1
|
Zhou J, Wang M, Grimi N, Dar BN, Calvo-Lerma J, Barba FJ. Research progress in microalgae nutrients: emerging extraction and purification technologies, digestive behavior, and potential effects on human gut. Crit Rev Food Sci Nutr 2024; 64:11375-11395. [PMID: 37489924 DOI: 10.1080/10408398.2023.2237586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Microalgae contain a diverse range of high-value compounds that can be utilized directly or fractionated to obtain components with even greater value-added potential. With the use of microalgae for food and medical purposes, there is a growing interest in their digestive properties and impact on human gut health. The extraction, separation, and purification of these components are key processes in the industrial application of microalgae. Innovative technologies used to extract and purify microalgal high-added-value compounds are key for their efficient utilization and evaluation. This review's comprehensive literature review was performed to highlight the main high-added-value microalgal components. The technologies for obtaining bioactive compounds from microalgae are being developed rapidly, various innovative, efficient, green separation and purification technologies are emerging, thus helping in the scaling-up and subsequent commercialization of microalgae products. Finally, the digestive behavior of microalgae nutrients and their health effects on the human gut microbiota were discussed. Microalgal nutrients exhibit favorable digestive properties and certain components have been shown to benefit gut microbes. The reality that must be faced is that multiple processes are still required for microalgae raw materials to final usable products, involving energy, time consumption and loss of ingredients, which still face challenges.
Collapse
Affiliation(s)
- Jianjun Zhou
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, València, Spain
| | - Min Wang
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, València, Spain
| | - Nabil Grimi
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, Compiègne, France
| | - Basharat N Dar
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, Kashmir, India
| | - Joaquim Calvo-Lerma
- Instituto Universitario de Ingeniería para el Desarrollo (IU-IAD), Universitat Politècnica de València, Valencia, Spain
| | - Francisco J Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| |
Collapse
|
2
|
Prusty JS, Kumar A. LC-MS/MS profiling and analysis of Bacillus licheniformis extracellular proteins for antifungal potential against Candida albicans. J Proteomics 2024; 303:105228. [PMID: 38878881 DOI: 10.1016/j.jprot.2024.105228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Candida albicans, a significant human pathogenic fungus, employs hydrolytic proteases for host invasion. Conventional antifungal agents are reported with resistance issues from around the world. This study investigates the role of Bacillus licheniformis extracellular proteins (ECP) as effective antifungal peptides (AFPs). The aim was to identify and characterize the ECP of B. licheniformis through LC-MS/MS and bioinformatics analysis. LC-MS/MS analysis identified 326 proteins with 69 putative ECP, further analyzed in silico. Of these, 21 peptides exhibited antifungal properties revealed by classAMP tool and are predominantly anionic. Peptide-protein docking revealed interactions between AFPs like Peptide chain release factor 1 (Q65DV1_Seq1: SASEQLSDAK) and Putative carboxy peptidase (Q65IF0_Seq7: SDSSLEDQDFILESK) with C. albicans virulent SAP5 proteins (PDB ID 2QZX), forming hydrogen bonds and significant Pi-Pi interactions. The identification of B. licheniformis ECP is the novelty of the study that sheds light on their antifungal potential. The identified AFPs, particularly those interacting with bonafide pharmaceutical targets SAP5 of C. albicans represent promising avenues for the development of antifungal treatments with AFPs that could be the pursuit of a novel therapeutic strategy against C. albicans. SIGNIFICANCE OF STUDY: The purpose of this work was to carry out proteomic profiling of the secretome of B. licheniformis. Previously, the efficacy of Bacillus licheniformis extracellular proteins against Candida albicans was investigated and documented in a recently communicated manuscript, showcasing the antifungal activity of these proteins. In order to achieve high-throughput identification of ES (Excretory-secretory) proteins, the utilization of liquid chromatography tandem mass spectrometry (LC-MS) was utilized. There was a lack of comprehensive research on AFPs in B. licheniformis, nevertheless. The proteins secreted by B. licheniformis in liquid medium were initially discovered using liquid chromatography-tandem mass spectrometry (LC-MS) analysis and identification in order to immediately characterize the unidentified active metabolites in fermentation broth.
Collapse
Affiliation(s)
- Jyoti Sankar Prusty
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India.
| |
Collapse
|
3
|
Smita N, Sasikala C, Ramana C. New insights into peroxide toxicology: sporulenes help Bacillus subtilis endospores from hydrogen peroxide. J Appl Microbiol 2023; 134:lxad238. [PMID: 37863832 DOI: 10.1093/jambio/lxad238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/11/2023] [Accepted: 10/19/2023] [Indexed: 10/22/2023]
Abstract
AIM The purpose of the present study was to understand the possible events involved in the toxicity of hydrogen peroxide (H2O2) to wild and sporulene-deficient spores of Bacillus subtilis, as H2O2 was previously shown to have deleterious effects. METHODS AND RESULTS The investigation utilized two strains of B. subtilis, namely the wild-type PY79 (WT) and the sporulene-deficient TB10 (ΔsqhC mutant). Following treatment with 0.05% H2O2 (v/v), spore viability was assessed using a plate count assay, which revealed a significant decrease in cultivability of 80% for the ΔsqhC mutant spores. Possible reasons for the loss of spore viability were investigated with microscopic analysis, dipicholinic acid (DPA) quantification and propidium iodide (PI) staining. Microscopic examinations revealed the presence of withered and deflated morphologies in spores of ΔsqhC mutants treated with H2O2, indicating a compromised membrane permeability. This was further substantiated by the absence of DPA and a high frequency (50%-75%) of PI infiltration. The results of fatty acid methyl ester analysis and protein profiling indicated that the potentiation of H2O2-induced cellular responses was manifested in the form of altered spore composition in ΔsqhC B. subtilis. The slowed growth rates of the ΔsqhC mutant and the heightened sporulene biosynthesis pathways in the WT strain, both upon exposure to H2O2, suggested a protective function for sporulenes in vegetative cells. CONCLUSIONS Sporulenes serve as a protective layer for the inner membrane of spores, thus assuming a significant role in mitigating the adverse effects of H2O2 in WT B. subtilis. The toxic effects of H2O2 were even more pronounced in the spores of the ΔsqhC mutant, which lacks this protective barrier of sporulenes.
Collapse
Affiliation(s)
- N Smita
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Ch Sasikala
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, J.N.T. University Hyderabad, Hyderabad 500085, India
| | - ChV Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| |
Collapse
|
4
|
Proteomic analysis of the periodontal pathogen Prevotella intermedia secretomes in biofilm and planktonic lifestyles. Sci Rep 2022; 12:5636. [PMID: 35379855 PMCID: PMC8980031 DOI: 10.1038/s41598-022-09085-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/04/2022] [Indexed: 11/10/2022] Open
Abstract
Prevotella intermedia is an important species associated with periodontitis. Despite the remarkable clinical significance, little is known about the molecular basis for its virulence. The aim of this study was to characterize the secretome of P. intermedia in biofilm and planktonic life mode. The biofilm secretome showed 109 proteins while the planktonic secretome showed 136 proteins. The biofilm and the planktonic secretomes contained 17 and 33 signal-peptide bearing proteins, 13 and 18 lipoproteins, respectively. Superoxide reductase, sensor histidine kinase, C40 family peptidase, elongation factor Tu, threonine synthase etc. were unique to biofilm. Of the ~ 30 proteins with predicted virulence potential from biofilm and planktonic secretomes, only 6 were common between the two groups, implying large differences between biofilm and planktonic modes of P. intermedia. From Gene Ontology biofilm secretome displayed a markedly higher percent proteins compared to planktonic secretome in terms of cellular amino acid metabolic process, nitrogen compound metabolic process etc. Inflammatory cytokine profile analysis revealed that only the biofilm secretome, not the planktonic one, induced important cytokines such as MIP-1α/MIP-1β, IL-1β, and IL-8. In conclusion, the revealed differences in the protein profiles of P. intermedia biofilm and planktonic secretomes may trigger further questions about molecular mechanisms how this species exerts its virulence potential in the oral cavity.
Collapse
|
5
|
Witt N, Andreotti S, Busch A, Neubert K, Reinert K, Tomaso H, Meierhofer D. Rapid and Culture Free Identification of Francisella in Hare Carcasses by High-Resolution Tandem Mass Spectrometry Proteotyping. Front Microbiol 2020; 11:636. [PMID: 32457701 PMCID: PMC7225524 DOI: 10.3389/fmicb.2020.00636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Zoonotic pathogens that can be transmitted via food to humans have a high potential for large-scale emergencies, comprising severe effects on public health, critical infrastructures, and the economy. In this context, the development of laboratory methods to rapidly detect zoonotic bacteria in the food supply chain, including high-resolution mass spectrometry proteotyping are needed. In this work, an optimized sample preparation method for liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteome profiling was established for Francisella isolates, and a cluster analysis, as well as a phylogenetic tree, was generated to shed light on evolutionary relationships. Furthermore, this method was applied to tissues of infected hare carcasses from Germany. Even though the non-informative data outnumbered by a manifold the information of the zoonotic pathogen in the resulting proteome profiles, the standardized evaluation of MS data within an established automated analysis pipeline identified Francisella (F.) tularensis and, thus, could be, in principle, an applicable method to monitor food supply chains.
Collapse
Affiliation(s)
- Natalie Witt
- Mass Spectrometry Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Sandro Andreotti
- Bioinformatics Solution Center, Department of Mathematics and Computer Science, Freie Universität Berlin, Germany
| | - Anne Busch
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany.,Universitätsklinikum Jena, Friedrich-Schiller-Universität, Jena, Germany
| | - Kerstin Neubert
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Knut Reinert
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - David Meierhofer
- Mass Spectrometry Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
6
|
Highly accurate classification of biological spores by culture medium for forensic attribution using multiple chemical signature types and machine learning. Anal Bioanal Chem 2020; 412:4287-4299. [PMID: 32328690 DOI: 10.1007/s00216-020-02660-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 01/29/2023]
Abstract
Future proliferation of biological expertise and new technology may increasingly lower the difficulty to produce biological organisms for misuse. Rapid attribution of a biological attack is needed to quickly identify the person or lab responsible and prevent additional attacks by enabling the apprehension of suspects. Here, triplicate batches of Bacillus anthracis Sterne strain (BaSt) spores were grown in a total of seven amateur and professional media. Multiple orthogonal analytical signatures (peptides, metabolites, lipids by fatty acid methyl ester (FAME) analysis, bulk organic profile, and trace elements) were collected from the BaSt spores. The proteomics and metabolomics analyses identified promising attribution signature compounds that are unique to each of the seven production methods. In addition, while each of the signature types showed varying degrees of value individually for attributing BaSt spores to the culture medium used to prepare them, fusing results from all five signatures types to increase sourcing robustness and using a random forest sourcing algorithm yielded 100% hold-one-batch-out cross-validation classification accuracy and an average relative source probability for the correct source 5.5× higher than the most probable incorrect source. These preliminary results provide a proof-of-concept for the development of forensic examinations that can attribute biological agents to production methods for use in future investigations.
Collapse
|
7
|
Hutchison JR, Brooks SM, Kennedy ZC, Pope TR, Deatherage Kaiser BL, Victry KD, Warner CL, Oxford KL, Omberg KM, Warner MG. Polysaccharide-based liquid storage and transport media for non-refrigerated preservation of bacterial pathogens. PLoS One 2019; 14:e0221831. [PMID: 31490969 PMCID: PMC6730858 DOI: 10.1371/journal.pone.0221831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/15/2019] [Indexed: 11/18/2022] Open
Abstract
The preservation of biological samples for an extended time period of days to weeks after initial collection is important for the identification, screening, and characterization of bacterial pathogens. Traditionally, preservation relies on cold-chain infrastructure; however, in many situations this is impractical or not possible. Thus, our goal was to develop alternative bacterial sample preservation and transport media that are effective without refrigeration or external instrumentation. The viability, nucleic acid stability, and protein stability of Bacillus anthracis Sterne 34F2, Francisella novicida U112, Staphylococcus aureus ATCC 43300, and Yersinia pestis KIM D27 (pgm-) was assessed for up to 28 days. Xanthan gum (XG) prepared in PBS with L-cysteine maintained more viable F. novicida U112 cells at elevated temperature (40°C) compared to commercial reagents and buffers. Viability was maintained for all four bacteria in XG with 0.9 mM L-cysteine across a temperature range of 22-40°C. Interestingly, increasing the concentration to 9 mM L-cysteine resulted in the rapid death of S. aureus. This could be advantageous when collecting samples in the built environment where there is the potential for Staphylococcus collection and stabilization rather than other organisms of interest. F. novicida and S. aureus DNA were stable for up to 45 days upon storage at 22°C or 40°C, and direct analysis by real-time qPCR, without DNA extraction, was possible in the XG formulations. XG was not compatible with proteomic analysis via LC-MS/MS due to the high amount of residual Xanthomonas campestris proteins present in XG. Our results demonstrate that polysaccharide-based formulations, specifically XG with L-cysteine, maintain bacterial viability and nucleic acid integrity for an array of both Gram-negative and Gram-positive bacteria across ambient and elevated temperatures.
Collapse
Affiliation(s)
- Janine R. Hutchison
- Chemical and Biological Signature Sciences Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, United States of America
- * E-mail: (JH); (MW)
| | - Shelby M. Brooks
- Subsurface Science and Technology Group, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Zachary C. Kennedy
- Chemical and Biological Signature Sciences Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Timothy R. Pope
- Chemical and Biological Signature Sciences Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Brooke L. Deatherage Kaiser
- Chemical and Biological Signature Sciences Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Kristin D. Victry
- Chemical and Biological Signature Sciences Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Cynthia L. Warner
- Chemical and Biological Signature Sciences Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Kristie L. Oxford
- Integrated Omics, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Kristin M. Omberg
- Chemical and Biological Signature Sciences Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Marvin G. Warner
- Chemical and Biological Signature Sciences Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, United States of America
- * E-mail: (JH); (MW)
| |
Collapse
|
8
|
Karched M, Bhardwaj RG, Tiss A, Asikainen S. Proteomic Analysis and Virulence Assessment of Granulicatella adiacens Secretome. Front Cell Infect Microbiol 2019; 9:104. [PMID: 31069174 PMCID: PMC6491454 DOI: 10.3389/fcimb.2019.00104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Abstract
Despite reports on the occurrence of Granulicatella adiacens in infective endocarditis, few mechanistic studies on its virulence characteristics or pathogenicity are available. Proteins secreted by this species may act as determinants of host-microbe interaction and play a role in virulence. Our aim in this study was to investigate and functionally characterize the secretome of G. adiacens. Proteins in the secretome preparation were digested by trypsin and applied to nanoLC-ESI-MS/MS. By using a combined mass spectrometry and bioinformatics approach, we identified 101 proteins. Bioinformatics tools predicting subcellular localization revealed that 18 of the secreted proteins possessed signal sequence. More than 20% of the secretome proteins were putative virulence proteins including serine protease, superoxide dismutase, aminopeptidase, molecular chaperone DnaK, and thioredoxin. Ribosomal proteins, molecular chaperones, and glycolytic enzymes, together known as "moonlighting proteins," comprised fifth of the secretome proteins. By Gene Ontology analysis, more than 60 proteins of the secretome were grouped in biological processes or molecular functions. KEGG pathway analysis disclosed that the secretome consisted of enzymes involved in biosynthesis of antibiotics. Cytokine profiling revealed that secreted proteins stimulated key cytokines, such as IL-1β, MCP-1, TNF-α, and RANTES from human PBMCs. In summary, the results from the current investigation of the G. adiacens secretome provide a basis for understanding possible pathogenic mechanisms of G. adiacens.
Collapse
Affiliation(s)
- Maribasappa Karched
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Radhika G Bhardwaj
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Ali Tiss
- Functional Proteomics and Metabolomics Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Sirkka Asikainen
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
9
|
Leiser OP, Blackburn JK, Hadfield TL, Kreuzer HW, Wunschel DS, Bruckner-Lea CJ. Laboratory strains of Bacillus anthracis exhibit pervasive alteration in expression of proteins related to sporulation under laboratory conditions relative to genetically related wild strains. PLoS One 2018; 13:e0209120. [PMID: 30557394 PMCID: PMC6296524 DOI: 10.1371/journal.pone.0209120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/20/2018] [Indexed: 11/25/2022] Open
Abstract
The spore forming pathogen Bacillus anthracis is the etiologic agent of anthrax in humans and animals. It cycles through infected hosts as vegetative cells and is eventually introduced into the environment where it generates an endospore resistant to many harsh conditions. The endospores are subsequently taken up by another host to begin the next cycle. Outbreaks of anthrax occur regularly worldwide in wildlife and livestock, and the potential for human infection exists whenever humans encounter infected animals. It is also possible to encounter intentional releases of anthrax spores, as was the case in October 2001. Consequently, it is important to be able to rapidly establish the provenance of infectious strains of B. anthracis. Here, we compare protein expression in seven low-passage wild isolates and four laboratory strains of B. anthracis grown under identical conditions using LC-MS/MS proteomic analysis. Of the 1,023 total identified proteins, 96 had significant abundance differences between wild and laboratory strains. Of those, 28 proteins directly related to sporulation were upregulated in wild isolates, with expression driven by Spo0A, CodY, and AbrB/ScoC. In addition, we observed evidence of changes in cell division and fatty acid biosynthesis between the two classes of strains, despite being grown under identical experimental conditions. These results suggest wild B. anthracis cells are more highly tuned to sporulate than their laboratory cousins, and this difference should be exploited as a method to differentiate between laboratory and low passage wild strains isolated during an anthrax outbreak. This knowledge should distinguish between intentional releases and exposure to strains in nature, providing a basis for the type of response by public health officials and investigators.
Collapse
Affiliation(s)
- Owen P. Leiser
- Chemical and Biological Signature Science, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Jason K. Blackburn
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, Florida, United States of America
| | - Ted L. Hadfield
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, Florida, United States of America
| | - Helen W. Kreuzer
- Chemical and Biological Signature Science, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - David S. Wunschel
- Chemical and Biological Signature Science, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Cindy J. Bruckner-Lea
- Chemical and Biological Signature Science, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| |
Collapse
|
10
|
Wunschel DS, Hutchison JR, Deatherage Kaiser BL, Merkley ED, Hess BM, Lin A, Warner MG. Proteomic signatures differentiating Bacillus anthracis Sterne sporulation on soil relative to laboratory media. Analyst 2017; 143:123-132. [PMID: 29165439 DOI: 10.1039/c7an01412k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The process of sporulation is vital for the stability and infectious cycle of Bacillus anthracis. The spore is the infectious form of the organism and therefore relevant to biodefense. While the morphological and molecular events occurring during sporulation have been well studied, the influence of growth medium and temperature on the proteins expressed in sporulated cultures is not well understood. Understanding the features of B. anthracis sporulation specific to natural vs. laboratory production will address an important question in microbial forensics. In an effort to bridge this knowledge gap, a system for sporulation on two types of agar-immobilized soils was used for comparison to cultures sporulated on two common types of solid laboratory media, and one liquid sporulation medium. The total number of proteins identified as well as their identity differed between samples generated in each medium and growth temperature, demonstrating that sporulation environment significantly impacts the protein content of the spore. In addition, a subset of proteins common in all of the soil-cultivated samples was distinct from the expression profiles in laboratory medium (and vice versa). These differences included proteins involved in thiamine and phosphate metabolism in the sporulated cultures produced on soils with a notable increase in expression of ATP binding cassette (ABC) transporters annotated to be for phosphate and antimicrobial peptides. A distinct set of ABC transporters for amino acids, sugars and oligopeptides were found in cultures produced on laboratory media as well as increases in carbon and amino acid metabolism-related proteins. These protein expression changes indicate that the sporulation environment impacts the protein profiles in specific ways that are reflected in the metabolic and membrane transporter proteins present in sporulated cultures.
Collapse
Affiliation(s)
- D S Wunschel
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Zhang X, Gao Y, Yin Y, Cai M, Zhou X, Zhang Y. Effective pH pretreatment and cell disruption method for real-time intracellular enzyme activity assay of a marine fungus covered with pigments. Prep Biochem Biotechnol 2016; 47:211-217. [DOI: 10.1080/10826068.2016.1201682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xiaoxu Zhang
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yanyun Gao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ying Yin
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Menghao Cai
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiangshan Zhou
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuanxing Zhang
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, China
| |
Collapse
|