1
|
Górski A, Międzybrodzki R, Łobocka M, Głowacka-Rutkowska A, Bednarek A, Borysowski J, Jończyk-Matysiak E, Łusiak-Szelachowska M, Weber-Dąbrowska B, Bagińska N, Letkiewicz S, Dąbrowska K, Scheres J. Phage Therapy: What Have We Learned? Viruses 2018; 10:E288. [PMID: 29843391 PMCID: PMC6024844 DOI: 10.3390/v10060288] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/11/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023] Open
Abstract
In this article we explain how current events in the field of phage therapy may positively influence its future development. We discuss the shift in position of the authorities, academia, media, non-governmental organizations, regulatory agencies, patients, and doctors which could enable further advances in the research and application of the therapy. In addition, we discuss methods to obtain optimal phage preparations and suggest the potential of novel applications of phage therapy extending beyond its anti-bacterial action.
Collapse
Affiliation(s)
- Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Nowogrodzka Street 59, 02-006 Warsaw, Poland.
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Nowogrodzka Street 59, 02-006 Warsaw, Poland.
| | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego Street 5 A, 02-106 Warsaw, Poland.
- Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland.
| | - Aleksandra Głowacka-Rutkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego Street 5 A, 02-106 Warsaw, Poland.
| | - Agnieszka Bednarek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego Street 5 A, 02-106 Warsaw, Poland.
| | - Jan Borysowski
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Nowogrodzka Street 59, 02-006 Warsaw, Poland.
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
| | - Marzanna Łusiak-Szelachowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
| | - Natalia Bagińska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
| | - Sławomir Letkiewicz
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Medical Sciences Institute, Katowice School of Economics, Harcerzy Września Street 3, 40-659 Katowice, Poland.
| | - Krystyna Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Research and Development Center, Regional Specialized Hospital, Kamieńskiego 73a, 51-124 Wrocław, Poland.
| | - Jacques Scheres
- National Institute of Public Health NIZP, Chocimska Street 24, 00-971 Warsaw, Poland.
| |
Collapse
|
2
|
Bauer R, Mauerer S, Grempels A, Spellerberg B. The competence system of Streptococcus anginosus and its use for genetic engineering. Mol Oral Microbiol 2018; 33:194-202. [PMID: 29290101 DOI: 10.1111/omi.12213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2017] [Indexed: 11/30/2022]
Abstract
Streptococcus anginosus is considered a human commensal but improvements in species identification in recent years have highlighted its role as an emerging pathogen. However, our knowledge about the pathogenicity mechanisms in this species is scarce. One reason for this is the lack of published genetic manipulation techniques in the S. anginosus group. To establish a novel mutation technique we investigated the competence system of S. anginosus and created a Cre-recombinase-based mutation method that allows the generation of markerless gene deletions in S. anginosus. In silico analysis of the competence system demonstrated that S. anginosus encodes homologues for the vast majority of genes that are known to be essential for the transformation of S. pneumoniae. Analysis of transformation kinetics confirmed that S. anginosus SK52 possesses an S. pneumoniae-like competence development with a rapid increase of competence after treatment with Competence Stimulating Peptide (CSP), reaching a maximum transformation efficiency of 0.24% ± 0.08%. The combination of CSP-induced transformation and the Cre-lox system allows the efficient and fast creation of markerless gene deletions and will facilitate the investigation of the pathogenicity of S. anginosus on a genetic level.
Collapse
Affiliation(s)
- R Bauer
- Institute of Medical Microbiology and Hospital Hygiene, University of Ulm, Ulm, Germany
| | - S Mauerer
- Institute of Medical Microbiology and Hospital Hygiene, University of Ulm, Ulm, Germany
| | - A Grempels
- Institute of Medical Microbiology and Hospital Hygiene, University of Ulm, Ulm, Germany
| | - B Spellerberg
- Institute of Medical Microbiology and Hospital Hygiene, University of Ulm, Ulm, Germany
| |
Collapse
|
3
|
Guan ZB, Wang KQ, Shui Y, Liao XR. Establishment of a markerless multiple-gene deletion method based on Cre/loxP mutant system for Bacillus pumilus. J Basic Microbiol 2017; 57:1065-1068. [PMID: 29052235 DOI: 10.1002/jobm.201700370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/24/2017] [Accepted: 09/19/2017] [Indexed: 11/07/2022]
Abstract
In this study, we established a Cre/loxP mutant recombination system (Cre/lox71-66 system) for markerless gene deletion to facilitate our follow-up rational genetic engineering to the strain Bacillus pumilus W3. This modified method uses two mutant loxP sites, which after recombination creates a double-mutant loxP site that is poorly recognized by Cre recombinase, facilitating multiple gene deletions in a single genetic background. Two selected genes, cotA and sigF, were continuously knocked out and verified at different levels using this method. This method is simple and efficient and can be easily implemented for multiple gene deletions in B. pumilus.
Collapse
Affiliation(s)
- Zheng-Bing Guan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Kai-Qiang Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Yan Shui
- The Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, P. R. China
| | - Xiang-Ru Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
4
|
Yao X, Chen T, Shen X, Zhao Y, Wang M, Rao X, Yin S, Wang J, Gong Y, Lu S, Le S, Tan Y, Tang J, Fuquan H, Li M. The chromosomal SezAT toxin-antitoxin system promotes the maintenance of the SsPI-1 pathogenicity island in epidemic Streptococcus suis. Mol Microbiol 2015; 98:243-57. [PMID: 26138696 DOI: 10.1111/mmi.13116] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2015] [Indexed: 01/15/2023]
Abstract
Streptococcus suis has emerged as a causative agent of human meningitis and streptococcal toxic shock syndrome over the last years. The high pathogenicity of S. suis may be due in part to a laterally acquired pathogenicity island (renamed SsPI-1), which can spontaneously excise and transfer to recipients. Cells harboring excised SsPI-1 can potentially lose this island if cell division occurs prior to its reintegration; however, attempts to cure SsPI-1 from the host cells have been unsuccessful. Here, we report that an SsPI-1-borne Epsilon/Zeta toxin-antitoxin system (designated SezAT) promotes SsPI-1 stability in bacterial populations. The sezAT locus consists of two closely linked sezT and sezA genes encoding a toxin and its cognate antitoxin, respectively. Overproduction of SezT induces a bactericidal effect that can be neutralized by co-expression of SezA, but not by its later action. When devoid of a functional SezAT system, large-scale deletion of SsPI-1 is straightforward. Thus, SezAT serves to ensure inheritance of SsPI-1 during cell division, which may explain the persistence of epidemic S. suis. This report presents the first functional characterization of TA loci in S. suis, and the first biochemical evidence for the adaptive significance of the Epsilon/Zeta system in the evolution of pathogen virulence.
Collapse
Affiliation(s)
- Xinyue Yao
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Tian Chen
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Xiaodong Shen
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Yan Zhao
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Min Wang
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Xiancai Rao
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Supeng Yin
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Jing Wang
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Yali Gong
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Shuguang Lu
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Shuai Le
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Yinling Tan
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Jiaqi Tang
- PLA Research Institute of Clinical Laboratory Medicine, Nanjing General Hospital of Nanjing Military Command, Nanjing, 210002, China
| | - Hu Fuquan
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Ming Li
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
5
|
Willenborg J, Huber C, Koczula A, Lange B, Eisenreich W, Valentin-Weigand P, Goethe R. Characterization of the pivotal carbon metabolism of Streptococcus suis serotype 2 under ex vivo and chemically defined in vitro conditions by isotopologue profiling. J Biol Chem 2015; 290:5840-54. [PMID: 25575595 DOI: 10.1074/jbc.m114.619163] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptococcus suis is a neglected zoonotic pathogen that has to adapt to the nutritional requirements in the different host niches encountered during infection and establishment of invasive diseases. To dissect the central metabolic activity of S. suis under different conditions of nutrient availability, we performed labeling experiments starting from [(13)C]glucose specimens and analyzed the resulting isotopologue patterns in amino acids of S. suis grown under in vitro and ex vivo conditions. In combination with classical growth experiments, we found that S. suis is auxotrophic for Arg, Gln/Glu, His, Leu, and Trp in chemically defined medium. De novo biosynthesis was shown for Ala, Asp, Ser, and Thr at high rates and for Gly, Lys, Phe, Tyr, and Val at moderate or low rates, respectively. Glucose degradation occurred mainly by glycolysis and to a minor extent by the pentose phosphate pathway. Furthermore, the exclusive formation of oxaloacetate by phosphoenolpyruvate (PEP) carboxylation became evident from the patterns in de novo synthesized amino acids. Labeling experiments with S. suis grown ex vivo in blood or cerebrospinal fluid reflected the metabolic adaptation to these host niches with different nutrient availability; however, similar key metabolic activities were identified under these conditions. This points at the robustness of the core metabolic pathways in S. suis during the infection process. The crucial role of PEP carboxylation for growth of S. suis in the host was supported by experiments with a PEP carboxylase-deficient mutant strain in blood and cerebrospinal fluid.
Collapse
Affiliation(s)
- Jörg Willenborg
- From the Institute of Microbiology, University of Veterinary Medicine Hannover, D-30173 Hannover, Germany and
| | - Claudia Huber
- the Lehrstuhl für Biochemie, Technische Universität München, D-85747 Garching, Germany
| | - Anna Koczula
- From the Institute of Microbiology, University of Veterinary Medicine Hannover, D-30173 Hannover, Germany and
| | - Birgit Lange
- the Lehrstuhl für Biochemie, Technische Universität München, D-85747 Garching, Germany
| | - Wolfgang Eisenreich
- the Lehrstuhl für Biochemie, Technische Universität München, D-85747 Garching, Germany
| | - Peter Valentin-Weigand
- From the Institute of Microbiology, University of Veterinary Medicine Hannover, D-30173 Hannover, Germany and
| | - Ralph Goethe
- From the Institute of Microbiology, University of Veterinary Medicine Hannover, D-30173 Hannover, Germany and
| |
Collapse
|