1
|
Hua D, Hendriks WH, Xiong B, Pellikaan WF. Starch and Cellulose Degradation in the Rumen and Applications of Metagenomics on Ruminal Microorganisms. Animals (Basel) 2022; 12:3020. [PMID: 36359144 PMCID: PMC9653558 DOI: 10.3390/ani12213020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Carbohydrates (e.g., starch and cellulose) are the main energy source in the diets of dairy cows. The ruminal digestion of starch and cellulose is achieved by microorganisms and digestive enzymes. In order to improve their digestibility, the microbes and enzymes involved in starch and cellulose degradation should be identified and their role(s) and activity known. As existing and new analytical techniques are continuously being developed, our knowledge of the amylolytic and cellulolytic microbial community in the rumen of dairy cows has been evolving rapidly. Using traditional culture-based methods, the main amylolytic and cellulolytic bacteria, fungi and protozoa in the rumen of dairy cows have been isolated. These culturable microbes have been found to only account for a small fraction of the total population of microorganisms present in the rumen. A more recent application of the culture-independent approach of metagenomics has acquired a more complete genetic structure and functional composition of the rumen microbial community. Metagenomics can be divided into functional metagenomics and sequencing-based computational metagenomics. Both approaches have been applied in determining the microbial composition and function in the rumen. With these approaches, novel microbial species as well as enzymes, especially glycosyl hydrolases, have been discovered. This review summarizes the current state of knowledge regarding the major amylolytic and cellulolytic microorganisms present in the rumen of dairy cows. The ruminal amylases and cellulases are briefly discussed. The application of metagenomics technology in investigating glycosyl hydrolases is provided and the novel enzymes are compared in terms of glycosyl hydrolase families related to amylolytic and cellulolytic activities.
Collapse
Affiliation(s)
- Dengke Hua
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Wouter H. Hendriks
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wilbert F. Pellikaan
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
2
|
Madhavan A, Arun KB, Binod P, Sirohi R, Tarafdar A, Reshmy R, Kumar Awasthi M, Sindhu R. Design of novel enzyme biocatalysts for industrial bioprocess: Harnessing the power of protein engineering, high throughput screening and synthetic biology. BIORESOURCE TECHNOLOGY 2021; 325:124617. [PMID: 33450638 DOI: 10.1016/j.biortech.2020.124617] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 05/13/2023]
Abstract
Biocatalysts have wider applications in various industries. Biocatalysts are generating bigger attention among researchers due to their unique catalytic properties like activity, specificity and stability. However the industrial use of many enzymes is hindered by low catalytic efficiency and stability during industrial processes. Properties of enzymes can be altered by protein engineering. Protein engineers are increasingly study the structure-function characteristics, engineering attributes, design of computational tools for enzyme engineering, and functional screening processes to improve the design and applications of enzymes. The potent and innovative techniques of enzyme engineering deliver outstanding opportunities for tailoring industrially important enzymes for the versatile production of biochemicals. An overview of the current trends in enzyme engineering is explored with important representative examples.
Collapse
Affiliation(s)
- Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695 014, India
| | - K B Arun
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695 014, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, India
| | - Ranjna Sirohi
- The Center for Energy and Environmental Sustainability, Lucknow 226 010, Uttar Pradesh, India
| | - Ayon Tarafdar
- Division of Livestock Production and Management, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, North West A & F University, Yangling, Shaanxi 712 100, China
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, India.
| |
Collapse
|
3
|
Riester O, Borgolte M, Csuk R, Deigner HP. Challenges in Bone Tissue Regeneration: Stem Cell Therapy, Biofunctionality and Antimicrobial Properties of Novel Materials and Its Evolution. Int J Mol Sci 2020; 22:E192. [PMID: 33375478 PMCID: PMC7794985 DOI: 10.3390/ijms22010192] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
An aging population leads to increasing demand for sustained quality of life with the aid of novel implants. Patients expect fast healing and few complications after surgery. Increased biofunctionality and antimicrobial behavior of implants, in combination with supportive stem cell therapy, can meet these expectations. Recent research in the field of bone implants and the implementation of autologous mesenchymal stem cells in the treatment of bone defects is outlined and evaluated in this review. The article highlights several advantages, limitations and advances for metal-, ceramic- and polymer-based implants and discusses the future need for high-throughput screening systems used in the evaluation of novel developed materials and stem cell therapies. Automated cell culture systems, microarray assays or microfluidic devices are required to efficiently analyze the increasing number of new materials and stem cell-assisted therapies. Approaches described in the literature to improve biocompatibility, biofunctionality and stem cell differentiation efficiencies of implants range from the design of drug-laden nanoparticles to chemical modification and the selection of materials that mimic the natural tissue. Combining suitable implants with mesenchymal stem cell treatment promises to shorten healing time and increase treatment success. Most research studies focus on creating antibacterial materials or modifying implants with antibacterial coatings in order to address the increasing number of complications after surgeries that are mostly caused by bacterial infections. Moreover, treatment of multiresistant pathogens will pose even bigger challenges in hospitals in the future, according to the World Health Organization (WHO). These antibacterial materials will help to reduce infections after surgery and the number of antibiotic treatments that contribute to the emergence of new multiresistant pathogens, whilst the antibacterial implants will help reduce the amount of antibiotics used in clinical treatment.
Collapse
Affiliation(s)
- Oliver Riester
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany; (O.R.); (M.B.)
| | - Max Borgolte
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany; (O.R.); (M.B.)
| | - René Csuk
- Institute of Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle (Saale), Germany;
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany; (O.R.); (M.B.)
- EXIM Department, Fraunhofer Institute IZI, Leipzig, Schillingallee 68, 18057 Rostock, Germany
- Faculty of Science, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| |
Collapse
|
4
|
Kwon KK, Yeom SJ, Lee DH, Jeong KJ, Lee SG. Development of a novel cellulase biosensor that detects crystalline cellulose hydrolysis using a transcriptional regulator. Biochem Biophys Res Commun 2017; 495:1328-1334. [PMID: 29180013 DOI: 10.1016/j.bbrc.2017.11.157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/23/2017] [Indexed: 02/05/2023]
Abstract
Successful utilization of cellulose as renewable biomass depends on the development of economically feasible technologies, which can aid in enzymatic hydrolysis. In this study, we developed a whole-cell biosensor for detecting cellulolytic activity that relies on the recognition of cellobiose using the transcriptional factor CelR from Thermobifida fusca and transcriptional activation of its downstream gfp reporter gene. The fluorescence intensity of whole-cell biosensor, which was named as cellobiose-detectible genetic enzyme screening system (CBGESS), was directly proportional to the concentration of cellobiose. The strong fluorescence intensity of CBGESS demonstrated the ability to detect cellulolytic activity with two cellulosic substrates, carboxymethyl cellulose and p-nitrophenyl β-D-cellobioside in cellulase-expressing Escherichia coli. In addition, CBGESS easily sensed crystalline cellulolytic activity when commercial Celluclast 1.5L was dropped on an Avicel plate. Therefore, CBGESS is a powerful tool for detecting cellulolytic activity with high sensitivity in the presence of soluble or insoluble cellulosic substrates. CBGESS may be further applied to excavate novel cellulases or microbes from both genetic libraries and various environments.
Collapse
Affiliation(s)
- Kil Koang Kwon
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Soo-Jin Yeom
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Dae-Hee Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seung-Goo Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
5
|
Lim JM, Choi JH, Choi JW, Yun JW, Park TJ, Park JP. Cloning, Expression, and Production of Xylo-Oligosaccharides by Using a Newly Screened Xylanase Isolated from Bovine Rumen. Appl Biochem Biotechnol 2017; 184:1347-1357. [PMID: 29027104 DOI: 10.1007/s12010-017-2623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
Affiliation(s)
- J M Lim
- Department of Pharmaceutical Engineering, Daegu Haany University, 290 Yugok-dong, Gyeongsan, 38610, Republic of Korea
| | - J H Choi
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup-si, 28116, Republic of Korea
| | - J W Choi
- Department of Bioindustry, Daegu University, Gyeongsan, 38453, Republic of Korea
| | - J W Yun
- Department of Biotechnology, Daegu University, Gyeongsan, 38453, Republic of Korea
| | - T J Park
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Halal Industrialization Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - J P Park
- Department of Pharmaceutical Engineering, Daegu Haany University, 290 Yugok-dong, Gyeongsan, 38610, Republic of Korea.
| |
Collapse
|
6
|
Lewin A, Zhou J, Pham VTT, Haugen T, Zeiny ME, Aarstad O, Liebl W, Wentzel A, Liles MR. Novel archaeal thermostable cellulases from an oil reservoir metagenome. AMB Express 2017; 7:183. [PMID: 28963711 PMCID: PMC5622026 DOI: 10.1186/s13568-017-0485-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/20/2017] [Indexed: 01/24/2023] Open
Abstract
Microbial assemblages were sampled from an offshore deep sub-surface petroleum reservoir 2.5 km below the ocean floor off the coast of Norway, providing conditions of high temperature and pressure, to identify new thermostable enzymes. In this study, we used DNA sequences obtained directly from the sample metagenome and from a derived fosmid library to survey the functional diversity of this extreme habitat. The metagenomic fosmid library containing 11,520 clones was screened using function- and sequence-based methods to identify recombinant clones expressing carbohydrate-degrading enzymes. Open reading frames (ORFs) encoding carbohydrate-degrading enzymes were predicted by BLAST against the CAZy database, and many fosmid clones expressing carbohydrate-degrading activities were discovered by functional screening using Escherichia coli as a heterologous host. Each complete ORF predicted to encode a cellulase identified from sequence- or function-based screening was subcloned in an expression vector. Five subclones was found to have significant activity using a fluorescent cellulose model substrate, and three of these were observed to be highly thermostable. Based on phylogenetic analyses, the thermostable cellulases were derived from thermophilic Archaea and are distinct from known cellulases. Cellulase F1, obtained from function-based screening, contains two distinct cellulase modules, perhaps resulting from fusion of two archaeal cellulases and with a novel protein structure that may result in enhanced activity and thermostability. This enzyme was found to exhibit exocellulase function and to have a remarkably high activity compared to commercially available enzymes. Results from this study highlight the complementarity of hybrid approaches for enzyme discovery, combining sequence- and function-based screening.
Collapse
|
7
|
DeCastro ME, Rodríguez-Belmonte E, González-Siso MI. Metagenomics of Thermophiles with a Focus on Discovery of Novel Thermozymes. Front Microbiol 2016; 7:1521. [PMID: 27729905 PMCID: PMC5037290 DOI: 10.3389/fmicb.2016.01521] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/12/2016] [Indexed: 11/24/2022] Open
Abstract
Microbial populations living in environments with temperatures above 50°C (thermophiles) have been widely studied, increasing our knowledge in the composition and function of these ecological communities. Since these populations express a broad number of heat-resistant enzymes (thermozymes), they also represent an important source for novel biocatalysts that can be potentially used in industrial processes. The integrated study of the whole-community DNA from an environment, known as metagenomics, coupled with the development of next generation sequencing (NGS) technologies, has allowed the generation of large amounts of data from thermophiles. In this review, we summarize the main approaches commonly utilized for assessing the taxonomic and functional diversity of thermophiles through metagenomics, including several bioinformatics tools and some metagenome-derived methods to isolate their thermozymes.
Collapse
Affiliation(s)
- María-Eugenia DeCastro
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña A Coruña, Spain
| | - Esther Rodríguez-Belmonte
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña A Coruña, Spain
| | - María-Isabel González-Siso
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña A Coruña, Spain
| |
Collapse
|
8
|
Santero E, Floriano B, Govantes F. Harnessing the power of microbial metabolism. Curr Opin Microbiol 2016; 31:63-69. [DOI: 10.1016/j.mib.2016.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 01/12/2023]
|
9
|
Yang C, Xia Y, Qu H, Li AD, Liu R, Wang Y, Zhang T. Discovery of new cellulases from the metagenome by a metagenomics-guided strategy. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:138. [PMID: 27382415 PMCID: PMC4932676 DOI: 10.1186/s13068-016-0557-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 06/23/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Energy shortage has become a global problem. Production of biofuels from renewable biomass resources is an inevitable trend of sustainable development. Cellulose is the most abundant and renewable resource in nature. Lack of new cellulases with unique properties has become the bottleneck of the efficient utilization of cellulose. Environmental metagenomes are regarded as huge reservoirs for a variety of cellulases. However, new cellulases cannot be obtained easily by functional screening of metagenomic libraries. RESULTS In this work, a metagenomics-guided strategy for obtaining new cellulases from the metagenome was proposed. Metagenomic sequences of DNA extracted from the anaerobic beer lees converting consortium enriched at thermophilic conditions were assembled, and 23 glycoside hydrolase (GH) sequences affiliated with the GH family 5 were identified. Among the 23 GH sequences, three target sequences (designated as cel7482, cel3623 and cel36) showing low identity with those known GHs were chosen as the putative cellulase genes to be functionally expressed in Escherichia coli after PCR cloning. The three cellulases were classified into endo-β-1,4-glucanases by product pattern analysis. The recombinant cellulases were more active at pH 5.5 and within a temperature range of 60-70 °C. Computer-assisted 3D structure modeling indicated that the active residues in the active site of the recombinant cellulases were more similar to each other compared with non-active site residues. The recombinant cel7482 was extremely tolerant to 2 M NaCl, suggesting that cel7482 may be a halotolerant cellulase. Moreover, the recombinant cel7482 was shown to have an ability to resist three ionic liquids (ILs), which are widely used for cellulose pretreatment. Furthermore, active cel7482 was secreted by the twin-arginine translocation (Tat) pathway of Bacillus subtilis 168 into the culture medium, which facilitates the subsequent purification and reduces the formation of inclusion body in the context of overexpression. CONCLUSIONS This study demonstrated a simple and efficient method for direct cloning of new cellulase genes from environmental metagenomes. In the future, the metagenomics-guided strategy may be applied to the high-throughput screening of new cellulases from environmental metagenomes.
Collapse
Affiliation(s)
- Chao Yang
- />Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong
- />State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Yu Xia
- />Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong
| | - Hong Qu
- />College of Life Sciences, Peking University, Beijing, 100871 China
| | - An-Dong Li
- />Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong
| | - Ruihua Liu
- />State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Yubo Wang
- />Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong
| | - Tong Zhang
- />Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong
| |
Collapse
|
10
|
Cheong DE, Ko KC, Han Y, Jeon HG, Sung BH, Kim GJ, Choi JH, Song JJ. Enhancing functional expression of heterologous proteins through random substitution of genetic codes in the 5' coding region. Biotechnol Bioeng 2015; 112:822-6. [PMID: 25323933 DOI: 10.1002/bit.25478] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 02/03/2023]
Abstract
Recent studies using heterologous protein expression systems suggest that synonymous codons affect not only the expression but also the properties of the expressed protein. However, practical application of this information is challenging, and to date, efforts to employ bioinformatics tools to design synonymous codon mixes have been only marginally successful. Here, we sought to enhance the functional expression of heterologous protein in Escherichia coli through completely random substitution of the first ten codons with synonymous codons, using a previously isolated exocellulase CelEdx-SF301 as the model protein. Synonymous codon variants were generated by PCR using forward primers with mixed nucleotides at the third position in each codon and a conventional reverse primer. The resulting PCR products were inserted upstream of the fluorescent protein mCherry without linkers. After transformation and cultivation, colonies exhibiting red fluorescence were selected, and the activity of SF301-mCherry fusion proteins was tested. Synonymous codon variant fusion proteins exhibited 35- to 530-fold increases in functional expression compared with wild-type controls. Unlike results from other reports, we found that the stability of mRNA secondary structure in the 5' untranslated region and codon rarity were not correlated with functional expression level. Our work demonstrates that a completely random mixed of synonymous codons effectively enhances functional expression levels without the need for amino acid substitutions.
Collapse
Affiliation(s)
- Dae-Eun Cheong
- Industrial Microbiology & Bioprocess Research Center, Integrated Biorefinery Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup-si, Jeonbuk, 580-185, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Guazzaroni ME, Silva-Rocha R, Ward RJ. Synthetic biology approaches to improve biocatalyst identification in metagenomic library screening. Microb Biotechnol 2014; 8:52-64. [PMID: 25123225 PMCID: PMC4321373 DOI: 10.1111/1751-7915.12146] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/22/2014] [Accepted: 06/28/2014] [Indexed: 11/28/2022] Open
Abstract
There is a growing demand for enzymes with improved catalytic performance or tolerance to process-specific parameters, and biotechnology plays a crucial role in the development of biocatalysts for use in industry, agriculture, medicine and energy generation. Metagenomics takes advantage of the wealth of genetic and biochemical diversity present in the genomes of microorganisms found in environmental samples, and provides a set of new technologies directed towards screening for new catalytic activities from environmental samples with potential biotechnology applications. However, biased and low level of expression of heterologous proteins in Escherichia coli together with the use of non-optimal cloning vectors for the construction of metagenomic libraries generally results in an extremely low success rate for enzyme identification. The bottleneck arising from inefficient screening of enzymatic activities has been addressed from several perspectives; however, the limitations related to biased expression in heterologous hosts cannot be overcome by using a single approach, but rather requires the synergetic implementation of multiple methodologies. Here, we review some of the principal constraints regarding the discovery of new enzymes in metagenomic libraries and discuss how these might be resolved by using synthetic biology methods.
Collapse
|
12
|
Minireactor-based high-throughput temperature profiling for the optimization of microbial and enzymatic processes. J Biol Eng 2014; 8:22. [PMID: 25126113 PMCID: PMC4128537 DOI: 10.1186/1754-1611-8-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/28/2014] [Indexed: 01/29/2023] Open
Abstract
Background Bioprocesses depend on a number of different operating parameters and temperature is one of the most important ones. Unfortunately, systems for rapid determination of temperature dependent reaction kinetics are rare. Obviously, there is a need for a high-throughput screening procedure of temperature dependent process behavior. Even though, well equipped micro-bioreactors are a promising approach sufficient temperature control is quite challenging and rather complex. Results In this work a unique system is presented combining an optical on-line monitoring device with a customized temperature control unit for 96 well microtiter plates. By exposing microtiter plates to specific temperature profiles, high-throughput temperature optimization for microbial and enzymatic systems in a micro-scale of 200 μL is realized. For single well resolved temperature measurement fluorescence thermometry was used, combining the fluorescent dyes Rhodamin B and Rhodamin 110. The real time monitoring of the microbial and enzymatic reactions provides extensive data output. To evaluate this novel system the temperature optima for Escherichia coli and Kluyveromyces lactis regarding growth and recombinant protein production were determined. Furthermore, the commercial cellulase mixture Celluclast as a representative for enzymes was investigated applying a fluorescent activity assay. Conclusion Microtiter plate-based high-throughput temperature profiling is a convenient tool for characterizing temperature dependent reaction processes. It allows the evaluation of numerous conditions, e.g. microorganisms, enzymes, media, and others, in a short time. The simple temperature control combined with a commercial on-line monitoring device makes it a user friendly system.
Collapse
|
13
|
Ko KC, Lee JH, Han Y, Choi JH, Song JJ. A novel multifunctional cellulolytic enzyme screened from metagenomic resources representing ruminal bacteria. Biochem Biophys Res Commun 2013; 441:567-72. [DOI: 10.1016/j.bbrc.2013.10.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 10/22/2013] [Indexed: 11/26/2022]
|