1
|
Khambhati K, Bhattacharjee G, Gohil N, Maurya R, Singh V. Exploring the potential of phage and their applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:1-12. [PMID: 37739550 DOI: 10.1016/bs.pmbts.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Antibiotic resistant microorganisms are significantly increasing due to horizontal gene transfer, mutation and overdose of antibiotics leading to serious health conditions globally. Several multidrug resistant microorganisms have shown resistance to even the last line of antibiotics making it very difficult to treat them. Besides using antibiotics, an alternative approach to treat such resistant bacterial pathogens through the use of bacteriophage (phage) was used in the early 1900s which however declined and vanished after the discovery of antibiotics. In recent times, phage has emerged and gained interest as an alternative approach to antibiotics to treat MDR pathogens. Phage can self-replicate by utilizing cellular machinery of bacterial host by following lytic and lysogenic life cycles and therefore suitable for rapid regeneration. Application of phage for detection of bacterial pathogens, elimination of bacteria, agents for controlling food spoilage, treating human disease and several others entitles phage as a futuristic antibacterial armamentarium.
Collapse
Affiliation(s)
- Khushal Khambhati
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Gargi Bhattacharjee
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Nisarg Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Rupesh Maurya
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India.
| |
Collapse
|
2
|
Maimaiti Z, Li Z, Xu C, Chen J, Chai W. Global trends and hotspots of phage therapy for bacterial infection: A bibliometric visualized analysis from 2001 to 2021. Front Microbiol 2023; 13:1067803. [PMID: 36699585 PMCID: PMC9868171 DOI: 10.3389/fmicb.2022.1067803] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Background Antibiotic resistance is one of the main global threats to human health, and just the development of new antimicrobial medications is not enough to solve the crisis. Phage therapy (PT), a safe and effective treatment method, has reignited the interest of researchers due to its efficacy in the clinical treatment of drug-resistant bacterial infections. There is, however, no bibliometric analysis of the overall trends on this topic. Therefore, this study aims to provide an overview of the current state of development and research in this area. Methods We extracted all relevant publications from the Web of Science Core Collection (WoSCC) database between 2001 and 2021. We performed bibliometric analysis and visualization using CiteSpace, VOS viewer, and R software. Annual trends of publications, countries/regions distributions, institutions, funding agencies, co-cited journals, author contributions, core journals, references, and keywords were analyzed. Results A total of 6,538 papers were enrolled in this study, including 5,364 articles and 1,174 reviews. Publications have increased drastically from 61 in 2001 to 937 in 2021, with 3,659 articles published in the last 5 years. North America, Western Europe, and East Asia were significant contributor regions. The United States, China, and the United Kingdom were the most productive countries. The Polish Academy of Sciences was the most contributive institution. Frontiers in Microbiology and Applied and Environmental Microbiology were the most productive and co-cited journals. A. Gorski and R. Lavigne published most articles in this field, while V. A. Fischetti was the author with the most cited. Regarding keywords, research focuses include phage biology, phage against clinically important pathogens, phage lysis proteins, phage therapy, biofilm-related research, and recent clinical applications. Conclusion Phage therapy is a potential strategy for combating antibiotic resistance, and it will provide us with an alternative therapeutic option for bacterial infection. According to global trends, the scientific output of PT in bacterial infections is increasing, with developed countries such as the United States leading the way in this area. Although the safety and efficacy of PT have been proven, more clinical trials on the phages against infectious diseases caused by various pathogens are still needed.
Collapse
Affiliation(s)
- Zulipikaer Maimaiti
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China,Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhuo Li
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China,School of Medicine, Nankai University, Tianjin, China
| | - Chi Xu
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China,Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jiying Chen
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China,Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China,*Correspondence: Jiying Chen, ; Wei Chai,
| | - Wei Chai
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China,Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China,*Correspondence: Jiying Chen, ; Wei Chai,
| |
Collapse
|
3
|
Dutta B, Lahiri D, Nag M, Abukhader R, Sarkar T, Pati S, Upadhye V, Pandit S, Amin MFM, Al Tawaha ARMS, Kumar M, Ray RR. Multi-Omics Approach in Amelioration of Food Products. Front Microbiol 2022; 13:955683. [PMID: 35903478 PMCID: PMC9315205 DOI: 10.3389/fmicb.2022.955683] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Determination of the quality of food products is an essential key factor needed for safe-guarding the quality of food for the interest of the consumers, along with the nutritional and sensory improvements that are necessary for delivering better quality products. Bacteriocins are a group of ribosomally synthesized antimicrobial peptides that help in maintaining the quality of food. The implementation of multi-omics approach has been important for the overall enhancement of the quality of the food. This review uses various recent technologies like proteomics, transcriptomics, and metabolomics for the overall enhancement of the quality of food products. The matrix associated with the food products requires the use of sophisticated technologies that help in the extraction of a large amount of information necessary for the amelioration of the food products. This review would provide a wholesome view of how various recent technologies can be used for improving the quality food products and for enhancing their shelf-life.
Collapse
Affiliation(s)
- Bandita Dutta
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Rose Abukhader
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Siddhartha Pati
- NatNov Bioscience Private Limited, Balasore, India
- Skills Innovation & Academic Network (SIAN) Institute, Association for Biodiversity Conservation & Research (ABC), Balasore, India
| | - Vijay Upadhye
- Center of Research for Development (CR4D), Parul Institute of Applied Sciences (PIAS), Parul University, Vadodara, India
| | - Soumya Pandit
- Department of Life Sciences, Sharda University, Noida, India
| | | | | | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| |
Collapse
|
4
|
Rotem S, Steinberger-Levy I, Israeli O, Zahavy E, Aloni-Grinstein R. Beating the Bio-Terror Threat with Rapid Antimicrobial Susceptibility Testing. Microorganisms 2021; 9:1535. [PMID: 34361970 PMCID: PMC8304332 DOI: 10.3390/microorganisms9071535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
A bioterror event using an infectious bacterium may lead to catastrophic outcomes involving morbidity and mortality as well as social and psychological stress. Moreover, a bioterror event using an antibiotic resistance engineered bacterial agent may raise additional concerns. Thus, preparedness is essential to preclude and control the dissemination of the bacterial agent as well as to appropriately and promptly treat potentially exposed individuals or patients. Rates of morbidity, death, and social anxiety can be drastically reduced if the rapid delivery of antimicrobial agents for post-exposure prophylaxis and treatment is initiated as soon as possible. Availability of rapid antibiotic susceptibility tests that may provide key recommendations to targeted antibiotic treatment is mandatory, yet, such tests are only at the development stage. In this review, we describe the recently published rapid antibiotic susceptibility tests implemented on bioterror bacterial agents and discuss their assimilation in clinical and environmental samples.
Collapse
Affiliation(s)
| | | | | | | | - Ronit Aloni-Grinstein
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel; (S.R.); (I.S.-L.); (O.I.); (E.Z.)
| |
Collapse
|
5
|
Zelcbuch L, Yitzhaki E, Nissan O, Gidron E, Buchshtab N, Kario E, Kredo-Russo S, Zak NB, Bassan M. Luminescent Phage-Based Detection of Klebsiella pneumoniae: From Engineering to Diagnostics. Pharmaceuticals (Basel) 2021; 14:347. [PMID: 33918942 PMCID: PMC8069110 DOI: 10.3390/ph14040347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
Bacteriophages ("phages") infect and multiply within specific bacterial strains, causing lysis of their target. Due to the specific nature of these interactions, phages allow a high-precision approach for therapy which can also be exploited for the detection of phage-sensitive pathogens associated with chronic diseases due to gut microbiome imbalance. As rapid phage-mediated detection assays becoming standard-of-care diagnostic tools, they will advance the more widespread application of phage therapy in a precision approach. Using a conventional method and a new cloning approach to develop luminescent phages, we engineered two phages that specifically detect a disease-associated microbial strain. We performed phage sensitivity assays in liquid culture and in fecal matrices and tested the stability of spiked fecal samples stored under different conditions. Different reporter gene structures and genome insertion sites were required to successfully develop the two nluc-reporter phages. The reporter phages detected spiked bacteria in five fecal samples with high specificity. Fecal samples stored under different conditions for up to 30 days did not display major losses in reporter-phage-based detection. Luminescent phage-based diagnostics can provide a rapid co-diagnostic tool to guide the growing field of phage therapy, particularly for a precision-based approach to chronic diseases treatment.
Collapse
Affiliation(s)
- Lior Zelcbuch
- Research Department, BiomX Ltd., Ness Ziona 7414002, Israel; (E.Y.); (O.N.); (E.G.); (N.B.); (E.K.); (S.K.-R.); (N.B.Z.); (M.B.)
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bacteriophage-based advanced bacterial detection: Concept, mechanisms, and applications. Biosens Bioelectron 2021; 177:112973. [DOI: 10.1016/j.bios.2021.112973] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
|
7
|
Sozhamannan S, Hofmann ER. The State of the Art in Biodefense Related Bacterial Pathogen Detection Using Bacteriophages: How It Started and How It's Going. Viruses 2020; 12:v12121393. [PMID: 33291831 PMCID: PMC7762055 DOI: 10.3390/v12121393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Accurate pathogen detection and diagnosis is paramount in clinical success of treating patients. There are two general paradigms in pathogen detection: molecular and immuno-based, and phage-based detection is a third emerging paradigm due to its sensitivity and selectivity. Molecular detection methods look for genetic material specific for a given pathogen in a sample usually by polymerase chain reaction (PCR). Immuno-methods look at the pathogen components (antigens) by antibodies raised against that pathogen specific antigens. There are different variations and products based on these two paradigms with advantages and disadvantages. The third paradigm at least for bacterial pathogen detection entails bacteriophages specific for a given bacterium. Sensitivity and specificity are the two key parameters in any pathogen detection system. By their very nature, bacteriophages afford the best sensitivity for bacterial detection. Bacteria and bacteriophages form the predator-prey pair in the evolutionary arms race and has coevolved over time to acquire the exquisite specificity of the pair, in some instances at the strain level. This specificity has been exploited for diagnostic purposes of various pathogens of concern in clinical and other settings. Many recent reviews focus on phage-based detection and sensor technologies. In this review, we focus on a very special group of pathogens that are of concern in biodefense because of their potential misuse in bioterrorism and their extremely virulent nature and as such fall under the Centers for Disease and Prevention (CDC) Category A pathogen list. We describe the currently available phage methods that are based on the usual modalities of detection from culture, to molecular and immuno- and fluorescent methods. We further highlight the gaps and the needs for more modern technologies and sensors drawing from technologies existing for detection and surveillance of other pathogens of clinical relevance.
Collapse
Affiliation(s)
- Shanmuga Sozhamannan
- National Security Science & Technology, Management Advisory Services, Logistics Management Institute, 7940 Jones Branch Drive, Tysons, VA 22102, USA;
- Defense Biological Product Assurance Office (DBPAO), Joint Program Executive Office (JPEO) for Chemical, Biological, Radiological and Nuclear Defense (CBRND) Joint Project Lead (JPL) CBRND Enabling Biotechnologies (EB), 110 Thomas Johnson Drive, Suite 250, Frederick, MD 21702, USA
| | - Edward R. Hofmann
- EXCET, Inc., 6225 Brandon Ave #360, Springfield, VA 22150, USA
- US Army Combat Capabilities Development Command, Chemical Biological Center, 8908 Guard St, E3831, Edgewood, MD 21010, USA
- Correspondence:
| |
Collapse
|
8
|
Costa SP, Dias NM, Melo LDR, Azeredo J, Santos SB, Carvalho CM. A novel flow cytometry assay based on bacteriophage-derived proteins for Staphylococcus detection in blood. Sci Rep 2020; 10:6260. [PMID: 32277078 PMCID: PMC7148305 DOI: 10.1038/s41598-020-62533-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/06/2019] [Indexed: 02/08/2023] Open
Abstract
Bloodstream infections (BSIs) are considered a major cause of death worldwide. Staphylococcus spp. are one of the most BSIs prevalent bacteria, classified as high priority due to the increasing multidrug resistant strains. Thus, a fast, specific and sensitive method for detection of these pathogens is of extreme importance. In this study, we have designed a novel assay for detection of Staphylococcus in blood culture samples, which combines the advantages of a phage endolysin cell wall binding domain (CBD) as a specific probe with the accuracy and high-throughput of flow cytometry techniques. In order to select the biorecognition molecule, three different truncations of the C-terminus of Staphylococcus phage endolysin E-LM12, namely the amidase (AMI), SH3 and amidase+SH3 (AMI_SH3) were cloned fused with a green fluorescent protein. From these, a higher binding efficiency to Staphylococcus cells was observed for AMI_SH3, indicating that the amidase domain possibly contributes to a more efficient binding of the SH3 domain. The novel phage endolysin-based flow cytometry assay provided highly reliable and specific detection of 1-5 CFU of Staphylococcus in 10 mL of spiked blood, after 16 hours of enrichment culture. Overall, the method developed herein presents advantages over the standard BSIs diagnostic methods, potentially contributing to an early and effective treatment of BSIs.
Collapse
Affiliation(s)
- Susana P Costa
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Nicolina M Dias
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Luís D R Melo
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Joana Azeredo
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Sílvio B Santos
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Carla M Carvalho
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal.
| |
Collapse
|
9
|
Gargis AS, Cherney B, Conley AB, McLaughlin HP, Sue D. Rapid Detection of Genetic Engineering, Structural Variation, and Antimicrobial Resistance Markers in Bacterial Biothreat Pathogens by Nanopore Sequencing. Sci Rep 2019; 9:13501. [PMID: 31534162 PMCID: PMC6751186 DOI: 10.1038/s41598-019-49700-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/27/2019] [Indexed: 01/10/2023] Open
Abstract
Widespread release of Bacillus anthracis (anthrax) or Yersinia pestis (plague) would prompt a public health emergency. During an exposure event, high-quality whole genome sequencing (WGS) can identify genetic engineering, including the introduction of antimicrobial resistance (AMR) genes. Here, we developed rapid WGS laboratory and bioinformatics workflows using a long-read nanopore sequencer (MinION) for Y. pestis (6.5 h) and B. anthracis (8.5 h) and sequenced strains with different AMR profiles. Both salt-precipitation and silica-membrane extracted DNA were suitable for MinION WGS using both rapid and field library preparation methods. In replicate experiments, nanopore quality metrics were defined for genome assembly and mutation analysis. AMR markers were correctly detected and >99% coverage of chromosomes and plasmids was achieved using 100,000 raw sequencing reads. While chromosomes and large and small plasmids were accurately assembled, including novel multimeric forms of the Y. pestis virulence plasmid, pPCP1, MinION reads were error-prone, particularly in homopolymer regions. MinION sequencing holds promise as a practical, front-line strategy for on-site pathogen characterization to speed the public health response during a biothreat emergency.
Collapse
Affiliation(s)
- Amy S Gargis
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
| | - Blake Cherney
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Andrew B Conley
- IHRC-Georgia Tech Applied Bioinformatics Laboratory, Atlanta, Georgia, USA
| | - Heather P McLaughlin
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David Sue
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
10
|
McLaughlin HP, Sue D. Rapid antimicrobial susceptibility testing and β-lactam-induced cell morphology changes of Gram-negative biological threat pathogens by optical screening. BMC Microbiol 2018; 18:218. [PMID: 30563467 PMCID: PMC6299660 DOI: 10.1186/s12866-018-1347-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND For Yersinia pestis, Burkholderia pseudomallei, and Burkholderia mallei, conventional broth microdilution (BMD) is considered the gold standard for antimicrobial susceptibility testing (AST) and, depending on the species, requires an incubation period of 16-20 h, or 24-48 h according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. After a diagnosis of plague, melioidosis or glanders during an outbreak or after an exposure event, the timely distribution of appropriate antibiotics for treatment or post-exposure prophylaxis of affected populations could reduce mortality rates. RESULTS Herein, we developed and evaluated a rapid, automated susceptibility test for these Gram-negative bacterial pathogens based on time-lapse imaging of cells incubating in BMD microtitre drug panels using an optical screening instrument (oCelloScope). In real-time, the instrument screened each inoculated well containing broth with various concentrations of antibiotics published by CLSI for primary testing: ciprofloxacin (CIP), doxycycline (DOX) and gentamicin (GEN) for Y. pestis; imipenem (IPM), ceftazidime (CAZ) and DOX for B. mallei; and IPM, DOX, CAZ, amoxicillin-clavulanic acid (AMC) and trimethoprim-sulfamethoxazole (SXT) for B. pseudomallei. Based on automated growth kinetic data, the time required to accurately determine susceptibility decreased by ≥70% for Y. pestis and ≥ 50% for B. mallei and B. pseudomallei compared to the times required for conventional BMD testing. Susceptibility to GEN, IPM and DOX could be determined in as early as three to six hours. In the presence of CAZ, susceptibility based on instrument-derived growth values could not be determined for the majority of B. pseudomallei and B. mallei strains tested. Time-lapse video imaging of these cultures revealed that the formation of filaments in the presence of this cephalosporin at inhibitory concentrations was detected as growth. Other β-lactam-induced cell morphology changes, such as the formation of spheroplasts and rapid cell lysis, were also observed and appear to be strain- and antibiotic concentration-dependent. CONCLUSIONS A rapid, functional AST was developed and real-time video footage captured β-lactam-induced morphologies of wild-type B. mallei and B. pseudomallei strains in broth. Optical screening reduced the time to results required for AST of three Gram-negative biothreat pathogens using clinically relevant, first-line antibiotics compared to conventional BMD.
Collapse
Affiliation(s)
- Heather P. McLaughlin
- Laboratory of Preparedness and Response Branch, Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS-H17-5, Atlanta, GA 30333 USA
| | - David Sue
- Laboratory of Preparedness and Response Branch, Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS-H17-5, Atlanta, GA 30333 USA
| |
Collapse
|
11
|
Gargis AS, McLaughlin HP, Conley AB, Lascols C, Michel PA, Gee JE, Marston CK, Kolton CB, Rodriguez-R LM, Hoffmaster AR, Weigel LM, Sue D. Analysis of Whole-Genome Sequences for the Prediction of Penicillin Resistance and β-Lactamase Activity in Bacillus anthracis. mSystems 2018; 3:e00154-18. [PMID: 30574557 PMCID: PMC6290263 DOI: 10.1128/msystems.00154-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/14/2018] [Indexed: 12/01/2022] Open
Abstract
Penicillin (PEN) is a low-cost option for anthrax treatment, but naturally occurring resistance has been reported. β-Lactamase expression (bla1, bla2) in Bacillus anthracis is regulated by a sigma factor (SigP) and its cognate anti-sigma factor (RsiP). Mutations leading to truncation of RsiP were previously described as a basis for PEN resistance. Here, we analyze whole-genome sequencing (WGS) data and compare the chromosomal sigP-bla1 regions from 374 B. anthracis strains to determine the frequency of mutations, identify mutations associated with PEN resistance, and evaluate the usefulness of WGS for predicting PEN resistance. Few (3.5%) strains contained at least 1 of 11 different mutations in sigP, rsiP, or bla1. Nine of these mutations have not been previously associated with PEN resistance. Four strains showed PEN resistance (PEN-R) by conventional broth microdilution, including 1 strain with a novel frameshift in rsiP. One strain that carries the same rsiP frameshift mutation as that found previously in a PEN-R strain showed a PEN-susceptible (PEN-S) phenotype and exhibited decreased bla1 and bla2 transcription. An unexpectedly small colony size, a reduced growth rate, and undetectable β-lactamase activity levels (culture supernatant and cell lysate) were observed in this PEN-S strain. Sequence analysis revealed mutations in genes associated with growth defects that may contribute to this phenotype. While B. anthracis rsiP mutations cannot be exclusively used to predict resistance, four of the five strains with rsiP mutations were PEN-R. Therefore, the B. anthracis sigP-bla1 region is a useful locus for WGS-based PEN resistance prediction, but phenotypic testing remains essential. IMPORTANCE Determination of antimicrobial susceptibility of B. anthracis is essential for the appropriate distribution of antimicrobial agents for postexposure prophylaxis (PEP) and treatment of anthrax. Analysis of WGS data allows for the rapid detection of mutations in antimicrobial resistance (AMR) genes in an isolate, but the presence of a mutation in an AMR gene does not always accurately predict resistance. As mutations in the anti-sigma factor RsiP have been previously associated with high-level penicillin resistance in a limited number of strains, we investigated WGS assemblies from 374 strains to determine the frequency of mutations and performed functional antimicrobial susceptibility testing. Of the five strains that contained mutations in rsiP, only four were PEN-R by functional antimicrobial susceptibility testing. We conclude that while sequence analysis of this region is useful for AMR prediction in B. anthracis, genetic analysis should not be used exclusively and phenotypic susceptibility testing remains essential.
Collapse
Affiliation(s)
- A. S. Gargis
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - H. P. McLaughlin
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - A. B. Conley
- IHRC-Georgia Tech Applied Bioinformatics Laboratory, Atlanta, Georgia, USA
| | - C. Lascols
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - P. A. Michel
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - J. E. Gee
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - C. K. Marston
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - C. B. Kolton
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - L. M. Rodriguez-R
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - A. R. Hoffmaster
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - L. M. Weigel
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - D. Sue
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Wei TY, Cheng CM. Synthetic Biology-Based Point-of-Care Diagnostics for Infectious Disease. Cell Chem Biol 2017; 23:1056-1066. [PMID: 27662252 DOI: 10.1016/j.chembiol.2016.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/15/2016] [Accepted: 07/08/2016] [Indexed: 02/09/2023]
Abstract
Infectious diseases outpace all other causes of death in low-income countries, posing global health risks, laying stress on healthcare systems and societies, and taking an avoidable human toll. One solution to this crisis is early diagnosis of infectious disease, which represents a powerful way to optimize treatment, increase patient survival rate, and decrease healthcare costs. However, conventional early diagnosis methods take a long time to generate results, lack accuracy, and are known to seriously underperform with regard to fungal and viral infections. Synthetic biology offers a fast and highly accurate alternative to conventional infectious disease diagnosis. In this review, we outline obstacles to infectious disease diagnostics and discuss two emerging alternatives: synthetic viral diagnostic systems and biosensors. We argue that these synthetic biology-based approaches may overcome diagnostic obstacles in infectious disease and improve health outcomes.
Collapse
Affiliation(s)
- Ting-Yen Wei
- Interdisciplinary Program of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
13
|
Nguyen C, Makkar R, Sharp NJ, Page MA, Molineux IJ, Schofield DA. Detection of Bacillus anthracis spores from environmental water using bioluminescent reporter phage. J Appl Microbiol 2017; 123:1184-1193. [PMID: 28833845 DOI: 10.1111/jam.13569] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/09/2017] [Accepted: 08/12/2017] [Indexed: 11/28/2022]
Abstract
AIMS We investigated the ability of a temperate Bacillus anthracis reporter phage (Wβ::luxAB-2), which transduces bioluminescence to infected cells, to detect viable spores from deliberately contaminated environmental water samples. METHODS AND RESULTS Environmental water was inoculated with spores and assayed with Wβ::luxAB-2. Bioluminescent signals directly correlated with input phage and spore concentrations. A limit of detection of 101 and 102 CFU per ml within 8 h was achieved from pond and lake water, respectively. Detection was greatly simplified by minimizing sample processing steps without spore extraction. The complex endogenous microbial flora and salt content of brackish water challenged the assay, extending the detection time to 12 h for a sensitivity of 102 CFU per ml. Phage-mediated bioluminescence was strictly dependent on bacterial physiology, being significantly reduced in mid/late log phase cells. This was shown to be due to an inability of the phage to adsorb. CONCLUSIONS The reporter phage Wβ::luxAB-2 displays potential for simplified detection of viable spores from contaminated water samples within 12 h. SIGNIFICANCE AND IMPACT OF THE STUDY A deliberate aerosol release of spores could lead to widespread contamination, leaving large areas uninhabitable until remediation. An essential requirement of this restoration process is the development of simplified detection assays in different environmental matrices.
Collapse
Affiliation(s)
- C Nguyen
- Guild BioSciences, Charleston, SC, USA
| | - R Makkar
- Guild BioSciences, Charleston, SC, USA
| | - N J Sharp
- Guild BioSciences, Charleston, SC, USA
| | - M A Page
- Construction Engineering and Research Laboratory, U.S. Army Corps of Engineers, Engineer Research and Development Center, Champaign, IL, USA
| | - I J Molineux
- Department of Molecular BioSciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
14
|
Lin DM, Koskella B, Lin HC. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther 2017; 8:162-173. [PMID: 28828194 PMCID: PMC5547374 DOI: 10.4292/wjgpt.v8.i3.162] [Citation(s) in RCA: 528] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/12/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023] Open
Abstract
The practice of phage therapy, which uses bacterial viruses (phages) to treat bacterial infections, has been around for almost a century. The universal decline in the effectiveness of antibiotics has generated renewed interest in revisiting this practice. Conventionally, phage therapy relies on the use of naturally-occurring phages to infect and lyse bacteria at the site of infection. Biotechnological advances have further expanded the repertoire of potential phage therapeutics to include novel strategies using bioengineered phages and purified phage lytic proteins. Current research on the use of phages and their lytic proteins against multidrug-resistant bacterial infections, suggests phage therapy has the potential to be used as either an alternative or a supplement to antibiotic treatments. Antibacterial therapies, whether phage- or antibiotic-based, each have relative advantages and disadvantages; accordingly, many considerations must be taken into account when designing novel therapeutic approaches for preventing and treating bacterial infection. Although much about phages and human health is still being discovered, the time to take phage therapy serious again seems to be rapidly approaching.
Collapse
|
15
|
Bárdy P, Pantůček R, Benešík M, Doškař J. Genetically modified bacteriophages in applied microbiology. J Appl Microbiol 2016; 121:618-33. [PMID: 27321680 DOI: 10.1111/jam.13207] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/07/2016] [Accepted: 06/16/2016] [Indexed: 01/18/2023]
Abstract
Bacteriophages represent a simple viral model of basic research with many possibilities for practical application. Due to their ability to infect and kill bacteria, their potential in the treatment of bacterial infection has been examined since their discovery. With advances in molecular biology and gene engineering, the phage application spectrum has been expanded to various medical and biotechnological fields. The construction of bacteriophages with an extended host range or longer viability in the mammalian bloodstream enhances their potential as an alternative to conventional antibiotic treatment. Insertion of active depolymerase genes to their genomes can enforce the biofilm disposal. They can also be engineered to transfer various compounds to the eukaryotic organisms and the bacterial culture, applicable for the vaccine, drug or gene delivery. Phage recombinant lytic enzymes can be applied as enzybiotics in medicine as well as in biotechnology for pathogen detection or programmed cell death in bacterial expression strains. Besides, modified bacteriophages with high specificity can be applied as bioprobes in detection tools to estimate the presence of pathogens in food industry, or utilized in the control of food-borne pathogens as part of the constructed phage-based biosorbents.
Collapse
Affiliation(s)
- P Bárdy
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - R Pantůček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - M Benešík
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - J Doškař
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
16
|
Bugrysheva JV, Lascols C, Sue D, Weigel LM. Rapid Antimicrobial Susceptibility Testing of Bacillus anthracis, Yersinia pestis, and Burkholderia pseudomallei by Use of Laser Light Scattering Technology. J Clin Microbiol 2016; 54:1462-1471. [PMID: 26984973 PMCID: PMC4879290 DOI: 10.1128/jcm.03251-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/09/2016] [Indexed: 12/21/2022] Open
Abstract
Rapid methods to determine antimicrobial susceptibility would assist in the timely distribution of effective treatment or postexposure prophylaxis in the aftermath of the release of bacterial biothreat agents such as Bacillus anthracis, Yersinia pestis, or Burkholderia pseudomallei Conventional susceptibility tests require 16 to 48 h of incubation, depending on the bacterial species. We evaluated a method that is based on laser light scattering technology that measures cell density in real time. We determined that it has the ability to rapidly differentiate between growth (resistant) and no growth (susceptible) of several bacterial threat agents in the presence of clinically relevant antimicrobials. Results were available in <4 h for B. anthracis and <6 h for Y. pestis and B. pseudomallei One exception was B. pseudomallei in the presence of ceftazidime, which required >10 h of incubation. Use of laser scattering technology decreased the time required to determine antimicrobial susceptibility by 50% to 75% for B. anthracis, Y. pestis, and B. pseudomallei compared to conventional methods.
Collapse
Affiliation(s)
- Julia V Bugrysheva
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christine Lascols
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David Sue
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Linda M Weigel
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Rapid Detection of Viable Bacillus anthracis Spores in Environmental Samples by Using Engineered Reporter Phages. Appl Environ Microbiol 2016; 82:2380-2387. [PMID: 26873316 DOI: 10.1128/aem.03772-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/04/2016] [Indexed: 12/26/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, was utilized as a bioterrorism agent in 2001 when spores were distributed via the U.S. postal system. In responding to this event, the Federal Bureau of Investigation used traditional bacterial culture viability assays to ascertain the extent of contamination of the postal facilities within 24 to 48 h of environmental sample acquisition. Here, we describe a low-complexity, second-generation reporter phage assay for the rapid detection of viableB. anthracis spores in environmental samples. The assay uses an engineered B. anthracis reporter phage (Wβ::luxAB-2) which transduces bioluminescence to infected cells. To facilitate low-level environmental detection and maximize the signal response, expression of luxABin an earlier version of the reporter phage (Wβ::luxAB-1) was optimized. These alterations prolonged signal kinetics, increased light output, and improved assay sensitivity. Using Wβ::luxAB-2, detection of B. anthracis spores was 1 CFU in 8 h from pure cultures and as low as 10 CFU/g in sterile soil but increased to 10(5)CFU/g in unprocessed soil due to an unstable signal and the presence of competing bacteria. Inclusion of semiselective medium, mediated by a phage-expressed antibiotic resistance gene, maintained signal stability and enabled the detection of 10(4)CFU/g in 6 h. The assay does not require spore extraction and relies on the phage infecting germinating cells directly in the soil sample. This reporter phage displays promise for the rapid detection of low levels of spores on clean surfaces and also in grossly contaminated environmental samples from complex matrices such as soils.
Collapse
|
18
|
Nakonieczna A, Cooper CJ, Gryko R. Bacteriophages and bacteriophage-derived endolysins as potential therapeutics to combat Gram-positive spore forming bacteria. J Appl Microbiol 2015; 119:620-31. [PMID: 26109320 DOI: 10.1111/jam.12881] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/28/2015] [Accepted: 06/11/2015] [Indexed: 01/21/2023]
Abstract
Since their discovery in 1915, bacteriophages have been routinely used within Eastern Europe to treat a variety of bacterial infections. Although initially ignored by the West due to the success of antibiotics, increasing levels and diversity of antibiotic resistance is driving a renaissance for bacteriophage-derived therapy, which is in part due to the highly specific nature of bacteriophages as well as their relative abundance. This review focuses on the bacteriophages and derived lysins of relevant Gram-positive spore formers within the Bacillus cereus group and Clostridium genus that could have applications within the medical, food and environmental sectors.
Collapse
Affiliation(s)
- A Nakonieczna
- Biological Threats Identification and Countermeasure Center of the Military Institute of Hygiene and Epidemiology, Pulawy, Poland
| | - C J Cooper
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - R Gryko
- Biological Threats Identification and Countermeasure Center of the Military Institute of Hygiene and Epidemiology, Pulawy, Poland
| |
Collapse
|
19
|
Sharp NJ, Vandamm JP, Molineux IJ, Schofield DA. Rapid Detection of Bacillus anthracis in Complex Food Matrices Using Phage-Mediated Bioluminescence. J Food Prot 2015; 78:963-8. [PMID: 25951391 DOI: 10.4315/0362-028x.jfp-14-534] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bacillus anthracis, the causative agent of anthrax, is considered a high-priority agent that may be used in a food-related terrorist attack because it can be contracted by ingestion and it also forms spores with heat and chemical resistance. Thus, novel surveillance methodologies to detect B. anthracis on adulterated foods are important for bioterrorism preparedness. We describe the development of a phage-based bioluminescence assay for the detection of B. anthracis on deliberately contaminated foods. We previously engineered the B. anthracis phage Wβ with genes encoding bacterial luciferase (luxA and luxB) to create a "light-tagged" reporter (Wβ::luxAB) that is able to rapidly detect B. anthracis by transducing a bioluminescent signal response. Here, we investigate the ability of Wβ::luxAB to detect B. anthracis Sterne, an attenuated select agent strain, in inoculated food (ground beef) and milk (2%, baby formula, and half and half) matrices after incubation with spores for 72 h at 4°C as per AOAC testing guidelines. The majority of B. anthracis bacilli remained in spore form, and thus were potentially infectious, within each of the liquid matrices for 14 days. Detection limits were 80 CFU/ml after 7 h of enrichment; sensitivity of detection increased to 8 CFU/ml when enrichment was extended to 16 h. The limit of detection in ground beef was 3.2 × 10(3) CFU/g after 7 h of enrichment, improving to 3.2 × 10(2) CFU/g after 16 h. Because the time to result is rapid and minimal processing is required, and because gastrointestinal anthrax can be fatal, the reporter technology displays promise for the protection of our food supply following a deliberate release of this priority pathogen.
Collapse
Affiliation(s)
- Natasha J Sharp
- Guild BioSciences, 1313B Ashley River Road, Charleston, South Carolina 29407, USA
| | - Joshua P Vandamm
- Guild BioSciences, 1313B Ashley River Road, Charleston, South Carolina 29407, USA
| | - Ian J Molineux
- Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - David A Schofield
- Guild BioSciences, 1313B Ashley River Road, Charleston, South Carolina 29407, USA.
| |
Collapse
|
20
|
Goel AK. Anthrax: A disease of biowarfare and public health importance. World J Clin Cases 2015; 3:20-33. [PMID: 25610847 PMCID: PMC4295216 DOI: 10.12998/wjcc.v3.i1.20] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/23/2014] [Accepted: 10/31/2014] [Indexed: 02/05/2023] Open
Abstract
Bioterrorism has received a lot of attention in the first decade of this century. Biological agents are considered attractive weapons for bioterrorism as these are easy to obtain, comparatively inexpensive to produce and exhibit widespread fear and panic than the actual potential of physical damage. Bacillus anthracis (B. anthracis), the etiologic agent of anthrax is a Gram positive, spore forming, non-motile bacterium. This is supposed to be one of the most potent BW agents because its spores are extremely resistant to natural conditions and can survive for several decades in the environment. B. anthracis spores enter the body through skin lesion (cutaneous anthrax), lungs (pulmonary anthrax), or gastrointestinal route (gastrointestinal anthrax) and germinate, giving rise to the vegetative form. Anthrax is a concern of public health also in many countries where agriculture is the main source of income including India. Anthrax has been associated with human history for a very long time and regained its popularity after Sept 2001 incidence in United States. The present review article describes the history, biology, life cycle, pathogenicity, virulence, epidemiology and potential of B. anthracis as biological weapon.
Collapse
|
21
|
Schofield DA, Wray DJ, Molineux IJ. Isolation and development of bioluminescent reporter phages for bacterial dysentery. Eur J Clin Microbiol Infect Dis 2014; 34:395-403. [DOI: 10.1007/s10096-014-2246-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/04/2014] [Indexed: 01/19/2023]
|
22
|
Jończyk-Matysiak E, Kłak M, Weber-Dąbrowska B, Borysowski J, Górski A. Possible use of bacteriophages active against Bacillus anthracis and other B. cereus group members in the face of a bioterrorism threat. BIOMED RESEARCH INTERNATIONAL 2014; 2014:735413. [PMID: 25247187 PMCID: PMC4163355 DOI: 10.1155/2014/735413] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/25/2014] [Accepted: 07/25/2014] [Indexed: 12/14/2022]
Abstract
Anthrax is an infectious fatal disease with epidemic potential. Nowadays, bioterrorism using Bacillus anthracis is a real possibility, and thus society needs an effective weapon to neutralize this threat. The pathogen may be easily transmitted to human populations. It is easy to store, transport, and disseminate and may survive for many decades. Recent data strongly support the effectiveness of bacteriophage in treating bacterial diseases. Moreover, it is clear that bacteriophages should be considered a potential incapacitative agent against bioterrorism using bacteria belonging to B. cereus group, especially B. anthracis. Therefore, we have reviewed the possibility of using bacteriophages active against Bacillus anthracis and other species of the B. cereus group in the face of a bioterrorism threat.
Collapse
Affiliation(s)
- Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Marlena Kłak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Jan Borysowski
- Department of Clinical Immunology, Transplantation Institute, The Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
- Department of Clinical Immunology, Transplantation Institute, The Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| |
Collapse
|
23
|
Complete Genome Sequence of Bacillus cereus Sensu Lato Bacteriophage Bcp1. GENOME ANNOUNCEMENTS 2014; 2:2/3/e00334-14. [PMID: 24926042 PMCID: PMC4056285 DOI: 10.1128/genomea.00334-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bacillus cereus sensu lato organisms are an ecologically diverse group that includes etiologic agents of food poisoning, periodontal disease, and anthrax. The recently identified Bcp1 bacteriophage infects B. cereus sensu lato and is being developed as a therapeutic decontamination agent and diagnostic countermeasure. We announce the complete genome sequence of Bcp1.
Collapse
|
24
|
Tjhung KF, Burnham S, Anany H, Griffiths MW, Derda R. Rapid enumeration of phage in monodisperse emulsions. Anal Chem 2014; 86:5642-8. [PMID: 24892245 DOI: 10.1021/ac500244g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phage-based detection assays have been developed for the detection of viable bacteria for applications in clinical diagnosis, monitoring of water quality, and food safety. The majority of these assays deliver a positive readout in the form of newly generated progeny phages by the bacterial host of interest. Progeny phages are often visualized as plaques, or holes, in a lawn of bacteria on an agar-filled Petri dish; however, this rate-limiting step requires up to 12 h of incubation time. We have previously described an amplification of bacteriophages M13 inside droplets of media suspended in perfluorinated oil; a single phage M13 in a droplet yields 10(7) copies in 3-4 h. Here, we describe that encapsulation of reporter phages, both lytic T4-LacZ and nonlytic M13, in monodisperse droplets can also be used for rapid enumeration of phage. Compartmentalization in droplets accelerated the development of the signal from the reporter enzyme; counting of "positive" droplets yields accurate enumeration of phage particles ranging from 10(2) to 10(6) pfu/mL. For enumeration of T4-LacZ phage, the fluorescent signal appeared in as little as 90 min. Unlike bulk assays, quantification in emulsion is robust and insensitive to fluctuations in environmental conditions (e.g., temperature). Power-free emulsification using gravity-driven flow in the absence of syringe pumps and portable fluorescence imaging solutions makes this technology promising for use at the point of care in low-resource environments. This droplet-based phage enumeration method could accelerate and simplify point-of-care detection of the pathogens for which reporter bacteriophages have been developed.
Collapse
Affiliation(s)
- Katrina F Tjhung
- Department of Chemistry, University of Alberta , Edmonton, AB T6G 2G2, Canada
| | | | | | | | | |
Collapse
|
25
|
Bergholz TM, Moreno Switt AI, Wiedmann M. Omics approaches in food safety: fulfilling the promise? Trends Microbiol 2014; 22:275-81. [PMID: 24572764 DOI: 10.1016/j.tim.2014.01.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/13/2014] [Accepted: 01/22/2014] [Indexed: 12/30/2022]
Abstract
Genomics, transcriptomics, and proteomics are rapidly transforming our approaches to the detection, prevention, and treatment of foodborne pathogens. Microbial genome sequencing in particular has evolved from a research tool into an approach that can be used to characterize foodborne pathogen isolates as part of routine surveillance systems. Genome sequencing efforts will not only improve outbreak detection and source tracking, but will also create large amounts of foodborne pathogen genome sequence data, which will be available for data-mining efforts that could facilitate better source attribution and provide new insights into foodborne pathogen biology and transmission. Although practical uses and application of metagenomics, transcriptomics, and proteomics data and associated tools are less prominent, these tools are also starting to yield practical food safety solutions.
Collapse
Affiliation(s)
- Teresa M Bergholz
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | | | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
26
|
Kleinheinz KA, Joensen KG, Larsen MV. Applying the ResFinder and VirulenceFinder web-services for easy identification of acquired antibiotic resistance and E. coli virulence genes in bacteriophage and prophage nucleotide sequences. BACTERIOPHAGE 2014; 4:e27943. [PMID: 24575358 DOI: 10.4161/bact.27943] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/09/2014] [Accepted: 01/21/2014] [Indexed: 12/19/2022]
Abstract
Extensive research is currently being conducted on the use of bacteriophages for applications in human medicine, agriculture and food manufacturing. However, phages are important vehicles of horisontal gene transfer and play a significant role in bacterial evolution. As a result, concern has been raised that this increased use and dissemination of phages could result in spread of deleterious genes, e.g., antibiotic resistance and virulence genes. Meanwhile, in the wake of the genomic era, several tools have been developed for characterization of bacterial genomes. Here we describe how two of these tools, ResFinder and VirulenceFinder, can be used to identify acquired antibiotic resistance and virulence genes in phage genomes of interest. The general applicability of the tools is demonstrated on data sets of 1,642 phage genomes and 1,442 predicted prophages.
Collapse
Affiliation(s)
- Kortine Annina Kleinheinz
- Center for Biological Sequence Analysis; Department of Systems Biology; Technical University of Denmark; Lyngby, Denmark
| | - Katrine Grimstrup Joensen
- National Food Institute; Division for Epidemiology and Microbial Genomics; Technical University of Denmark; Lyngby, Denmark ; Department of Microbiology and Infection Control; Statens Serum Institut; Copenhagen, Denmark
| | - Mette Voldby Larsen
- Center for Biological Sequence Analysis; Department of Systems Biology; Technical University of Denmark; Lyngby, Denmark
| |
Collapse
|