1
|
Sueda S, Fujii S. An ATP detection system based on the enzyme reaction with biotin protein ligase. Anal Biochem 2024; 696:115698. [PMID: 39461694 DOI: 10.1016/j.ab.2024.115698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Adenosine triphosphate (ATP) is the energy currency of all living organisms and can be used as an indicator for cell proliferation and cytotoxicity. In the present work, we have developed a novel ATP detection system by combining the biotinylation reaction from archaeon Sulfolobus tokodaii with fluorescence resonance energy transfer (FRET). In biotinylation from S. tokodaii, an enzyme known as biotin protein ligase (BPL) forms a very stable complex with its product, biotinylated substrate protein (BCCP). Here, BPL and BCCP were fused to the fluorescent proteins Cerulean and Clover, respectively, and ATP detection was accomplished by monitoring the FRET signal between the two fluorescent proteins, since ATP is an essential component for biotinylation and the tight BPL-BCCP complex is formed only after biotinylation. Using this system, we have succeeded in detecting 5 nM of ATP by biotinylation reaction with 50 nM of each fusion protein. Our method has a characteristic that the signal does not decay for at least 2 h after the start of the reaction, unlike in the case of the luminescence-based assay with luciferase commonly used for the ATP detection. Thus, our system allows for ATP detection which is not significantly constrained by measurement timing.
Collapse
Affiliation(s)
- Shinji Sueda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, 820-8502, Japan.
| | - Satoshi Fujii
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, 820-8502, Japan
| |
Collapse
|
2
|
Hendrickx S, Feijens PB, Escudié F, Chatelain E, Maes L, Caljon G. In Vivo Bioluminescence Imaging Reveals Differences in Leishmania infantum Parasite Killing Kinetics by Antileishmanial Reference Drugs. ACS Infect Dis 2024; 10:2101-2107. [PMID: 38733389 PMCID: PMC11423396 DOI: 10.1021/acsinfecdis.4c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
The bioluminescent Leishmania infantum BALB/c mouse model was used to evaluate the parasiticidal drug action kinetics of the reference drugs miltefosine, paromomycin, sodium stibogluconate, and liposomal amphotericin B. Infected mice were treated for 5 days starting from 7 days post-infection, and parasite burdens were monitored over time via bioluminescence imaging (BLI). Using nonlinear regression analyses of the BLI signal, the parasite elimination half-life (t1/2) in the liver, bone marrow, and whole body was determined and compared for the different treatment regimens. Significant differences in parasiticidal kinetics were recorded. A single intravenous dose of 0.5 mg/kg liposomal amphotericin B was the fastest acting with a t1/2 of less than 1 day. Intraperitoneal injection of paromomycin at 320 mg/kg for 5 days proved to be the slowest with a t1/2 of about 5 days in the liver and 16 days in the bone marrow. To conclude, evaluation of the cidal kinetics of the different antileishmanial reference drugs revealed striking differences in their parasite elimination half-lives. This BLI approach also enables an in-depth pharmacodynamic comparison between novel drug leads and may constitute an essential tool for the design of potential drug combinations.
Collapse
Affiliation(s)
- Sarah Hendrickx
- Laboratory
of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Antwerp, Belgium
| | - Pim-Bart Feijens
- Laboratory
of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Antwerp, Belgium
| | - Fanny Escudié
- Drugs
for Neglected Diseases initiative, 1202 Geneva, Switzerland
| | - Eric Chatelain
- Drugs
for Neglected Diseases initiative, 1202 Geneva, Switzerland
| | - Louis Maes
- Laboratory
of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Antwerp, Belgium
| | - Guy Caljon
- Laboratory
of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
3
|
Dimmer JA, Cabral FV, Núñez Montoya SC, Ribeiro MS. Towards effective natural anthraquinones to mediate antimicrobial photodynamic therapy of cutaneous leishmaniasis. Photodiagnosis Photodyn Ther 2023; 42:103525. [PMID: 36966867 DOI: 10.1016/j.pdpdt.2023.103525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND Cutaneous leishmaniasis (CL) is an important tropical neglected disease with broad geographical dispersion. The lack of effective drugs has raised an urgent need to improve CL treatment, and antimicrobial photodynamic therapy (APDT) has been investigated as a new strategy to face it with positive outcomes. Natural compounds have emerged as promising photosensitizers (PSs), but their use in vivo remains unexplored. PURPOSE In this work, we investigated the potential of three natural anthraquinones (AQs) on CL induced by Leishmania amazonensis in BALB/c mice. STUDY DESIGN/METHODS ANIMALS WERE INFECTED AND RANDOMLY DIVIDED INTO FOUR GROUPS: CG (control, non-treated group), G5ClSor-gL (treated with 5-chlorosoranjidiol and green LED, 520±10 nm), GSor-bL and GBisor-bL (treated with soranjidiol and bisoranjidiol, respectively, exposed to violet-blue LED, 410±10 nm). All AQs were assayed at 10 μM and LEDs delivered a radiant exposure of 45 J/cm2 with an irradiance of 50 mW/cm2. We assessed the parasite burden in real time for three consecutive days. Lesion evolution and pain score were assessed over 3 weeks after a single APDT session. RESULTS G5ClSor-gL was able to sustain low levels of parasite burden over time. Besides, GSor-bL showed a smaller lesion area than the control group, inhibiting the disease progression. CONCLUSION Taken together, our data demonstrate that monoAQs are promising compounds for pursuing the best protocol for treating CL and helping to face this serious health problem. Studies involving host-pathogen interaction as well as monoAQ-mediated PDT immune response are also encouraged.
Collapse
Affiliation(s)
- Jesica A Dimmer
- Universidad Nacional Córdoba. Fac. Cs. Químicas. Dpto. Ciencias Farmacéuticas. Edificio de Ciencias 2, Medina Allende y Haya de La Torre, Ciudad Universitaria. CP, X5000HUA Córdoba, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET. Av. Vélez Sarsfield 1666 CP, X5016GCN Córdoba, Argentina.
| | - Fernanda V Cabral
- Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Av. Lineu Prestes 2242, C. Universitária "Armando de Salles Oliveira", CEP 05508-000 São Paulo, SP, Brasil
| | - Susana C Núñez Montoya
- Universidad Nacional Córdoba. Fac. Cs. Químicas. Dpto. Ciencias Farmacéuticas. Edificio de Ciencias 2, Medina Allende y Haya de La Torre, Ciudad Universitaria. CP, X5000HUA Córdoba, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET. Av. Vélez Sarsfield 1666 CP, X5016GCN Córdoba, Argentina
| | - Martha S Ribeiro
- Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Av. Lineu Prestes 2242, C. Universitária "Armando de Salles Oliveira", CEP 05508-000 São Paulo, SP, Brasil
| |
Collapse
|
4
|
Dantas RF, Torres-Santos EC, Silva FP. Past and future of trypanosomatids high-throughput phenotypic screening. Mem Inst Oswaldo Cruz 2022; 117:e210402. [PMID: 35293482 PMCID: PMC8920514 DOI: 10.1590/0074-02760210402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022] Open
Abstract
Diseases caused by trypanosomatid parasites affect millions of people mainly living in developing countries. Novel drugs are highly needed since there are no vaccines and available treatment has several limitations, such as resistance, low efficacy, and high toxicity. The drug discovery process is often analogous to finding a needle in the haystack. In the last decades a so-called rational drug design paradigm, heavily dependent on computational approaches, has promised to deliver new drugs in a more cost-effective way. Paradoxically however, the mainstay of these computational methods is data-driven, meaning they need activity data for new compounds to be generated and available in databases. Therefore, high-throughput screening (HTS) of compounds still is a much-needed exercise in drug discovery to fuel other rational approaches. In trypanosomatids, due to the scarcity of validated molecular targets and biological complexity of these parasites, phenotypic screening has become an essential tool for the discovery of new bioactive compounds. In this article we discuss the perspectives of phenotypic HTS for trypanosomatid drug discovery with emphasis on the role of image-based, high-content methods. We also propose an ideal cascade of assays for the identification of new drug candidates for clinical development using leishmaniasis as an example.
Collapse
Affiliation(s)
- Rafael Ferreira Dantas
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental de Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| | - Eduardo Caio Torres-Santos
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Tripanosomatídeos, Rio de Janeiro, RJ, Brasil
| | - Floriano Paes Silva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental de Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
5
|
Amaning Danquah C, Minkah PAB, Osei Duah Junior I, Amankwah KB, Somuah SO. Antimicrobial Compounds from Microorganisms. Antibiotics (Basel) 2022; 11:285. [PMID: 35326749 PMCID: PMC8944786 DOI: 10.3390/antibiotics11030285] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial resistance is an exigent public health concern owing to the emergence of novel strains of human resistant pathogens and the concurrent rise in multi-drug resistance. An influx of new antimicrobials is urgently required to improve the treatment outcomes of infectious diseases and save lives. Plant metabolites and bioactive compounds from chemical synthesis have found their efficacy to be dwindling, despite some of them being developed as drugs and used to treat human infections for several decades. Microorganisms are considered untapped reservoirs for promising biomolecules with varying structural and functional antimicrobial activity. The advent of cost-effective and convenient model organisms, state-of-the-art molecular biology, omics technology, and machine learning has enhanced the bioprospecting of novel antimicrobial drugs and the identification of new drug targets. This review summarizes antimicrobial compounds isolated from microorganisms and reports on the modern tools and strategies for exploiting promising antimicrobial drug candidates. The investigation identified a plethora of novel compounds from microbial sources with excellent antimicrobial activity against disease-causing human pathogens. Researchers could maximize the use of novel model systems and advanced biomolecular and computational tools in exploiting lead antimicrobials, consequently ameliorating antimicrobial resistance.
Collapse
Affiliation(s)
- Cynthia Amaning Danquah
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana;
| | - Prince Amankwah Baffour Minkah
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana;
- Global Health and Infectious Disease Research Group, Kumasi Centre for Collaborative Research in Tropical Medicine, College of Health Sciences, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
| | - Isaiah Osei Duah Junior
- Department of Optometry and Visual Science, College of Science, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana;
| | - Kofi Bonsu Amankwah
- Department of Biomedical Sciences, University of Cape Coast, PMB, Cape Coast, Ghana;
| | - Samuel Owusu Somuah
- Department of Pharmacy Practice, School of Pharmacy, University of Health and Allied Sciences, PMB, Ho, Ghana;
| |
Collapse
|
6
|
Cohen A, Azas N. Challenges and Tools for In Vitro Leishmania Exploratory Screening in the Drug Development Process: An Updated Review. Pathogens 2021; 10:1608. [PMID: 34959563 PMCID: PMC8703296 DOI: 10.3390/pathogens10121608] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Leishmaniases are a group of vector-borne diseases caused by infection with the protozoan parasites Leishmania spp. Some of them, such as Mediterranean visceral leishmaniasis, are zoonotic diseases transmitted from vertebrate to vertebrate by a hematophagous insect, the sand fly. As there is an endemic in more than 90 countries worldwide, this complex and major health problem has different clinical forms depending on the parasite species involved, with the visceral form being the most worrying since it is fatal when left untreated. Nevertheless, currently available antileishmanial therapies are significantly limited (low efficacy, toxicity, adverse side effects, drug-resistance, length of treatment, and cost), so there is an urgent need to discover new compounds with antileishmanial activity, which are ideally inexpensive and orally administrable with few side effects and a novel mechanism of action. Therefore, various powerful approaches were recently applied in many interesting antileishmanial drug development programs. The objective of this review is to focus on the very first step in developing a potential drug and to identify the exploratory methods currently used to screen in vitro hit compounds and the challenges involved, particularly in terms of harmonizing the results of work carried out by different research teams. This review also aims to identify innovative screening tools and methods for more extensive use in the drug development process.
Collapse
Affiliation(s)
- Anita Cohen
- IHU Méditerranée Infection, Aix Marseille University, IRD (Institut de Recherche pour le Développement), AP-HM (Assistance Publique—Hôpitaux de Marseille), SSA (Service de Santé des Armées), VITROME (Vecteurs—Infections Tropicales et Méditerranéennes), 13005 Marseille, France;
| | | |
Collapse
|
7
|
Tezuka DY, de Albuquerque S, Montanari CA, Leitão A. Discovery of 2-aminopyridine Derivatives with Antichagasic and Antileishmanial Activity Using Phenotypic Assays. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180816666191204105232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Compounds previously studied as anticancer were screened against
trypomastigotes to access the bioactivity. The epimastigote form of Trypanosoma cruzi Y strain and
the promastigote form of Leishmania amazonensis and Leishmania infantum were used in this work.
Methods:
Cell-based assays were performed to access the bioactivity of the compounds using MTT
and the flow cytometry methods.
Results:
Neq0438, Neq0474 and Neq0440 had the highest potency, with EC50 of 39 μM (L.
amazonensis), 52 μM (T. cruzi) and 81 μM (T. cruzi), respectively. These molecules were inactive
for Balb/C fibroblast cell line at concentrations above 250 μM, showing selectivity for the parasites.
Conclusion:
This is the first report that demonstrates antiparasitic activity for the 2-aminopyridine
scaffold, with cross-activity against cancer cells.
Collapse
Affiliation(s)
- Daiane Yukie Tezuka
- Medicinal Chemistry Group (NEQUIMED), The Sao Carlos Institute of Chemistry (IQSC), University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Sergio de Albuquerque
- Laboratorio de Parasitologia, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo (FCFRP-USP), Sao Paulo, Brazil
| | - Carlos Alberto Montanari
- Medicinal Chemistry Group (NEQUIMED), The Sao Carlos Institute of Chemistry (IQSC), University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Andrei Leitão
- Medicinal Chemistry Group (NEQUIMED), The Sao Carlos Institute of Chemistry (IQSC), University of Sao Paulo (USP), Sao Paulo, Brazil
| |
Collapse
|
8
|
Nagai T. A novel, efficient, and ecologically relevant bioassay method using aquatic fungi and fungus-like organisms for fungicide ecological effect assessment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:1980-1989. [PMID: 29572919 DOI: 10.1002/etc.4138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/29/2017] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
Fungicides are used to control fungal plant pathogens, but they may also be highly toxic to aquatic fungi, which play an important role in natural aquatic ecosystems. However, a bioassay method using aquatic fungi has not been sufficiently developed. In the present study, a novel, efficient, and ecologically relevant bioassay method was developed for the ecological effect assessment of fungicides. Candidate test species were selected by considering the following 4 factors: 1) their ecological relevance (i.e., widely distributed and frequently observed) in freshwater habitats, 2) inclusion of a wide range of taxonomic groups, 3) availability from public culture collections, and 4) suitability for culture experiments using a microplate. The following 5 fungal species were selected: Rhizophydium brooksiaum (Chitridiomycota), Chytriomyces hyalinus (Chitridiomycota), Tetracladium setigerum (Ascomycota), Sporobolomyces roseus (Basidiomycota), and Aphanomyces stellatus (Oomycota, fungus-like organism). An efficient test method using the 5 species was developed based on a microplate assay using a 96-well white microplate and a test duration of 48 h. Fungal biomass was determined as adenosine 5'-triphosphate (ATP) luminescence, which is known to be proportional to live cell density and can be determined with a microplate reader. Test performance was evaluated by conducting bioassays of 3,5-dichlorophenol and malachite green as standard test substances. Fungal species were clearly more sensitive than other species to the fungicide malachite green. Environ Toxicol Chem 2018;37:1980-1989. © 2018 SETAC.
Collapse
Affiliation(s)
- Takashi Nagai
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
9
|
Avci P, Karimi M, Sadasivam M, Antunes-Melo WC, Carrasco E, Hamblin MR. In-vivo monitoring of infectious diseases in living animals using bioluminescence imaging. Virulence 2017; 9:28-63. [PMID: 28960132 PMCID: PMC6067836 DOI: 10.1080/21505594.2017.1371897] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Traditional methods of localizing and quantifying the presence of pathogenic microorganisms in living experimental animal models of infections have mostly relied on sacrificing the animals, dissociating the tissue and counting the number of colony forming units. However, the discovery of several varieties of the light producing enzyme, luciferase, and the genetic engineering of bacteria, fungi, parasites and mice to make them emit light, either after administration of the luciferase substrate, or in the case of the bacterial lux operon without any exogenous substrate, has provided a new alternative. Dedicated bioluminescence imaging (BLI) cameras can record the light emitted from living animals in real time allowing non-invasive, longitudinal monitoring of the anatomical location and growth of infectious microorganisms as measured by strength of the BLI signal. BLI technology has been used to follow bacterial infections in traumatic skin wounds and burns, osteomyelitis, infections in intestines, Mycobacterial infections, otitis media, lung infections, biofilm and endodontic infections and meningitis. Fungi that have been engineered to be bioluminescent have been used to study infections caused by yeasts (Candida) and by filamentous fungi. Parasitic infections caused by malaria, Leishmania, trypanosomes and toxoplasma have all been monitored by BLI. Viruses such as vaccinia, herpes simplex, hepatitis B and C and influenza, have been studied using BLI. This rapidly growing technology is expected to continue to provide much useful information, while drastically reducing the numbers of animals needed in experimental studies.
Collapse
Affiliation(s)
- Pinar Avci
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,b Department of Dermatology , Harvard Medical School , Boston , MA , USA
| | - Mahdi Karimi
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,c Department of Medical Nanotechnology , School of Advanced Technologies in Medicine, Iran University of Medical Sciences , Tehran , Iran.,d Cellular and Molecular Research Center, Iran University of Medical Sciences , Tehran , Iran
| | - Magesh Sadasivam
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,e Amity Institute of Nanotechnology, Amity University Uttar Pradesh , Noida , India
| | - Wanessa C Antunes-Melo
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,f University of Sao Paulo , Sao Carlos-SP , Brazil
| | - Elisa Carrasco
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,g Department of Biosciences , Durham University , Durham , United Kingdom
| | - Michael R Hamblin
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,b Department of Dermatology , Harvard Medical School , Boston , MA , USA.,h Harvard-MIT Division of Health Sciences and Technology , Cambridge , MA , USA
| |
Collapse
|
10
|
Tao Y, Wang Y, Huang S, Zhu P, Huang WE, Ling J, Xu J. Metabolic-Activity-Based Assessment of Antimicrobial Effects by D2O-Labeled Single-Cell Raman Microspectroscopy. Anal Chem 2017; 89:4108-4115. [DOI: 10.1021/acs.analchem.6b05051] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yifan Tao
- Operative
Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated
Stomatological Hospital, Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, China
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Yun Wang
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi Huang
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengfei Zhu
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei E Huang
- Department
of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Junqi Ling
- Operative
Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated
Stomatological Hospital, Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, China
| | - Jian Xu
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Construction of Two mCherry Plasmids (pXG-mCherry) for Transgenic Leishmania: Valuable Tools for Future Molecular Analysis. J Parasitol Res 2017; 2017:1964531. [PMID: 28286673 PMCID: PMC5327783 DOI: 10.1155/2017/1964531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/12/2016] [Accepted: 12/27/2016] [Indexed: 11/18/2022] Open
Abstract
Leishmania is the causative agent of leishmaniasis, a neglected tropical disease that affects more than 12 million people around the world. Current treatments are toxic and poorly effective due to the acquisition of resistance within Leishmania populations. Thus, the pursuit for new antileishmanial drugs is a priority. The available methods for drug screening based on colorimetric assays using vital dyes are time-consuming. Currently, the use of fluorescent reporter proteins is replacing the use of viability indicator dyes. We have constructed two plasmids expressing the red fluorescent protein mCherry with multiple cloning sites (MCS), adequate for N- and C-terminal fusion protein constructs. Our results also show that the improved pXG-mCherry plasmid can be employed for drug screening in vitro. The use of the red fluorescent protein, mCherry, is an easier tool for numerous assays, not only to test pharmacological compounds, but also to determine the subcellular localization of proteins.
Collapse
|
12
|
Lomakina GY, Modestova YA, Ugarova NN. Bioluminescence assay for cell viability. BIOCHEMISTRY (MOSCOW) 2016; 80:701-13. [PMID: 26531016 DOI: 10.1134/s0006297915060061] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Theoretical aspects of the adenosine triphosphate bioluminescence assay based on the use of the firefly luciferin-luciferase system are considered, as well as its application for assessing cell viability in microbiology, sanitation, medicine, and ecology. Various approaches for the analysis of individual or mixed cultures of microorganisms are presented, and capabilities of the method for investigation of biological processes in live cells including necrosis, apoptosis, as well as for investigation of the dynamics of metabolism are described.
Collapse
Affiliation(s)
- G Yu Lomakina
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | |
Collapse
|
13
|
Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal 2016; 6:71-79. [PMID: 29403965 PMCID: PMC5762448 DOI: 10.1016/j.jpha.2015.11.005] [Citation(s) in RCA: 2533] [Impact Index Per Article: 316.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 11/21/2015] [Accepted: 11/23/2015] [Indexed: 11/21/2022] Open
Abstract
In recent years, there has been a growing interest in researching and developing new antimicrobial agents from various sources to combat microbial resistance. Therefore, a greater attention has been paid to antimicrobial activity screening and evaluating methods. Several bioassays such as disk-diffusion, well diffusion and broth or agar dilution are well known and commonly used, but others such as flow cytofluorometric and bioluminescent methods are not widely used because they require specified equipment and further evaluation for reproducibility and standardization, even if they can provide rapid results of the antimicrobial agent's effects and a better understanding of their impact on the viability and cell damage inflicted to the tested microorganism. In this review article, an exhaustive list of in vitro antimicrobial susceptibility testing methods and detailed information on their advantages and limitations are reported.
Collapse
Affiliation(s)
- Mounyr Balouiri
- Laboratory of Microbial Biotechnology, Faculty of Sciences and Techniques, University Sidi Mohamed Ben Abdellah, B.P. 2202 Imouzzer Road, Fez, Morocco
| | | | | |
Collapse
|
14
|
Sadeghi S, Seyed N, Etemadzadeh MH, Abediankenari S, Rafati S, Taheri T. In Vitro Infectivity Assessment by Drug Susceptibility Comparison of Recombinant Leishmania major Expressing Enhanced Green Fluorescent Protein or EGFP-Luciferase Fused Genes with Wild-Type Parasite. THE KOREAN JOURNAL OF PARASITOLOGY 2015; 53:385-94. [PMID: 26323836 PMCID: PMC4566512 DOI: 10.3347/kjp.2015.53.4.385] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/24/2015] [Accepted: 07/02/2015] [Indexed: 01/26/2023]
Abstract
Leishmaniasis is a worldwide uncontrolled parasitic disease due to the lack of effective drug and vaccine. To speed up effective drug development, we need powerful methods to rapidly assess drug effectiveness against the intracellular form of Leishmania in high throughput assays. Reporter gene technology has proven to be an excellent tool for drug screening in vitro. The effects of reporter proteins on parasite infectivity should be identified both in vitro and in vivo. In this research, we initially compared the infectivity rate of recombinant Leishmania major expressing stably enhanced green fluorescent protein (EGFP) alone or EGFP-luciferase (EGFP-LUC) with the wild-type strain. Next, we evaluated the sensitivity of these parasites to amphotericin B (AmB) as a standard drug in 2 parasitic phases, promastigote and amastigote. This comparison was made by MTT and nitric oxide (NO) assay and by quantifying the specific signals derived from reporter genes like EGFP intensity and luciferase activity. To study the amastigote form, both B10R and THP-1 macrophage cell lines were infected in the stationary phase and were exposed to AmB at different time points. Our results clearly revealed that the 3 parasite lines had similar in vitro infectivity rates with comparable parasite-induced levels of NO following interferon-γ/lipopolysaccharide induction. Based on our results we proposed the more reporter gene, the faster and more sensitive evaluation of the drug efficiency.
Collapse
Affiliation(s)
- Somayeh Sadeghi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran.,Immunogenetic Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | | | - Saeid Abediankenari
- Immunogenetic Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
15
|
Kieffer C, Cohen A, Verhaeghe P, Paloque L, Hutter S, Castera-Ducros C, Laget M, Rault S, Valentin A, Rathelot P, Azas N, Vanelle P. Antileishmanial pharmacomodulation in 8-nitroquinolin-2(1H)-one series. Bioorg Med Chem 2015; 23:2377-86. [DOI: 10.1016/j.bmc.2015.03.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 10/23/2022]
|
16
|
Kieffer C, Cohen A, Verhaeghe P, Hutter S, Castera-Ducros C, Laget M, Remusat V, M'Rabet MK, Rault S, Rathelot P, Azas N, Vanelle P. Looking for new antileishmanial derivatives in 8-nitroquinolin-2(1H)-one series. Eur J Med Chem 2015; 92:282-94. [DOI: 10.1016/j.ejmech.2014.12.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/03/2014] [Accepted: 12/30/2014] [Indexed: 12/31/2022]
|
17
|
Forestier CL, Späth GF, Prina E, Dasari S. Simultaneous multi-parametric analysis of Leishmania and of its hosting mammal cells: A high content imaging-based method enabling sound drug discovery process. Microb Pathog 2014; 88:103-8. [PMID: 25448129 DOI: 10.1016/j.micpath.2014.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/18/2014] [Accepted: 10/21/2014] [Indexed: 11/18/2022]
Abstract
Leishmaniasis is a vector-borne disease for which only limited therapeutic options are available. The disease is ranked among the six most important tropical infectious diseases and represents the second-largest parasitic killer in the world. The development of new therapies has been hampered by the lack of technologies and methodologies that can be integrated into the complex physiological environment of a cell or organism and adapted to suitable in vitro and in vivo Leishmania models. Recent advances in microscopy imaging offer the possibility to assess the efficacy of potential drug candidates against Leishmania within host cells. This technology allows the simultaneous visualization of relevant phenotypes in parasite and host cells and the quantification of a variety of cellular events. In this review, we present the powerful cellular imaging methodologies that have been developed for drug screening in a biologically relevant context, addressing both high-content and high-throughput needs. Furthermore, we discuss the potential of intra-vital microscopy imaging in the context of the anti-leishmanial drug discovery process.
Collapse
Affiliation(s)
- Claire-Lise Forestier
- INSERM U1095, URMITE-UMR CNRS 7278, Infectiopole Sud, University of Aix-Marseille, Marseille, France.
| | - Gerald Frank Späth
- Institut Pasteur and CNRS URA2581, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Eric Prina
- Institut Pasteur and CNRS URA2581, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Sreekanth Dasari
- INSERM U1095, URMITE-UMR CNRS 7278, Infectiopole Sud, University of Aix-Marseille, Marseille, France
| |
Collapse
|