can now be evaluated.
Collapse
Affiliation(s)
- Anton Kubala
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom.,PBD Biotech Ltd., Link House, Elm Farm Park, Thurston, United Kingdom
| | - Tania M Perehinec
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Catherine Evans
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Andrea Pirovano
- PBD Biotech Ltd., Link House, Elm Farm Park, Thurston, United Kingdom
| | - Benjamin M C Swift
- Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, United Kingdom
| | - Catherine E D Rees
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom.,PBD Biotech Ltd., Link House, Elm Farm Park, Thurston, United Kingdom
| |
Collapse
|
9
|
Greenstein RJ, Su L, Grant IR, Foddai ACG, Turner A, Nagati JS, Brown ST, Stabel JR. Comparison of a mycobacterial phage assay to detect viable Mycobacterium avium subspecies paratuberculosis with standard diagnostic modalities in cattle with naturally infected Johne disease. Gut Pathog 2021; 13:30. [PMID: 33957980 PMCID: PMC8103604 DOI: 10.1186/s13099-021-00425-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/29/2021] [Indexed: 11/10/2022] Open
Abstract
Background Mycobacterium avium subspecies paratuberculosis (MAP), the cause of Johne disease, is a slow growing mycobacterium. Viable MAP detection is difficult, inconstant and time-consuming. The purpose of this study was to compare a rapid phage/qPCR assay performed on peripheral blood mononuclear cells (PBMCs) with three standard methods of MAP detection: fecal MAP PCR; plasma antigen-specific IFN-γ & serum MAP ELISA hypothesizing that, if sensitive and specific, Johne animals would be positive and Control animals negative. We studied a well characterized herd of Holstein cattle that were naturally infected with MAP and their Controls. Results With phage/qPCR 72% (23/32) of Johne and 35% (6/17) of Controls were MAP positive. With fecal PCR 75% (24/32) of Johne and 0% (0/17) of Controls were MAP positive. With plasma antigen-specific IFN-γ 69% (22/32) of Johne and 12% (2/17) of Controls were MAP positive. With serum MAP ELISA, 31% (10/32) of Johne and 0% (0/17) of Controls were MAP positive. When phage / qPCR and fecal PCR results were combined, 100% (32/32) Johne and 35% (6/17) of Control animals were MAP positive. Younger Control animals (1–3 years) had significantly fewer plaques (25 ± 17 SEM) than older Controls (4–12 years) (309 ± 134 p = 0.04). The same trend was not observed in the Johne animals (p = 0.19). Conclusions In contrast to our hypothesis, using the phage/qPCR assay we find that viable circulating MAP can rapidly be detected from the blood of animals infected with, as well as those in the Control group evidently colonized by MAP. These data indicate that the presence of viable MAP in blood does not necessarily signify that an animal must of necessity be demonstrably ill or be MAP positive by standard diagnostic methods.
Collapse
Affiliation(s)
- Robert J Greenstein
- Department of Surgery, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA. .,Laboratory of Molecular Surgical Research, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA.
| | - Liya Su
- Laboratory of Molecular Surgical Research, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Irene R Grant
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Antonio C G Foddai
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Amy Turner
- Johne's Disease Research Project USDA-ARS-NADC, Ames, IA, USA
| | - Jason S Nagati
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Sheldon T Brown
- Infectious Disease Section, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA.,Department of Medicine, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Judith R Stabel
- Johne's Disease Research Project USDA-ARS-NADC, Ames, IA, USA
| |
Collapse
|
10
|
Grant IR. Bacteriophage-Based Methods for Detection of Viable Mycobacterium avium subsp. paratuberculosis and Their Potential for Diagnosis of Johne's Disease. Front Vet Sci 2021; 8:632498. [PMID: 33778037 PMCID: PMC7991384 DOI: 10.3389/fvets.2021.632498] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/12/2021] [Indexed: 12/22/2022] Open
Abstract
Bacteriophage-based methods for detecting Mycobacterium avium subsp. paratuberculosis (MAP) are a potential new approach for diagnosis of Johne's disease (JD). The basis of these tests is a mycobacteriophage (D29) with a lytic lifecycle that is able to infect a range of Mycobacterium spp., not just MAP. When added to a test sample, the phages will bind to and infect mycobacterial cells present. If the host mycobacterial cells are viable, the phages will take over the metabolic machinery of the cells to replicate and produce multiple copies of themselves (phage amplification), before weakening the host cell walls by enzyme action and causing cell lysis. Cell lysis releases the host cell contents, which will include ATP, various enzymes, mycobacterial host DNA and progeny D29 phages; all of which can become the target of subsequent endpoint detection methods. For MAP detection the released host DNA and progeny phages have principally been targeted. As only viable mycobacterial cells will support phage amplification, if progeny phages or host DNA are detected in the test sample (by plaque assay/phage ELISA or qPCR, respectively) then viable mycobacteria were present. This mini-review will seek to: clearly explain the basis of the phage-based tests in order to aid understanding; catalog modifications made to the original plaque assay-based phage amplification assay (FASTPlaqueTB™) over the years; and summarize the available evidence pertaining to the performance of the various phage assays for testing veterinary specimens (bovine milk, blood and feces), relative to current JD diagnostic methods (culture, fecal PCR, and blood-ELISA).
Collapse
Affiliation(s)
- Irene R Grant
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
11
|
Phage Amplification Assay for Detection of Mycobacterial Infection: A Review. Microorganisms 2021; 9:microorganisms9020237. [PMID: 33498792 PMCID: PMC7912421 DOI: 10.3390/microorganisms9020237] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/28/2022] Open
Abstract
An important prerequisite for the effective control, timely diagnosis, and successful treatment of mycobacterial infections in both humans and animals is a rapid, specific, and sensitive detection technique. Culture is still considered the gold standard in the detection of viable mycobacteria; however, mycobacteria are extremely fastidious and slow-growing microorganisms, and therefore cultivation requires a very long incubation period to obtain results. Polymerase Chain Reaction (PCR) methods are also frequently used in the diagnosis of mycobacterial infections, providing faster and more accurate results, but are unable to distinguish between a viable and non-viable microorganism, which results in an inability to determine the success of tuberculosis patient treatment or to differentiate between an active and passive infection of animals. One suitable technique that overcomes these shortcomings mentioned is the phage amplification assay (PA). PA specifically detects viable mycobacteria present in a sample within 48 h using a lytic bacteriophage isolated from the environment. Nowadays, an alternative approach to PA, a commercial kit called Actiphage™, is also employed, providing the result within 6–8 h. In this approach, the bacteriophage is used to lyse mycobacterial cells present in the sample, and the released DNA is subsequently detected by PCR. The objective of this review is to summarize information based on the PA used for detection of mycobacteria significant in both human and veterinary medicine from various kinds of matrices.
Collapse
|
12
|
Steuer P, Tejeda C, Martinez O, Ramirez-Reveco A, González N, Grant IR, Foddai ACG, Collins MT, Salgado M. Effectiveness of copper ions against Mycobacterium avium subsp. paratuberculosis and bacterial communities in naturally contaminated raw cow's milk. J Appl Microbiol 2020; 131:146-154. [PMID: 33151641 DOI: 10.1111/jam.14923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/02/2020] [Indexed: 01/14/2023]
Abstract
AIM The focus of the present study was to evaluate the copper ions treatment on the viability of Mycobacterium avium subsp. paratuberculosis (MAP) and other bacterial communities in cow's milk. METHODS AND RESULTS A copper ions treatment was evaluated in naturally contaminated cow's milk to assay MAP load and/or viability, and relative abundance of other bacterial communities. In addition, physical-chemical analyses of the milk were also performed. All analyses were carried out before and after a copper ions treatment. After copper ions treatment, pH and copper concentration markedly increased in milk; the numbers of viable MAP significantly decreased. The relative abundance of the four target phyla decreased, with the phyla Bacteroidetes and Firmicutes surviving treatment in higher proportions (4 and 2·1% of original populations, respectively). A progressively higher percentage of dead bacterial cells after 5 and 20 min copper ions treatments was found (12 and 35%, respectively). CONCLUSION With the exception of some MAP-tolerant strains, we have once again demonstrated that copper ions have a significant inactivating effect on MAP as well as certain other bacterial communities found in naturally contaminated cow's milk. SIGNIFICANCE AND IMPACT OF THE STUDY This study showed a significant inactivation of both MAP and other bacteria by copper ions in raw cow's milk, information that could be useful as a tool for MAP control.
Collapse
Affiliation(s)
- P Steuer
- Instituto de Medicina Preventiva Veterinaria, Valdivia, Chile.,Facultad de Ciencias Veterinarias, Escuela de Graduados, Valdivia, Chile
| | - C Tejeda
- Instituto de Medicina Preventiva Veterinaria, Valdivia, Chile
| | - O Martinez
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | | | - N González
- Instituto de Medicina Preventiva Veterinaria, Valdivia, Chile
| | - I R Grant
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - A C G Foddai
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - M T Collins
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - M Salgado
- Instituto de Medicina Preventiva Veterinaria, Valdivia, Chile
| |
Collapse
|
13
|
Jones HJ, Shield CG, Swift BM. The Application of Bacteriophage Diagnostics for Bacterial Pathogens in the Agricultural Supply Chain: From Farm-to-Fork. PHAGE (NEW ROCHELLE, N.Y.) 2020; 1:176-188. [PMID: 36147287 PMCID: PMC9041468 DOI: 10.1089/phage.2020.0042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bacteriophages (phages) have great potential not only as therapeutics but as diagnostics. Indeed, they have been developed and used to diagnose and detect bacterial infections, primarily in human clinical settings. The ability to rapidly detect and control bacterial pathogens in agriculture is of primary importance to maintain food security, improve animal health, and prevent the passage of zoonotic pathogens into the human population. Culture-based detection methods are often labor-intensive, and require further confirmatory tests, increasing costs and processing times needed for diagnostics. Molecular detection methods such as polymerase chain reaction are commonly used to determine the safety of food, however, a major drawback is their inability to differentiate between viable and nonviable bacterial pathogens in food. Phage diagnostics have been proven to be rapid, capable of identifying viable pathogens and do not require cultivation to detect bacteria. Phage detection takes advantage of the specificity of interaction between phage and their hosts. Furthermore, phage detection is cost effective, which is vitally important in agricultural supply chains where there is a drive to keep costs down to ensure that the cost of food does not increase. The full potential of phage detection/diagnostics is not wholly realized or commercialized. This review explores the current use and potential future scope of phage diagnostics and their application to various bacterial pathogens across agriculture and food supply chains.
Collapse
Affiliation(s)
- Helen J. Jones
- Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Christopher G. Shield
- Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Benjamin M.C. Swift
- Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
14
|
Swift BMC, Meade N, Barron ES, Bennett M, Perehenic T, Hughes V, Stevenson K, Rees CED. The development and use of Actiphage ® to detect viable mycobacteria from bovine tuberculosis and Johne's disease-infected animals. Microb Biotechnol 2020; 13:738-746. [PMID: 31793754 PMCID: PMC7111073 DOI: 10.1111/1751-7915.13518] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/01/2019] [Accepted: 11/14/2019] [Indexed: 11/30/2022] Open
Abstract
Here, we describe the development of a method that exploits bacteriophage D29 as a lysis agent for efficient DNA extraction from low numbers of mycobacterial cells. This method (Actiphage® ) used in combination with PCR achieved rapid and sensitive (LOD ≤ 10 cell ml-1 ) detection and identification of viable, pathogenic mycobacteria in blood samples within 6 h. We demonstrate that mycobacteriophage D29 can be used to detect a range of mycobacteria from clinical blood samples including both Mycobacterium tuberculosis complex and Mycobacterium avium subsp. paratuberculosis without the need for culture and confirms our earlier observations that a low-level bacteraemia is associated with these infections in cattle. In a study of M. bovis-infected cattle (n = 41), the sensitivity of the Actiphage® method was 95 % (95 % CI; 0.84-0.99) and specificity was 100 % (95% CI; 0.92-1). We further used Actiphage® to demonstrate viable Mycobacterium avium subsp. paratuberculosis is present in the blood of Johne's infected cattle. This method provides a revolutionary new tool for the study of infections caused by these difficult to grow pathogens.
Collapse
Affiliation(s)
- Benjamin M. C. Swift
- Pathobiology and Population SciencesRoyal Veterinary CollegeHawksheadHertsAL9 7TAUK
| | - Nathan Meade
- School of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLeicsLE12 5RDUK
| | - Elsa Sandoval Barron
- School of Veterinary and Medicine ScienceUniversity of NottinghamSutton Bonington CampusLoughboroughLeicsLE12 5RDUK
| | - Malcolm Bennett
- School of Veterinary and Medicine ScienceUniversity of NottinghamSutton Bonington CampusLoughboroughLeicsLE12 5RDUK
| | - Tania Perehenic
- School of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLeicsLE12 5RDUK
| | - Valerie Hughes
- Moredun Research InstitutePentlands Science ParkPenicuikEH26 0PZUK
| | - Karen Stevenson
- Moredun Research InstitutePentlands Science ParkPenicuikEH26 0PZUK
| | - Catherine E. D. Rees
- School of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLeicsLE12 5RDUK
| |
Collapse
|
15
|
O'Sullivan L, Bolton D, McAuliffe O, Coffey A. The use of bacteriophages to control and detect pathogens in the dairy industry. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lisa O'Sullivan
- Department of Biological Sciences Cork Institute of Technology Rossa Avenue Bishopstown Ireland
| | - Declan Bolton
- Food Research Centre Teagasc Ashtown, Dublin 15 Ireland
| | | | - Aidan Coffey
- Department of Biological Sciences Cork Institute of Technology Rossa Avenue Bishopstown Ireland
- APC Microbiome Institute, Biosciences Building University College Cork Cork Ireland
| |
Collapse
|
16
|
Gerrard ZE, Swift BM, Botsaris G, Davidson RS, Hutchings MR, Huxley JN, Rees CE. Survival of Mycobacterium avium subspecies paratuberculosis in retail pasteurised milk. Food Microbiol 2018; 74:57-63. [DOI: 10.1016/j.fm.2018.03.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/28/2018] [Accepted: 03/08/2018] [Indexed: 12/01/2022]
|
17
|
Grant IR, Foddai ACG, Tarrant JC, Kunkel B, Hartmann FA, McGuirk S, Hansen C, Talaat AM, Collins MT. Viable Mycobacterium avium ssp. paratuberculosis isolated from calf milk replacer. J Dairy Sci 2017; 100:9723-9735. [PMID: 28987590 DOI: 10.3168/jds.2017-13154] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/19/2017] [Indexed: 12/31/2022]
Abstract
When advising farmers on how to control Johne's disease in an infected herd, one of the main recommendations is to avoid feeding waste milk to calves and instead feed calf milk replacer (CMR). This advice is based on the assumption that CMR is free of viable Mycobacterium avium ssp. paratuberculosis (MAP) cells, an assumption that has not previously been challenged. We tested commercial CMR products (n = 83) obtained from dairy farms around the United States by the peptide-mediated magnetic separation (PMS)-phage assay, PMS followed by liquid culture (PMS-culture), and direct IS900 quantitative PCR (qPCR). Conventional microbiological analyses for total mesophilic bacterial counts, coliforms, Salmonella, coagulase-negative staphylococci, streptococci, nonhemolytic Corynebacterium spp., and Bacillus spp. were also performed to assess the overall microbiological quality of the CMR. Twenty-six (31.3%) of the 83 CMR samples showed evidence of the presence of MAP. Seventeen (20.5%) tested positive for viable MAP by the PMS-phage assay, with plaque counts ranging from 6 to 1,212 pfu/50 mL of reconstituted CMR (average 248.5 pfu/50 mL). Twelve (14.5%) CMR samples tested positive for viable MAP by PMS-culture; isolates from all 12 of these samples were subsequently confirmed by whole-genome sequencing to be different cattle strains of MAP. Seven (8.4%) CMR samples tested positive for MAP DNA by IS900 qPCR. Four CMR samples tested positive by both PMS-based tests and 5 CMR samples tested positive by IS900 qPCR plus one or other of the PMS-based tests, but only one CMR sample tested positive by all 3 MAP detection tests applied. All conventional microbiology results were within current standards for whole milk powders. A significant association existed between higher total bacterial counts and presence of viable MAP indicated by either of the PMS-based assays. This represents the first published report of the isolation of viable MAP from CMR. Our findings raise concerns about the potential ability of MAP to survive manufacture of dried milk-based products.
Collapse
Affiliation(s)
- Irene R Grant
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom BT9 7BL.
| | - Antonio C G Foddai
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom BT9 7BL
| | | | - Brenna Kunkel
- Department of Pathobiological Sciences, Madison 53706
| | - Faye A Hartmann
- Clinical Microbiology Laboratory, University of Wisconsin Veterinary Care, Madison 53706
| | - Sheila McGuirk
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison 53706
| | | | - Adel M Talaat
- Department of Pathobiological Sciences, Madison 53706
| | | |
Collapse
|
18
|
Highly Sensitive Bacteriophage-Based Detection of Brucella abortus in Mixed Culture and Spiked Blood. Viruses 2017; 9:v9060144. [PMID: 28604602 PMCID: PMC5490821 DOI: 10.3390/v9060144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/25/2017] [Accepted: 06/06/2017] [Indexed: 01/18/2023] Open
Abstract
For decades, bacteriophages (phages) have been used for Brucella species identification in the diagnosis and epidemiology of brucellosis. Traditional Brucella phage typing is a multi-day procedure including the isolation of a pure culture, a step that can take up to three weeks. In this study, we focused on the use of brucellaphages for sensitive detection of the pathogen in clinical and other complex samples, and developed an indirect method of Brucella detection using real-time quantitative PCR monitoring of brucellaphage DNA amplification via replication on live Brucella cells. This assay allowed the detection of single bacteria (down to 1 colony-forming unit per milliliter) within 72 h without DNA extraction and purification steps. The technique was equally efficient with Brucella abortus pure culture and with mixed cultures of B. abortus and α-proteobacterial near neighbors that can be misidentified as Brucella spp., Ochrobactrum anthropi and Afipia felis. The addition of a simple short sample preparation step enabled the indirect phage-based detection of B. abortus in spiked blood, with the same high sensitivity. This indirect phage-based detection assay enables the rapid and sensitive detection of live B. abortus in mixed cultures and in blood samples, and can potentially be applied for detection in other clinical samples and other complex sample types.
Collapse
|
19
|
Magnetic Separation Methods for the Detection of Mycobacterium avium subsp. paratuberculosis in Various Types of Matrices: A Review. BIOMED RESEARCH INTERNATIONAL 2017. [PMID: 28642876 PMCID: PMC5469987 DOI: 10.1155/2017/5869854] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The main reasons to improve the detection of Mycobacterium avium subsp. paratuberculosis (MAP) are animal health and monitoring of MAP entering the food chain via meat, milk, and/or dairy products. Different approaches can be used for the detection of MAP, but the use of magnetic separation especially in conjunction with PCR as an end-point detection method has risen in past years. However, the extraction of DNA which is a crucial step prior to PCR detection can be complicated due to the presence of inhibitory substances. Magnetic separation methods involving either antibodies or peptides represent a powerful tool for selective separation of target bacteria from other nontarget microorganisms and inhibitory sample components. These methods enable the concentration of pathogens present in the initial matrix into smaller volume and facilitate the isolation of sufficient quantities of pure DNA. The purpose of this review was to summarize the methods based on the magnetic separation approach that are currently available for the detection of MAP in a broad range of matrices.
Collapse
|
20
|
Foddai A, Grant I. Sensitive and specific detection of viableMycobacterium aviumsubsp.paratuberculosisin raw milk by the peptide-mediated magnetic separation-phage assay. J Appl Microbiol 2017; 122:1357-1367. [DOI: 10.1111/jam.13425] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/27/2017] [Accepted: 02/17/2017] [Indexed: 01/25/2023]
Affiliation(s)
- A.C.G. Foddai
- Institute for Global Food Security; School of Biological Sciences; Medical Biology Centre; Queen's University Belfast; Belfast UK
| | - I.R. Grant
- Institute for Global Food Security; School of Biological Sciences; Medical Biology Centre; Queen's University Belfast; Belfast UK
| |
Collapse
|
21
|
Development of SERS substrate using phage-based magnetic template for triplex assay in sepsis diagnosis. Biosens Bioelectron 2016; 85:522-528. [DOI: 10.1016/j.bios.2016.05.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/03/2016] [Accepted: 05/13/2016] [Indexed: 02/06/2023]
|
22
|
Evaluation of the limitations and methods to improve rapid phage-based detection of viable Mycobacterium avium subsp. paratuberculosis in the blood of experimentally infected cattle. BMC Vet Res 2016; 12:115. [PMID: 27305900 PMCID: PMC4910302 DOI: 10.1186/s12917-016-0728-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 06/07/2016] [Indexed: 12/13/2022] Open
Abstract
Background Disseminated infection and bacteraemia is an underreported and under-researched aspect of Johne’s disease. This is mainly due to the time it takes for Mycobacterium avium subsp. paratuberculosis (MAP) to grow and lack of sensitivity of culture. Viable MAP cells can be detected in the blood of cattle suffering from Johne’s disease within 48 h using peptide-mediated magnetic separation (PMMS) followed by bacteriophage amplification. The aim of this study was to demonstrate the first detection of MAP in the blood of experimentally exposed cattle using the PMMS-bacteriophage assay and to compare these results with the immune response of the animal based on serum ELISA and shedding of MAP by faecal culture. Results Using the PMMS-phage assay, seven out of the 19 (37 %) MAP-exposed animals that were tested were positive for viable MAP cells although very low numbers of MAP were detected. Two of these animals were positive by faecal culture and one was positive by serum ELISA. There was no correlation between PMMS-phage assay results and the faecal and serum ELISA results. None of the control animals (10) were positive for MAP using any of the four detection methods. Investigations carried out into the efficiency of the assay; found that the PMMS step was the limiting factor reducing the sensitivity of the phage assay. A modified method using the phage assay directly on isolated peripheral blood mononuclear cells (without PMMS) was found to be superior to the PMMS isolation step. Conclusions This proof of concept study has shown that viable MAP cells are present in the blood of MAP-exposed cattle prior to the onset of clinical signs. Although only one time point was tested, the ability to detect viable MAP in the blood of subclinically infected animals by the rapid phage-based method has the potential to increase the understanding of the pathogenesis of Johne’s disease progression by warranting further research on the presence of MAP in blood.
Collapse
|
23
|
Swift BMC, Convery TW, Rees CED. Evidence of Mycobacterium tuberculosis complex bacteraemia in intradermal skin test positive cattle detected using phage-RPA. Virulence 2016; 7:779-88. [PMID: 27197018 DOI: 10.1080/21505594.2016.1191729] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Bovine tuberculosis is a zoonotic infectious disease caused by Mycobacterium bovis that affects cattle and can cause tuberculosis in a range of wildlife animals. A bacteriophage-based method combined with PCR (phage-PCR) has been recently used to detect and identify viable pathogenic mycobacteria in the peripheral blood mononuclear cells (PBMCs) of animals suffering from paratuberculosis. To adapt this method for the detection of M. bovis in blood, a new isothermal DNA amplification protocol using Recombinase Polymerase Amplification (RPA) was developed and was found to be able to detect M. bovis BCG within 48 h, with a limit of detection of approximately 10 cells per ml of blood for artificially inoculated blood samples. When blood samples (2 ml) from a Single Comparative Cervical Intradermal Tuberculin (SCCIT)- negative beef herd were tested, Mycobacterium tuberculosis complex (MTC) cells were not detected from any (45) of the blood samples. However when blood samples from SCCIT-positive animals were tested, viable MTC bacteria were detected in 66 % (27/41) of samples. Of these 41 animals sampled, 32 % (13) had visible lesions. In the visible lesion (VL) group, 85 % (11/13) had detectable levels of MTC whereas only 57 % (16/28) of animals which had no visible lesions (NVL) were found to have detectable mycobacteraemia. These results indicated that this simple, rapid method can be applied for the study of M. bovis infections. The frequency with which viable mycobacteria were detected in the peripheral blood of SCCIT-positive animals changes the paradigm of this disease.
Collapse
Affiliation(s)
- Benjamin M C Swift
- a School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus , Nr Loughbotough, Leics , UK
| | - Thomas W Convery
- b School of Biosciences, University of Nottingham, Sutton Bonington Campus , Nr Loughbotough, Leics , UK
| | - Catherine E D Rees
- b School of Biosciences, University of Nottingham, Sutton Bonington Campus , Nr Loughbotough, Leics , UK
| |
Collapse
|
24
|
Detection of viable Mycobacterium avium subspecies paratuberculosis in powdered infant formula by phage-PCR and confirmed by culture. Int J Food Microbiol 2016; 216:91-4. [DOI: 10.1016/j.ijfoodmicro.2015.09.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/16/2015] [Accepted: 09/19/2015] [Indexed: 02/06/2023]
|
25
|
Britton LE, Cassidy JP, O'Donovan J, Gordon SV, Markey B. Potential application of emerging diagnostic techniques to the diagnosis of bovine Johne's disease (paratuberculosis). Vet J 2015; 209:32-9. [PMID: 26831164 DOI: 10.1016/j.tvjl.2015.10.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 05/15/2015] [Accepted: 10/10/2015] [Indexed: 12/19/2022]
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) causes Johne's disease (paratuberculosis), a chronic wasting disease in cattle with important welfare, economic and potential public health implications. Current tests are unable to recognise all stages of the disease, which makes it difficult to diagnose and control. This review explores emerging diagnostic techniques that could complement and enhance the diagnosis of MAP infection, including bacteriophage analysis, new MAP-specific antigens, host protein expression in response to infection, transcriptomic studies, analysis of microRNAs and investigation of the gastrointestinal microbiome. It emphasises the inherent challenges of diagnosing bovine Johne's disease and investigates novel areas which may have the potential both to advance our understanding of the immunopathology of MAP infection and to augment current diagnostic tests.
Collapse
Affiliation(s)
| | | | - Jim O'Donovan
- Department of Agriculture, Food and the Marine, Model Farm Road, Cork, Ireland
| | | | - Bryan Markey
- University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
26
|
Alluwaimi AM. Paratuberculosis Infection in Camel (<i>Camelus dromidarius</i>): Current and Prospective Overview. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ojvm.2015.57021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Swift BMC, Gerrard ZE, Huxley JN, Rees CED. Factors affecting phage D29 infection: a tool to investigate different growth states of mycobacteria. PLoS One 2014; 9:e106690. [PMID: 25184428 PMCID: PMC4153674 DOI: 10.1371/journal.pone.0106690] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/31/2014] [Indexed: 01/15/2023] Open
Abstract
Bacteriophages D29 and TM4 are able to infect a wide range of mycobacteria, including pathogenic and non-pathogenic species. Successful phage infection of both fast- and slow-growing mycobacteria can be rapidly detected using the phage amplification assay. Using this method, the effect of oxygen limitation during culture of mycobacteria on the success of phage infection was studied. Both D29 and TM4 were able to infect cultures of M. smegmatis and Mycobacterium avium subspecies paratuberculosis (MAP) grown in liquid with aeration. However when cultures were grown under oxygen limiting conditions, only TM4 could productively infect the cells. Cell attachment assays showed that D29 could bind to the cells surface but did not complete the lytic cycle. The ability of D29 to productively infect the cells was rapidly recovered (within 1 day) when the cultures were returned to an aerobic environment and this recovery required de novo RNA synthesis. These results indicated that under oxygen limiting conditions the cells are entering a growth state which inhibits phage D29 replication, and this change in host cell biology which can be detected by using both phage D29 and TM4 in the phage amplification assay.
Collapse
Affiliation(s)
- Benjamin M. C. Swift
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
- * E-mail:
| | - Zara E. Gerrard
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Jonathan N. Huxley
- School of Veterinary and Medicine Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Catherine E. D. Rees
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| |
Collapse
|
28
|
Application of a Fluorescence Microscopy Technique for Detecting Viable Mycobacterium avium ssp. paratuberculosis Cells in Milk. FOOD ANAL METHOD 2014. [DOI: 10.1007/s12161-014-9918-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Affiliation(s)
- Benjamin M C Swift
- University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | | |
Collapse
|