1
|
Flegontova O, Flegontov P, Malviya S, Poulain J, de Vargas C, Bowler C, Lukeš J, Horák A. Neobodonids are dominant kinetoplastids in the global ocean. Environ Microbiol 2019; 20:878-889. [PMID: 29266706 DOI: 10.1111/1462-2920.14034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/01/2017] [Accepted: 12/17/2017] [Indexed: 11/29/2022]
Abstract
Kinetoplastid flagellates comprise basal mostly free-living bodonids and derived obligatory parasitic trypanosomatids, which belong to the best-studied protists. Due to their omnipresence in aquatic environments and soil, the bodonids are of ecological significance. Here, we present the first global survey of marine kinetoplastids and compare it with the strikingly different patterns of abundance and diversity in their sister clade, the diplonemids. Based on analysis of 18S rDNA V9 ribotypes obtained from 124 sites sampled during the Tara Oceans expedition, our results show generally low to moderate abundance and diversity of planktonic kinetoplastids. Although we have identified all major kinetoplastid lineages, 98% of kinetoplastid reads are represented by neobodonids, namely specimens of the Neobodo and Rhynchomonas genera, which make up 59% and 18% of all reads, respectively. Most kinetoplastids have small cell size (0.8-5 µm) and tend to be more abundant in the mesopelagic as compared to the euphotic zone. Some of the most abundant operational taxonomic units have distinct geographical distributions, and three novel putatively parasitic neobodonids were identified, along with their potential hosts.
Collapse
Affiliation(s)
- Olga Flegontova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Shruti Malviya
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.,Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, Paris F-75005, France
| | - Julie Poulain
- CEA - GENOSCOPE - Institut François Jacob, 2 rue Gaston Crémieux, 91057 Evry, France.,CNRS, UMR 8030, CP5706, Evry, France.,Université d'Evry, UMR 8030, CP5706, Evry, France
| | - Colomban de Vargas
- Station Biologique de Roscoff, Roscoff, France.,Sorbonne Universités, Paris, France
| | - Chris Bowler
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, Paris F-75005, France
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
2
|
Cohen Y, Pasternak Z, Johnke J, Abed‐Rabbo A, Kushmaro A, Chatzinotas A, Jurkevitch E. Bacteria and microeukaryotes are differentially segregated in sympatric wastewater microhabitats. Environ Microbiol 2019; 21:1757-1770. [DOI: 10.1111/1462-2920.14548] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 01/20/2019] [Accepted: 01/28/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Yossi Cohen
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and EnvironmentThe Hebrew University of Jerusalem Rehovot, 76100 Israel
| | - Zohar Pasternak
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and EnvironmentThe Hebrew University of Jerusalem Rehovot, 76100 Israel
| | - Julia Johnke
- Department of Environmental MicrobiologyHelmholtz Centre for Environmental Research – UFZ Permoserstrasse 15, Leipzig, 04318 Germany
| | - Alfred Abed‐Rabbo
- Faculty of ScienceBethlehem University, Palestinian National Authority, Bethlehem, Israel
| | - Ariel Kushmaro
- Avram and Stella Goldstein‐Goren, The Department of Biotechnology Engineering, Faculty of Engineering SciencesBen‐Gurion University of the Negev P.O. Box 653, Beer‐Sheva Israel
- The Ilse Katz Centre for Meso and Nanoscale Science and TechnologyBen‐Gurion University of the Negev Beer‐Sheva Israel
| | - Antonis Chatzinotas
- Department of Environmental MicrobiologyHelmholtz Centre for Environmental Research – UFZ Permoserstrasse 15, Leipzig, 04318 Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Deutscher Platz 5e, Leipzig, 04103 Germany
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and EnvironmentThe Hebrew University of Jerusalem Rehovot, 76100 Israel
| |
Collapse
|
3
|
Kuppardt A, Fester T, Härtig C, Chatzinotas A. Rhizosphere Protists Change Metabolite Profiles in Zea mays. Front Microbiol 2018; 9:857. [PMID: 29780370 PMCID: PMC5946010 DOI: 10.3389/fmicb.2018.00857] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/13/2018] [Indexed: 01/16/2023] Open
Abstract
Plant growth and productivity depend on the interactions of the plant with the associated rhizosphere microbes. Rhizosphere protists play a significant role in this respect: considerable efforts have been made in the past to reveal the impact of protist-bacteria interactions on the remobilization of essential nutrients for plant uptake, or the grazing induced changes on plant-growth promoting bacteria and the root-architecture. However, the metabolic responses of plants to the presence of protists or to protist-bacteria interactions in the rhizosphere have not yet been analyzed. Here we studied in controlled laboratory experiments the impact of bacterivorous protists in the rhizosphere on maize plant growth parameters and the bacterial community composition. Beyond that we investigated the induction of plant biochemical responses by separately analyzing above- and below-ground metabolite profiles of maize plants incubated either with a soil bacterial inoculum or with a mixture of soil bacteria and bacterivorous protists. Significantly distinct leaf and root metabolite profiles were obtained from plants which grew in the presence of protists. These profiles showed decreased levels of a considerable number of metabolites typical for the plant stress reaction, such as polyols, a number of carbohydrates and metabolites connected to phenolic metabolism. We assume that this decrease in plant stress is connected to the grazing induced shifts in rhizosphere bacterial communities as shown by distinct T-RFLP community profiles. Protist grazing had a clear effect on the overall bacterial community composition, richness and evenness in our microcosms. Given the competition of plant resource allocation to either defense or growth, we propose that a reduction in plant stress levels caused directly or indirectly by protists may be an additional reason for corresponding positive effects on plant growth.
Collapse
Affiliation(s)
- Anke Kuppardt
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Thomas Fester
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Claus Härtig
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
4
|
Li Q, Chen C, Penttinen P, Xiong C, Zheng L, Huang W. Microbial diversity associated with Tricholoma matsutake fruiting bodies. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716050106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Glaser K, Kuppardt A, Boenigk J, Harms H, Fetzer I, Chatzinotas A. The influence of environmental factors on protistan microorganisms in grassland soils along a land-use gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 537:33-42. [PMID: 26282737 DOI: 10.1016/j.scitotenv.2015.07.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 06/04/2023]
Abstract
In this study, we investigated the effect of land use intensity, soil parameters and vegetation on protistan communities in grassland soils. We performed qualitative (T-RFLP) and quantitative (qPCR) analyses using primers specifically targeting the 18S rRNA gene for all Eukarya and for two common flagellate groups, i.e. the Chrysophyceae and the Kinetoplastea. Both approaches were applied to extracted soil DNA and RNA, in order to distinguish between the potentially active protists (i.e. RNA pool) and the total protistan communities, including potentially inactive and encysted cells (i.e. DNA pool). Several environmental determinants such as site, soil parameters and vegetation had an impact on the T-RFLP community profiles and the abundance of the quantified 18S rRNA genes. Correlating factors often differed between quantitative (qPCR) and qualitative (T-RFLP) approaches. For instance the Chrysophyceae/Eukarya 18S rDNA ratio as determined by qPCR correlated with the C/N ratio, whereas the community composition based on T-RLFP analysis was not affected indicating that both methods taken together provide a more complete picture of the parameters driving protist diversity. Moreover, distinct T-RFs were obtained, which could serve as potential indicators for either active organisms or environmental conditions like water content. While site was the main determinant across all investigated exploratories, land use seemed to be of minor importance for structuring protist communities. The impact of other parameters differed between the target groups, e.g. Kinetoplastea reacted on changes to water content on all sites, whereas Chrysophyceae were only affected in the Schorfheide. Finally, in most cases different responses were observed on RNA- and DNA-level, respectively. Vegetation for instance influenced the two flagellate groups only at the DNA-level across all sites. Future studies should thus include different protistan groups and also distinguish between active and inactive cells, in order to reveal causal shifts in community composition and abundance in agriculturally used systems.
Collapse
Affiliation(s)
- Karin Glaser
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| | - Anke Kuppardt
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| | - Jens Boenigk
- Department of Biodiversity, University Duisburg-Essen, 45117 Essen, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Ingo Fetzer
- Stockholm Resilience Centre, Stockholm University, Sweden
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Deutscher Platz 5e, 04103 Leipzig, Germany.
| |
Collapse
|
6
|
d’Avila-Levy CM, Boucinha C, Kostygov A, Santos HLC, Morelli KA, Grybchuk-Ieremenko A, Duval L, Votýpka J, Yurchenko V, Grellier P, Lukeš J. Exploring the environmental diversity of kinetoplastid flagellates in the high-throughput DNA sequencing era. Mem Inst Oswaldo Cruz 2015; 110:956-65. [PMID: 26602872 PMCID: PMC4708014 DOI: 10.1590/0074-02760150253] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/01/2015] [Indexed: 12/12/2022] Open
Abstract
The class Kinetoplastea encompasses both free-living and parasitic species from a wide range of hosts. Several representatives of this group are responsible for severe human diseases and for economic losses in agriculture and livestock. While this group encompasses over 30 genera, most of the available information has been derived from the vertebrate pathogenic genera Leishmaniaand Trypanosoma. Recent studies of the previously neglected groups of Kinetoplastea indicated that the actual diversity is much higher than previously thought. This article discusses the known segment of kinetoplastid diversity and how gene-directed Sanger sequencing and next-generation sequencing methods can help to deepen our knowledge of these interesting protists.
Collapse
Affiliation(s)
- Claudia Masini d’Avila-Levy
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Estudos
Integrados em Protozoologia, Coleção de Protozoários, Rio de Janeiro, RJ, Brasil
| | - Carolina Boucinha
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Estudos
Integrados em Protozoologia, Coleção de Protozoários, Rio de Janeiro, RJ, Brasil
| | - Alexei Kostygov
- University of Ostrava, Life Science Research Centre, Ostrava, Czech
Republic
- Russian Academy of Sciences, Zoological Institute, Laboratory of
Molecular Systematics, St Petersburg, Russia
| | - Helena Lúcia Carneiro Santos
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Estudos
Integrados em Protozoologia, Coleção de Protozoários, Rio de Janeiro, RJ, Brasil
| | - Karina Alessandra Morelli
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Estudos
Integrados em Protozoologia, Coleção de Protozoários, Rio de Janeiro, RJ, Brasil
- Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto
Alcântara Gomes, Departamento de Ecologia, Rio de Janeiro, RJ, Brasil
| | | | - Linda Duval
- Sorbonne Universités, Muséum National d’Histoire Naturelle, Centre
National de la Recherche Scientifique, Unité Molécules de Communication et Adaptation
des Microorganisme, Unités Mixte de Recherche 7245, Paris, France
| | - Jan Votýpka
- Czech Academy of Sciences, Institute of Parasitology, Biology Centre,
České Budejovice, Czech Republic
- Charles University, Faculty of Science, Department of Parasitology,
Prague, Czech Republic
| | - Vyacheslav Yurchenko
- University of Ostrava, Life Science Research Centre, Ostrava, Czech
Republic
- Czech Academy of Sciences, Institute of Parasitology, Biology Centre,
České Budejovice, Czech Republic
| | - Philippe Grellier
- Sorbonne Universités, Muséum National d’Histoire Naturelle, Centre
National de la Recherche Scientifique, Unité Molécules de Communication et Adaptation
des Microorganisme, Unités Mixte de Recherche 7245, Paris, France
| | - Julius Lukeš
- Czech Academy of Sciences, Institute of Parasitology, Biology Centre,
České Budejovice, Czech Republic
- University of South Bohemia, Faculty of Sciences, České Budejovice,
Czech Republic
- Canadian Institute for Advanced Research, Toronto, Canada
| |
Collapse
|
7
|
Lentendu G, Wubet T, Chatzinotas A, Wilhelm C, Buscot F, Schlegel M. Effects of long-term differential fertilization on eukaryotic microbial communities in an arable soil: a multiple barcoding approach. Mol Ecol 2014; 23:3341-55. [DOI: 10.1111/mec.12819] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Guillaume Lentendu
- Plant Physiology; Institute of Biology; University of Leipzig; Johannisallee 21-23 Leipzig 04103 Germany
- Molecular Evolution and Animal Systematics; Institute of Biology; University of Leipzig; Talstraße 33 Leipzig 04103 Germany
- Department of Soil Ecology; UFZ - Helmholtz Centre for Environmental Research; Theodor-Lieser-Str. 4 Halle/Saale 06120 Germany
| | - Tesfaye Wubet
- Department of Soil Ecology; UFZ - Helmholtz Centre for Environmental Research; Theodor-Lieser-Str. 4 Halle/Saale 06120 Germany
- German Centre for Integrative Biodiversity Research (iDiv); Halle-Jena-Leipzig; Deutscher Platz 5e Leipzig 04103 Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology; UFZ - Helmholtz Centre for Environmental Research; Permoserstraße 15 Leipzig 04318 Germany
| | - Christian Wilhelm
- Plant Physiology; Institute of Biology; University of Leipzig; Johannisallee 21-23 Leipzig 04103 Germany
- German Centre for Integrative Biodiversity Research (iDiv); Halle-Jena-Leipzig; Deutscher Platz 5e Leipzig 04103 Germany
| | - François Buscot
- Department of Soil Ecology; UFZ - Helmholtz Centre for Environmental Research; Theodor-Lieser-Str. 4 Halle/Saale 06120 Germany
- German Centre for Integrative Biodiversity Research (iDiv); Halle-Jena-Leipzig; Deutscher Platz 5e Leipzig 04103 Germany
| | - Martin Schlegel
- Molecular Evolution and Animal Systematics; Institute of Biology; University of Leipzig; Talstraße 33 Leipzig 04103 Germany
- German Centre for Integrative Biodiversity Research (iDiv); Halle-Jena-Leipzig; Deutscher Platz 5e Leipzig 04103 Germany
| |
Collapse
|