1
|
Wen Z, Fang C, Liu X, Liu Y, Li M, Yuan Y, Han Z, Wang C, Zhang T, Sun C. A recombinant Mycobacterium smegmatis-based surface display system for developing the T cell-based COVID-19 vaccine. Hum Vaccin Immunother 2023; 19:2171233. [PMID: 36785935 PMCID: PMC10012901 DOI: 10.1080/21645515.2023.2171233] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
The immune escape mutations of SARS-CoV-2 variants emerged frequently, posing a new challenge to weaken the protective efficacy of current vaccines. Thus, the development of novel SARS-CoV-2 vaccines is of great significance for future epidemic prevention and control. We herein reported constructing the attenuated Mycobacterium smegmatis (M. smegmatis) as a bacterial surface display system to carry the spike (S) and nucleocapsid (N) of SARS-CoV-2. To mimic the native localization on the surface of viral particles, the S or N antigen was fused with truncated PE_PGRS33 protein, which is a transportation component onto the cell wall of Mycobacterium tuberculosis (M.tb). The sub-cellular fraction analysis demonstrated that S or N protein was exactly expressed onto the surface (cell wall) of the recombinant M. smegmatis. After the immunization of the M. smegmatis-based COVID-19 vaccine candidate in mice, S or N antigen-specific T cell immune responses were effectively elicited, and the subsets of central memory CD4+ T cells and CD8+ T cells were significantly induced. Further analysis showed that there were some potential cross-reactive CTL epitopes between SARS-CoV-2 and M.smegmatis. Overall, our data provided insights that M. smegmatis-based bacterial surface display system could be a suitable vector for developing T cell-based vaccines against SARS-CoV-2 and other infectious diseases.
Collapse
Affiliation(s)
- Ziyu Wen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Cuiting Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,University of Chinese Academy of Sciences (UCAS), Beijing, China.,Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Xinglai Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yan Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,University of Chinese Academy of Sciences (UCAS), Beijing, China.,Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
| | - Minchao Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yue Yuan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zirong Han
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Congcong Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,University of Chinese Academy of Sciences (UCAS), Beijing, China.,Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.,Ministry of Education, Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Guangzhou, China
| |
Collapse
|
2
|
Armianinova DK, Karpov DS, Kotliarova MS, Goncharenko AV. Genetic Engineering in Mycobacteria. Mol Biol 2022. [DOI: 10.1134/s0026893322060036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Genetic tools for targeted modification of the mycobacterial genome contribute to the understanding of the physiology and virulence mechanisms of mycobacteria. Human and animal pathogens, such as the Mycobacterium tuberculosis complex, which causes tuberculosis, and M. leprae, which causes leprosy, are of particular importance. Genetic research opens up novel opportunities to identify and validate new targets for antibacterial drugs and to develop improved vaccines. Although mycobacteria are difficult to work with due to their slow growth rate and a limited possibility to transfer genetic information, significant progress has been made in developing genetic engineering methods for mycobacteria. The review considers the main approaches to changing the mycobacterial genome in a targeted manner, including homologous and site-specific recombination and use of the CRISPR/Cas system.
Collapse
|
3
|
Liu K, Lin GH, Liu K, Liu YJ, Tao XY, Gao B, Zhao M, Wei DZ, Wang FQ. Multiplexed site-specific genome engineering in Mycolicibacterium neoaurum by Att/Int system. Synth Syst Biotechnol 2022; 7:1002-1011. [PMID: 35782483 PMCID: PMC9213222 DOI: 10.1016/j.synbio.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
Genomic integration of genes and pathway-sized DNA cassettes is often an indispensable way to construct robust and productive microbial cell factories. For some uncommon microbial hosts, such as Mycolicibacterium and Mycobacterium species, however, it is a challenge. Here, we present a multiplexed integrase-assisted site-specific recombination (miSSR) method to precisely and iteratively integrate genes/pathways with controllable copies in the chromosomes of Mycolicibacteria for the purpose of developing cell factories. First, a single-step multi-copy integration method was established in M. neoaurum by a combination application of mycobacteriophage L5 integrase and two-step allelic exchange strategy, the efficiencies of which were ∼100% for no more than three-copy integration events and decreased sharply to ∼20% for five-copy integration events. Second, the R4, Bxb1 and ΦC31 bacteriophage Att/Int systems were selected to extend the available integration toolbox for multiplexed gene integration events. Third, a reconstructed mycolicibacterial Xer recombinases (Xer-cise) system was employed to recycle the selection marker of gene recombination to facilitate the iterative gene manipulation. As a proof of concept, the biosynthetic pathway of ergothioneine (EGT) in Mycolicibacterium neoaurum ATCC 25795 was achieved by remodeling its metabolic pathway with a miSSR system. With six copies of the biosynthetic gene clusters (BGCs) of EGT and pentose phosphate isomerase (PRT), the titer of EGT in the resulting strain in a 30 mL shake flask within 5 days was enhanced to 66 mg/L, which was 3.77 times of that in the wild strain. The improvements indicated that the miSSR system was an effective, flexible, and convenient tool to engineer the genomes of Mycolicibacteria as well as other strains in the Mycobacteriaceae due to their proximate evolutionary relationships.
Collapse
|
4
|
Tian X, Gao Y, Wang S, Adnan Hameed HM, Yu W, Fang C, Zhang J, Tan Y, Cao Z, Guan P, Hu J, Liu J, Zhong N, Zhang T. Rapid visualized assessment of drug efficacy in live mice with a selectable marker-free autoluminescent Klebsiella pneumoniae. Biosens Bioelectron 2021; 177:112919. [PMID: 33515974 DOI: 10.1016/j.bios.2020.112919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 12/18/2022]
Abstract
Klebsiella pneumoniae is an opportunistic pathogen that is responsible for community acquired infections and nosocomial infections. Antibiotic-resistant K. pneumoniae and/or hypervirulent K. pneumoniae are emerging as a serious threat to public health. For the sake of alleviating and conquering current dilemma, discovery of effective new drugs against K. pneumoniae is a tough challenge. However, traditional anti-K. pneumoniae drug discovery methods cost considerable amount of time, animals, labor and so on. So an efficient technique for in vitro and in vivo drug screening with the least time duration, animals and labor cost is highly needed for the discovery of new effective compounds. Hence, in this study we constructed a selectable marker-free autoluminescent K. pneumoniae (SfAlKp) harboring luxCDABE by combining Tn7 transposon and Xer-dif system. SfAlKp can be used for discovery of new drugs via detecting luminescence intensity as a surrogate marker. The energy-consuming autoluminescent reaction catalyzed by the LuxAB enzymes which use the substrates produced by LuxCDE using the metabolites of the bacteria. Tn7 can insert exogenous genes into the bacterial genome and the DNA fragment in between dif sequences can be recognized and removed by endogenous XerCD recombinases of K. pneumoniae. The drug susceptibility and growth rate of SfAlKp are identical to its parent strain, meanwhile the luminescence intensity and stability are also significant characteristics of SfAlKp. Compared to conventional techniques, the autoluminescence-based measurement is more applicable to high throughput screening for compounds both in vitro as well as in vivo in animal model.
Collapse
Affiliation(s)
- Xirong Tian
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yamin Gao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Yu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cuiting Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingran Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, 510095, China
| | - Zhizhong Cao
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, 510095, China
| | - Ping Guan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, 510095, China
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, 510095, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, 510095, China
| | - Nanshan Zhong
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Borgers K, Vandewalle K, Van Hecke A, Michielsen G, Plets E, van Schie L, Vanmarcke S, Schindfessel L, Festjens N, Callewaert N. Development of a Counterselectable Transposon To Create Markerless Knockouts from an 18,432-Clone Ordered Mycobacterium bovis Bacillus Calmette-Guérin Mutant Resource. mSystems 2020; 5:e00180-20. [PMID: 32788404 PMCID: PMC7426150 DOI: 10.1128/msystems.00180-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/20/2020] [Indexed: 12/02/2022] Open
Abstract
Mutant resources are essential to improve our understanding of the biology of slow-growing mycobacteria, which include the causative agents of tuberculosis in various species, including humans. The generation of deletion mutants in slow-growing mycobacteria in a gene-by-gene approach in order to make genome-wide ordered mutant resources is still a laborious and costly approach, despite the recent development of improved methods. On the other hand, transposon mutagenesis in combination with Cartesian pooling-coordinate sequencing (CP-CSeq) allows the creation of large archived Mycobacterium transposon insertion libraries. However, such mutants contain selection marker genes with a risk of polar gene effects, which are undesired both for research and for use of these mutants as live attenuated vaccines. In this paper, a derivative of the Himar1 transposon is described which allows the generation of clean, markerless knockouts from archived transposon libraries. By incorporating FRT sites for FlpE/FRT-mediated recombination and I-SceI sites for ISceIM-based transposon removal, we enable two thoroughly experimentally validated possibilities to create unmarked mutants from such marked transposon mutants. The FRT approach is highly efficient but leaves an FRT scar in the genome, whereas the I-SceI-mediated approach can create mutants without any heterologous DNA in the genome. The combined use of CP-CSeq and this optimized transposon was applied in the BCG Danish 1331 vaccine strain (WHO reference 07/270), creating the largest ordered, characterized resource of mutants in a member of the Mycobacterium tuberculosis complex (18,432 clones, mutating 83% of the nonessential M. tuberculosis homologues), from which markerless knockouts can be easily generated.IMPORTANCE While speeding up research for many fields of biology (e.g., yeast, plant, and Caenorhabditis elegans), genome-wide ordered mutant collections are still elusive in mycobacterial research. We developed methods to generate such resources in a time- and cost-effective manner and developed a newly engineered transposon from which unmarked mutants can be efficiently generated. Our library in the WHO reference vaccine strain of Mycobacterium bovis BCG Danish targets 83% of all nonessential genes and was made publicly available via the BCCM/ITM Mycobacteria Collection. This resource will speed up Mycobacterium research (e.g., drug resistance research and vaccine development) and paves the way to similar genome-wide mutant collections in other strains of the Mycobacterium tuberculosis complex. The stretch to a full collection of mutants in all nonessential genes is now much shorter, with just 17% remaining genes to be targeted using gene-by-gene approaches, for which highly effective methods have recently also been described.
Collapse
Affiliation(s)
- Katlyn Borgers
- Center for Medical Biotechnology, VIB-Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Kristof Vandewalle
- Center for Medical Biotechnology, VIB-Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Annelies Van Hecke
- Center for Medical Biotechnology, VIB-Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Gitte Michielsen
- Center for Medical Biotechnology, VIB-Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Evelyn Plets
- Center for Medical Biotechnology, VIB-Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Loes van Schie
- Center for Medical Biotechnology, VIB-Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Sandrine Vanmarcke
- Center for Medical Biotechnology, VIB-Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | | | - Nele Festjens
- Center for Medical Biotechnology, VIB-Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Nico Callewaert
- Center for Medical Biotechnology, VIB-Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Wang S, Yu W, Liu Z, Cai X, Zeng S, Zhang J, Gao Y, Tan Y, Cao Z, Guo L, Hameed HMA, Khan SA, Khan Z, Tian X, Fang C, Islam MM, Sapkota S, Guan P, Hu J, Liu J, Zhong N, Zhang T. Rapid, serial, non-invasive quantification of Pseudomonas aeruginosa in live mice with a selectable marker-free autoluminescent strain. Biosens Bioelectron 2020; 165:112396. [PMID: 32729517 DOI: 10.1016/j.bios.2020.112396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/26/2020] [Accepted: 06/15/2020] [Indexed: 01/07/2023]
Abstract
Pseudomonas aeruginosa is an increasingly prevalent pathogen that has become a serious health concern due to an increasing incidence of multidrug-resistant (MDR) hospital-acquired infections. The emergence of MDR-P. aeruginosa coupled with shrinking antibiotic pipelines has increased the demand for new antimicrobials and therapeutics. An effective tool for drug screening both in vitro and in vivo can facilitate the discovery of drugs and regimens for treating P. aeruginosa infection. Here, for the first time, we combined the mini-Tn7 system and Xer/dif recombinase system to construct a stable and selectable marker-free autoluminescent P. aeruginosa (SfAlPa) by one step. Afterwards, in vitro and in vivo activities of several antibiotics including amikacin, biapenem, levofloxacin and polymyxin B were assessed using SfAlPa. This study demonstrated that the use of SfAlPa could significantly facilitate rapid real-time evaluating the activities of compounds. Compared to prevailing methods, this method reduces the time, effort, animals and costs consumed in the discovery of new drugs against P. aeruginosa. Additionally, the methodology described in this study could be easily modified for construction of selectable marker-free reporter strain in other Gram-negative bacteria.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Yu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiaoyin Cai
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng Zeng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jingran Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Yamin Gao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, 510095, China
| | - Zhizhong Cao
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, 510095, China
| | - Lingmin Guo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shahzad Akbar Khan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Laboratory of Pathology, Department of Pathobiology, University of the Poonch, Rawalakot, 12350, Pakistan
| | - Zafran Khan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xirong Tian
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Cuiting Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sanjeep Sapkota
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Guan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, 510095, China
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, 510095, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, 510095, China
| | - Nanshan Zhong
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510095, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510095, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Borgers K, Vandewalle K, Festjens N, Callewaert N. A guide to Mycobacterium mutagenesis. FEBS J 2019; 286:3757-3774. [PMID: 31419030 DOI: 10.1111/febs.15041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/05/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022]
Abstract
The genus Mycobacterium includes several pathogens that cause severe disease in humans, like Mycobacterium tuberculosis (M. tb), the infectious agent causing tuberculosis. Genetic tools to engineer mycobacterial genomes, in a targeted or random fashion, have provided opportunities to investigate M. tb infection and pathogenesis. Furthermore, they have allowed the identification and validation of potential targets for the diagnosis, prevention, and treatment of tuberculosis. This review describes the various methods that are available for the generation of mutants in Mycobacterium species, focusing specifically on tools for altering slow-growing mycobacteria from the M. tb complex. Among others, it incorporates the recent new molecular biological technologies (e.g. ORBIT) to rapidly and/or genome-wide comprehensively obtain targeted mutants in mycobacteria. As such, this review can be used as a guide to select the appropriate genetic tools to generate mycobacterial mutants of interest, which can be used as tools to aid understanding of M. tb infection or to help developing TB intervention strategies.
Collapse
Affiliation(s)
- Katlyn Borgers
- VIB-UGhent Center for Medical Biotechnology, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Belgium
| | - Kristof Vandewalle
- VIB-UGhent Center for Medical Biotechnology, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Belgium
| | - Nele Festjens
- VIB-UGhent Center for Medical Biotechnology, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Belgium
| | - Nico Callewaert
- VIB-UGhent Center for Medical Biotechnology, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Belgium
| |
Collapse
|
8
|
Chhotaray C, Tan Y, Mugweru J, Islam MM, Adnan Hameed HM, Wang S, Lu Z, Wang C, Li X, Tan S, Liu J, Zhang T. Advances in the development of molecular genetic tools for Mycobacterium tuberculosis. J Genet Genomics 2018; 45:S1673-8527(18)30114-0. [PMID: 29941353 DOI: 10.1016/j.jgg.2018.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mycobacterium tuberculosis, a clinically relevant Gram-positive bacterium of great clinical relevance, is a lethal pathogen owing to its complex physiological characteristics and development of drug resistance. Several molecular genetic tools have been developed in the past few decades to study this microorganism. These tools have been instrumental in understanding how M. tuberculosis became a successful pathogen. Advanced molecular genetic tools have played a significant role in exploring the complex pathways involved in M. tuberculosis pathogenesis. Here, we review various molecular genetic tools used in the study of M. tuberculosis. Further, we discuss the applications of clustered regularly interspaced short palindromic repeat interference (CRISPRi), a novel technology recently applied in M. tuberculosis research to study target gene functions. Finally, prospective outcomes of the applications of molecular techniques in the field of M. tuberculosis genetic research are also discussed.
Collapse
Affiliation(s)
- Chiranjibi Chhotaray
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Julius Mugweru
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Biological Sciences, University of Embu, P.O Box 6 -60100, Embu, Kenya
| | - Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhili Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Changwei Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xinjie Li
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China.
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Mugweru J, Makafe G, Cao Y, Zhang Y, Wang B, Huang S, Njire M, Chhotaray C, Tan Y, Li X, Liu J, Tan S, Deng J, Zhang T. A Cassette Containing Thiostrepton, Gentamicin Resistance Genes, and dif sequences Is Effective in Construction of Recombinant Mycobacteria. Front Microbiol 2017; 8:468. [PMID: 28392781 PMCID: PMC5364183 DOI: 10.3389/fmicb.2017.00468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/07/2017] [Indexed: 11/24/2022] Open
Abstract
The genetic manipulation of Mycobacterium tuberculosis genome is limited by the availability of selection markers. Spontaneous resistance mutation rate of M. tuberculosis to the widely used kanamycin is relatively high which often leads to some false positive transformants. Due to the few available markers, we have created a cassette containing thiostrepton resistance gene (tsr) for selection in M. tuberculosis and M. bovis BCG, and gentamicin resistance gene (aacC1) for Escherichia coli and M. smegmatis mc2155, flanked with dif sequences recognized by the Xer system of mycobacteria. This cassette adds to the limited available selection markers for mycobacteria.
Collapse
Affiliation(s)
- Julius Mugweru
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhou, China
- University of Chinese Academy of SciencesBeijing, China
| | - Gaelle Makafe
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhou, China
- University of Chinese Academy of SciencesBeijing, China
| | - Yuanyuan Cao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhou, China
| | - Yang Zhang
- Key Laboratory of Biotechnology of Antibiotics, Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Bangxing Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhou, China
| | - Shaobo Huang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhou, China
| | - Moses Njire
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhou, China
- University of Chinese Academy of SciencesBeijing, China
| | - Chiranjibi Chhotaray
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhou, China
- University of Chinese Academy of SciencesBeijing, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest HospitalGuangzhou, China
| | - Xinjie Li
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest HospitalGuangzhou, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest HospitalGuangzhou, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest HospitalGuangzhou, China
| | - Jiaoyu Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhou, China
- University of Chinese Academy of SciencesBeijing, China
| |
Collapse
|
10
|
Efficient and simple generation of multiple unmarked gene deletions in Mycobacterium smegmatis. Sci Rep 2016; 6:22922. [PMID: 26972108 PMCID: PMC4789726 DOI: 10.1038/srep22922] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/24/2016] [Indexed: 11/27/2022] Open
Abstract
Research on mycobacterial genetics relies heavily on techniques for directed gene mutation, but genetic studies are often hampered by the difficulty of generating gene deletions in mycobacteria. We developed an efficient and improved deletion system, described here in detail, which can be used to construct multiple unmarked recombinants in mycobacteria. We tested this system by using it to sequentially delete four pairs of toxin-antitoxin genes in Mycobacterium smegmatis.
Collapse
|
11
|
Yang F, Njire MM, Liu J, Wu T, Wang B, Liu T, Cao Y, Liu Z, Wan J, Tu Z, Tan Y, Tan S, Zhang T. Engineering more stable, selectable marker-free autoluminescent mycobacteria by one step. PLoS One 2015; 10:e0119341. [PMID: 25760622 PMCID: PMC4356594 DOI: 10.1371/journal.pone.0119341] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/05/2015] [Indexed: 12/02/2022] Open
Abstract
In our previous study, we demonstrated that the use of the autoluminescent Mycobacterium tuberculosis as a reporter strain had the potential to drastically reduce the time, effort, animals and costs consumed in evaluation of the activities of drugs and vaccines in live mice. However, the strains were relatively unstable and lost reporter with time without selection. The kanamycin selection marker used wasn’t the best choice as it provides resistance to amino glycosides which are an important class of second line drugs used in tuberculosis treatment. In addition, the marker could limit utility of the strains for screening of new potential drugs or evaluating drug combinations for tuberculosis treatment. Limited selection marker genes for mycobacterial genetic manipulation is a major drawback for such a marker-containing strain in many research fields. Therefore, selectable marker-free, more stable autoluminescent mycobacteria are highly needed. After trying several strategies, we created such mycobacterial strains successfully by using an integrative vector and removing both the resistance maker and integrase genes by Xer site-specific recombination in one step. The corresponding plasmid vectors developed in this study could be very convenient in constructing other selectable marker-free, more stable reporter mycobacteria with diverse applications.
Collapse
Affiliation(s)
- Feng Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Moses M. Njire
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Jia Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Tian Wu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Bangxing Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Tianzhou Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yuanyuan Cao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Junting Wan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Zhengchao Tu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, The Guangzhou Chest Hospital, Guangzhou, Guangdong, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, The Guangzhou Chest Hospital, Guangzhou, Guangdong, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|