1
|
Valdés-Varela L, Gueimonde M, Ruas-Madiedo P. Probiotics for Prevention and Treatment of Clostridium difficile Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:101-116. [PMID: 38175473 DOI: 10.1007/978-3-031-42108-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Probiotics have been claimed as a valuable tool to restore the balance in the intestinal microbiota following a dysbiosis caused by, among other factors, antibiotic therapy. This perturbed environment could favor the overgrowth of Clostridium difficile, and in fact, the occurrence of C. difficile-associated infections (CDI) is increasing in recent years. In spite of the high number of probiotics able to in vitro inhibit the growth and/or toxicity of this pathogen, its application for treatment or prevention of CDI is still scarce since there are not enough well-defined clinical studies supporting efficacy. Only a few strains, such as Lactobacillus rhamnosus GG and Saccharomyces boulardii, have been studied in more extent. The increasing knowledge about the probiotic mechanisms of action against C. difficile, some of them reviewed here, makes promising the application of these live biotherapeutic agents against CDI. Nevertheless, more effort must be paid to standardize the clinical studies conducted to evaluate probiotic products, in combination with antibiotics, in order to select the best candidate for C. difficile infections.
Collapse
Affiliation(s)
- Lorena Valdés-Varela
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lacteos de Asturias - Consejo Superior de Investigaciones Cientıficas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lacteos de Asturias - Consejo Superior de Investigaciones Cientıficas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lacteos de Asturias - Consejo Superior de Investigaciones Cientıficas (IPLA-CSIC), Villaviciosa, Asturias, Spain.
| |
Collapse
|
2
|
Gerstmans H, Duyvejonck L, Vázquez R, Staes I, Borloo J, Abdelkader K, Leroy J, Cremelie E, Gutiérrez D, Tamés-Caunedo H, Ruas-Madiedo P, Rodríguez A, Aertsen A, Lammertyn J, Lavigne R, Briers Y. Distinct mode of action of a highly stable, engineered phage lysin killing Gram-negative bacteria. Microbiol Spectr 2023; 11:e0181323. [PMID: 37971248 PMCID: PMC10714810 DOI: 10.1128/spectrum.01813-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Engineered lysins are considered as highly promising alternatives for antibiotics. Our previous screening study using VersaTile technology identified 1D10 as a possible lead compound with activity against Acinetobacter baumannii strains under elevated human serum concentrations. In this manuscript, we reveal an unexpected mode of action and exceptional thermoresistance for lysin 1D10. Our findings shed new light on the development of engineered lysins, providing valuable insights for future research in this field.
Collapse
Affiliation(s)
- Hans Gerstmans
- Department of Biotechnology, Ghent University, Ghent, Belgium
- Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Lisa Duyvejonck
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Roberto Vázquez
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Ines Staes
- Department of Microbial and Molecular Systems, Leuven, Belgium
| | | | - Karim Abdelkader
- Department of Biotechnology, Ghent University, Ghent, Belgium
- Department of Microbiology and Immunology, Beni-Suef University, Beni-Suef, Egypt
| | - Jeroen Leroy
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Emma Cremelie
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Diana Gutiérrez
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Héctor Tamés-Caunedo
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Patricia Ruas-Madiedo
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Ana Rodríguez
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, Leuven, Belgium
| | | | - Rob Lavigne
- Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Yves Briers
- Department of Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Mikkelsen RB, Arora T, Trošt K, Dmytriyeva O, Jensen SK, Meijnikman AS, Olofsson LE, Lappa D, Aydin Ö, Nielsen J, Gerdes V, Moritz T, van de Laar A, de Brauw M, Nieuwdorp M, Hjorth SA, Schwartz TW, Bäckhed F. Type 2 diabetes is associated with increased circulating levels of 3-hydroxydecanoate activating GPR84 and neutrophil migration. iScience 2022; 25:105683. [PMID: 36561890 PMCID: PMC9763857 DOI: 10.1016/j.isci.2022.105683] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/10/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
Obesity and diabetes are associated with inflammation and altered plasma levels of several metabolites, which may be involved in disease progression. Some metabolites can activate G protein-coupled receptors (GPCRs) expressed on immune cells where they can modulate metabolic inflammation. Here, we find that 3-hydroxydecanoate is enriched in the circulation of obese individuals with type 2 diabetes (T2D) compared with nondiabetic controls. Administration of 3-hydroxydecanoate to mice promotes immune cell recruitment to adipose tissue, which was associated with adipose inflammation and increased fasting insulin levels. Furthermore, we demonstrate that 3-hydroxydecanoate stimulates migration of primary human and mouse neutrophils, but not monocytes, through GPR84 and Gαi signaling in vitro. Our findings indicate that 3-hydroxydecanoate is a T2D-associated metabolite that increases inflammatory responses and may contribute to the chronic inflammation observed in diabetes.
Collapse
Affiliation(s)
- Randi Bonke Mikkelsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Tulika Arora
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Kajetan Trošt
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Sune Kjærsgaard Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Abraham Stijn Meijnikman
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Louise Elisabeth Olofsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dimitra Lappa
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ömrüm Aydin
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Victor Gerdes
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Thomas Moritz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Maurits de Brauw
- Department of Surgery, Spaarne Hospital, Hoofddorp, the Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Siv Annegrethe Hjorth
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Thue Walter Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Fredrik Bäckhed
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark,Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden,Corresponding author
| |
Collapse
|
4
|
Temel A, Erac B. Investigating Biofilm Formation and Antibiofilm Activity Using Real Time Cell Analysis Method in Carbapenem Resistant Acinetobacter baumannii Strains. Curr Microbiol 2022; 79:256. [PMID: 35834022 DOI: 10.1007/s00284-022-02943-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 06/20/2022] [Indexed: 11/27/2022]
Abstract
Acinetobacter baumannii is a significant nosocomial pathogen, with its biofilm forming capacity playing an important role in its pathogenicity. The fast and reliable detection of the biofilm formation and measurement of antibiofilm activity of various molecules are critical for combating A. baumannii infections. In this study, we aimed to detect biofilm formation by real time cell analyses (RTCA) method in clinical A. baumannii isolates and to investigate antibiofilm activities of tigecycline (TGC), N-acetylcysteine (NAC), and acetylsalicylic acid (ASA). The effect of the tested drugs on expressions of biofilm-related genes bap and csuE in clinical A. baumannii strains was also analyzed by real time quantitative reverse transcription polymerase chain reaction (RT-qPCR). Biofilm forming capacities for strong and weak biofilm producer A. baumannii strains were detected within 10 h by RTCA method (P < 0.05). We also observed that sub-minimum inhibitory concentrations of NAC + TGC and ASA + TGC combinations could significantly reduce biofilm formation and expression of biofilm-related genes in A. baumanii strains. No statistically significant activity of the tested drugs was detected against mature biofilms of the bacterial strains with the RTCA method. These results suggest that reproducible results on biofilm production capacity of A. baumannii strains and antibiofilm activities of various compounds can be obtained in a short time using RTCA method. Therefore, RTCA method seems to be a beneficial technique for biofilm detection and can help in combating A. baumannii infections by giving health providers the opportunity of implementing antibiofilm treatment strategies in a timely manner.
Collapse
Affiliation(s)
- Aybala Temel
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Çelebi University, 35620, Izmir, Turkey
| | - Bayrı Erac
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ege University, 35040, Izmir, Turkey.
| |
Collapse
|
5
|
Yang C, Lingli C, Meijin G, Xu L, Jinsong L, Xiaofeng L, Zhongbing C, Xiaojun T, Haoyue Z, Xiwei T, Ju C, Yingping Z. Application of near-infrared spectroscopy technology in the complex fermentation system to achieve high-efficiency production. BIORESOUR BIOPROCESS 2021; 8:96. [PMID: 38656090 PMCID: PMC11368886 DOI: 10.1186/s40643-021-00452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/29/2021] [Indexed: 11/10/2022] Open
Abstract
The fermentation process is dynamically changing, and the metabolic status can be grasped through real-time monitoring of environmental parameters. In this study, a real-time and on-line monitoring experiment platform for substrates and products detection was developed based on non-contact type near-infrared (NIR) spectroscopy technology. The prediction models for monitoring the fermentation process of lactic acid, sophorolipids (SLs) and sodium gluconate (SG) were established based on partial least-squares regression and internal cross-validation methods. Through fermentation verification, the accuracy and precision of the NIR model for the complex fermentation environments, different rheological properties (uniform system and multi-phase inhomogeneous system) and different parameter types (substrate, product and nutrients) have good applicability, and R2 was greater than 0.98, exhibiting a good linear relationship. The root mean square error of prediction shows that the model has high credibility. Through the control of appropriate glucose concentration in SG fermentation as well as glucose and oil concentrations SLs fermentation by NIR model, the titers of SG and SLs were increased to 11.8% and 26.8%, respectively. Although high cost of NIR spectrometer is a key issue for its wide application in an industrial scale. This work provides a basis for the application of NIR spectroscopy in complex fermentation systems.
Collapse
Affiliation(s)
- Chen Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. box 329, Shanghai, 200237, People's Republic of China
| | - Chen Lingli
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. box 329, Shanghai, 200237, People's Republic of China
| | - Guo Meijin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. box 329, Shanghai, 200237, People's Republic of China
| | - Li Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. box 329, Shanghai, 200237, People's Republic of China.
| | - Liu Jinsong
- SDIC Biotech Investment Co. Ltd, Beijing, 100000, China
| | | | | | - Tian Xiaojun
- SDIC Biotech Investment Co. Ltd, Beijing, 100000, China
| | - Zheng Haoyue
- SDIC Biotech Investment Co. Ltd, Beijing, 100000, China
| | - Tian Xiwei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. box 329, Shanghai, 200237, People's Republic of China.
| | - Chu Ju
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. box 329, Shanghai, 200237, People's Republic of China
| | - Zhuang Yingping
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. box 329, Shanghai, 200237, People's Republic of China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
6
|
Bernardo L, Corallo L, Caterini J, Su J, Gisonni-Lex L, Gajewska B. Application of xCELLigence real-time cell analysis to the microplate assay for pertussis toxin induced clustering in CHO cells. PLoS One 2021; 16:e0248491. [PMID: 33720984 PMCID: PMC7959359 DOI: 10.1371/journal.pone.0248491] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/27/2021] [Indexed: 02/06/2023] Open
Abstract
The microplate assay with Chinese Hamster Ovary (CHO) cells is currently used as a safety test to monitor the residual pertussis toxin (PT) amount in acellular pertussis antigens prior to vaccine formulation. The assay is based on the findings that the exposure of CHO cells to PT results in a concentration-dependent clustering response which can be used to estimate the amount of PT in a sample preparation. A major challenge with the current CHO cell assay methodology is that scoring of PT-induced clustering is dependent on subjective operator visual assessment using light microscopy. In this work, we have explored the feasibility of replacing the microscopy readout for the CHO cell assay with the xCELLigence Real-Time Cell Analysis system (ACEA BioSciences, a part of Agilent). The xCELLigence equipment is designed to monitor cell adhesion and growth. The electrical impedance generated from cell attachment and proliferation is quantified via gold electrodes at the bottom of the cell culture plate wells, which is then translated into a unitless readout called cell index. Results showed significant decrease in the cell index readouts of CHO cells exposed to PT compared to the cell index of unexposed CHO cells. Similar endpoint concentrations were obtained when the PT reference standard was titrated with either xCELLigence or microscopy. Testing genetically detoxified pertussis samples unspiked or spiked with PT further supported the sensitivity and reproducibility of the xCELLigence assay in comparison with the conventional microscopy assay. In conclusion, the xCELLigence RTCA system offers an alternative automated and higher throughput method for evaluating PT-induced clustering in CHO cells.
Collapse
Affiliation(s)
- Lidice Bernardo
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
- * E-mail:
| | - Lucas Corallo
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
| | - Judy Caterini
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
| | - Jin Su
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
| | - Lucy Gisonni-Lex
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
| | - Beata Gajewska
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
| |
Collapse
|
7
|
Nogacka AM, de Los Reyes-Gavilán CG, Arboleya S, Ruas-Madiedo P, Martínez-Faedo C, Suarez A, He F, Harata G, Endo A, Salazar N, Gueimonde M. In vitro Selection of Probiotics for Microbiota Modulation in Normal-Weight and Severely Obese Individuals: Focus on Gas Production and Interaction With Intestinal Epithelial Cells. Front Microbiol 2021; 12:630572. [PMID: 33633711 PMCID: PMC7899977 DOI: 10.3389/fmicb.2021.630572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/18/2021] [Indexed: 12/18/2022] Open
Abstract
The intestinal microbiota plays important roles in the maintenance of health. Strategies aiming at its modulation, such as probiotics, have received a deal of attention. Several strains have been studied in different in vitro models; however, the correlation of results obtained with the in vivo data has been limited. This questions the usefulness of such in vitro selection models, traditionally relying on over-simplified tests, not considering the influence of the accompanying microbiota or focusing on microbiota composition without considering functional traits. Here we assess the potential of six Bifidobacterium, Lactobacillus and Lacticaseibacillus strains in an in vitro model to determine their impact on the microbiota not just in terms of composition but also of functionality. Moreover, we compared the responses obtained in two different population groups: normal-weight and severely obese subjects. Fecal cultures were conducted to evaluate the impact of the strains on specific intestinal microbial groups, on the production of short-chain fatty acids, and on two functional responses: the production of gas and the interaction with human intestinal epithelial cells. The response to the different probiotics differed between both human groups. The addition of the probiotic strains did not induce major changes on the microbiota composition, with significant increases detected almost exclusively for the species added. Higher levels of gas production were observed in cultures from normal-weight subjects than in the obese population, with some strains being able to significantly reduce gas production in the latter group. Moreover, in obese subjects all the Bifidobacterium strains tested and Lacticaseibacillus rhamnosus GG were able to modify the response of the intestinal cells, restoring values similar to those obtained with the microbiotas of normal-weight subjects. Our results underline the need for the screening and selection of probiotics in a target-population specific manner by using appropriate in vitro models before enrolling in clinical intervention trials.
Collapse
Affiliation(s)
- Alicja Maria Nogacka
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Diet, Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Clara G de Los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Diet, Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Diet, Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Functionality and Ecology of Beneficial Microorganisms, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Ceferino Martínez-Faedo
- Endocrinology and Nutrition Service, Central University Hospital of Asturias (HUCA), Oviedo, Spain.,Endocrinology, Nutrition, Diabetes and Obesity Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Adolfo Suarez
- Diet, Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain.,Digestive Service, Central University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Fang He
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama, Japan
| | - Gaku Harata
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama, Japan
| | - Akihito Endo
- Department of Food and Cosmetic Science, Tokyo University of Agriculture, Abashiri, Japan
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Diet, Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Diet, Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
8
|
Lysin LysMK34 of Acinetobacter baumannii Bacteriophage PMK34 Has a Turgor Pressure-Dependent Intrinsic Antibacterial Activity and Reverts Colistin Resistance. Appl Environ Microbiol 2020; 86:AEM.01311-20. [PMID: 32709718 DOI: 10.1128/aem.01311-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022] Open
Abstract
The prevalence of extensively and pandrug-resistant strains of Acinetobacter baumannii leaves little or no therapeutic options for treatment for this bacterial pathogen. Bacteriophages and their lysins represent attractive alternative antibacterial strategies in this regard. We used the extensively drug-resistant A. baumannii strain MK34 to isolate the bacteriophage PMK34 (vB_AbaP_PMK34). This phage shows fast adsorption and lacks virulence genes; nonetheless, its narrow host spectrum based on capsule recognition limits broad application. PMK34 is a Fri1virus member of the Autographiviridae and has a 41.8-kb genome (50 open reading frames), encoding an endolysin (LysMK34) with potent muralytic activity (1,499.9 ± 131 U/μM), a typical mesophilic thermal stability up to 55°C, and a broad pH activity range (4 to 10). LysMK34 has an intrinsic antibacterial activity up to 4.8 and 2.4 log units for A. baumannii and Pseudomonas aeruginosa strains, respectively, but only when a high turgor pressure is present. The addition of 0.5 mM EDTA or application of an osmotic shock after treatment can compensate for the lack of a high turgor pressure. The combination of LysMK34 and colistin results in up to 32-fold reduction of the MIC of colistin, and colistin-resistant strains are resensitized in both Mueller-Hinton broth and 50% human serum. As such, LysMK34 may be used to safeguard the applicability of colistin as a last-resort antibiotic.IMPORTANCE A. baumannii is one of the most challenging pathogens for which development of new and effective antimicrobials is urgently needed. Colistin is a last-resort antibiotic, and even colistin-resistant A. baumannii strains exist. Here, we present a lysin that sensitizes A. baumannii for colistin and can revert colistin resistance to colistin susceptibility. The lysin also shows a strong, turgor pressure-dependent intrinsic antibacterial activity, providing new insights in the mode of action of lysins with intrinsic activity against Gram-negative bacteria.
Collapse
|
9
|
Engevik MA, Danhof HA, Chang-Graham AL, Spinler JK, Engevik KA, Herrmann B, Endres BT, Garey KW, Hyser JM, Britton RA, Versalovic J. Human intestinal enteroids as a model of Clostridioides difficile-induced enteritis. Am J Physiol Gastrointest Liver Physiol 2020; 318:G870-G888. [PMID: 32223302 PMCID: PMC7272722 DOI: 10.1152/ajpgi.00045.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Clostridioides difficile is an important nosocomial pathogen that produces toxins to cause life-threatening diarrhea and colitis. Toxins bind to epithelial receptors and promote the collapse of the actin cytoskeleton. C. difficile toxin activity is commonly studied in cancer-derived and immortalized cell lines. However, the biological relevance of these models is limited. Moreover, no model is available for examining C. difficile-induced enteritis, an understudied health problem. We hypothesized that human intestinal enteroids (HIEs) express toxin receptors and provide a new model to dissect C. difficile cytotoxicity in the small intestine. We generated biopsy-derived jejunal HIE and Vero cells, which stably express LifeAct-Ruby, a fluorescent label of F-actin, to monitor actin cytoskeleton rearrangement by live-cell microscopy. Imaging analysis revealed that toxins from pathogenic C. difficile strains elicited cell rounding in a strain-dependent manner, and HIEs were tenfold more sensitive to toxin A (TcdA) than toxin B (TcdB). By quantitative PCR, we paradoxically found that HIEs expressed greater quantities of toxin receptor mRNA and yet exhibited decreased sensitivity to toxins when compared with traditionally used cell lines. We reasoned that these differences may be explained by components, such as mucins, that are present in HIEs cultures, that are absent in immortalized cell lines. Addition of human-derived mucin 2 (MUC2) to Vero cells delayed cell rounding, indicating that mucus serves as a barrier to toxin-receptor binding. This work highlights that investigation of C. difficile infection in that HIEs can provide important insights into the intricate interactions between toxins and the human intestinal epithelium.NEW & NOTEWORTHY In this article, we developed a novel model of Clostridioides difficile-induced enteritis using jejunal-derived human intestinal enteroids (HIEs) transduced with fluorescently tagged F-actin. Using live-imaging, we identified that jejunal HIEs express high levels of TcdA and CDT receptors, are more sensitive to TcdA than TcdB, and secrete mucus, which delays toxin-epithelial interactions. This work also optimizes optically clear C. difficile-conditioned media suitable for live-cell imaging.
Collapse
Affiliation(s)
- Melinda A. Engevik
- 1Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,2Department of Pathology, Texas Children’s Hospital, Houston, Texas
| | - Heather A. Danhof
- 3Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, Texas,4Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | | | - Jennifer K. Spinler
- 1Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,2Department of Pathology, Texas Children’s Hospital, Houston, Texas
| | - Kristen A. Engevik
- 3Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, Texas,4Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Beatrice Herrmann
- 1Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,2Department of Pathology, Texas Children’s Hospital, Houston, Texas
| | - Bradley T. Endres
- 5Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas
| | - Kevin W. Garey
- 5Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas
| | - Joseph M. Hyser
- 1Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,2Department of Pathology, Texas Children’s Hospital, Houston, Texas
| | - Robert A. Britton
- 3Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, Texas,4Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - James Versalovic
- 1Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,2Department of Pathology, Texas Children’s Hospital, Houston, Texas
| |
Collapse
|
10
|
Nogacka AM, Salazar N, Arboleya S, Ruas-Madiedo P, Mancabelli L, Suarez A, Martinez-Faedo C, Ventura M, Tochio T, Hirano K, Endo A, G. de los Reyes-Gavilán C, Gueimonde M. In Vitro Evaluation of Different Prebiotics on the Modulation of Gut Microbiota Composition and Function in Morbid Obese and Normal-Weight Subjects. Int J Mol Sci 2020; 21:E906. [PMID: 32019174 PMCID: PMC7038051 DOI: 10.3390/ijms21030906] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota remains relatively stable during adulthood; however, certain intrinsic and environmental factors can lead to microbiota dysbiosis. Its restoration towards a healthy condition using best-suited prebiotics requires previous development of in vitro models for evaluating their functionality. Herein, we carried out fecal cultures with microbiota from healthy normal-weight and morbid obese adults. Cultures were supplemented with different inulin-type fructans (1-kestose, Actilight, P95, Synergy1 and Inulin) and a galactooligosaccharide. Their impact on the gut microbiota was assessed by monitoring gas production and evaluating changes in the microbiota composition (qPCR and 16S rRNA gene profiling) and metabolic activity (gas chromatography). Additionally, the effect on the bifidobacterial species was assessed (ITS-sequencing). Moreover, the functionality of the microbiota before and after prebiotic-modulation was determined in an in vitro model of interaction with an intestinal cell line. In general, 1-kestose was the compound showing the largest effects. The modulation with prebiotics led to significant increases in the Bacteroides group and Faecalibacterium in obese subjects, whereas in normal-weight individuals, substantial rises in Bifidobacterium and Faecalibacterium were appreciated. Notably, the results obtained showed differences in the responses among the tested compounds but also among the studied human populations, indicating the need for developing population-specific products.
Collapse
Affiliation(s)
- Alicja M. Nogacka
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (N.S.); (S.A.); (P.R.-M.); (C.G.d.l.R.-G.); (M.G.)
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain;
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (N.S.); (S.A.); (P.R.-M.); (C.G.d.l.R.-G.); (M.G.)
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain;
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (N.S.); (S.A.); (P.R.-M.); (C.G.d.l.R.-G.); (M.G.)
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain;
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (N.S.); (S.A.); (P.R.-M.); (C.G.d.l.R.-G.); (M.G.)
- Functionality and Ecology of Beneficial Microorganisms, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, 43121 Parma, Italy; (L.M.); (M.V.)
| | - Adolfo Suarez
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain;
- Digestive Service, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Asturias, Spain
| | - Ceferino Martinez-Faedo
- Endocrinology and Nutrition Service, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Asturias, Spain;
- Endocrinology, Nutrition, Diabetes and Obesity Group, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, 43121 Parma, Italy; (L.M.); (M.V.)
| | - Takumi Tochio
- β-Food Sciences Co., Chita 478-0046, Japan; (T.T.); (K.H.)
| | | | - Akihito Endo
- Department of Food and Cosmetic Science, Tokyo University of Agriculture, Abashiri 099-2493, Japan;
| | - Clara G. de los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (N.S.); (S.A.); (P.R.-M.); (C.G.d.l.R.-G.); (M.G.)
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain;
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (N.S.); (S.A.); (P.R.-M.); (C.G.d.l.R.-G.); (M.G.)
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain;
| |
Collapse
|
11
|
Yu S, Choi HH, Kim IW, Kim TJ. Conditioned medium from asbestos-exposed fibroblasts affects proliferation and invasion of lung cancer cell lines. PLoS One 2019; 14:e0222160. [PMID: 31491033 PMCID: PMC6730856 DOI: 10.1371/journal.pone.0222160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/22/2019] [Indexed: 12/28/2022] Open
Abstract
The importance of the role of fibroblasts in cancer microenvironment is well-recognized. However, the relationship between fibroblasts and asbestos-induced lung cancer remains underexplored. To investigate the effect of the asbestos-related microenvironment on lung cancer progression, lung cancer cells (NCI-H358, Calu-3, and A549) were cultured in media derived from IMR-90 lung fibroblasts exposed to 50 mg/L asbestos (chrysotile, amosite, and crocidolite) for 24 h. The kinetics and migration of lung cancer cells in the presence of asbestos-exposed lung fibroblast media were monitored using a real-time cell analysis system. Proliferation and migration of A549 cells increased in the presence of media derived from asbestos-exposed lung fibroblasts than in the presence of media derived from normal lung fibroblasts. We observed no increase in proliferation and migration in lung cancer cells cultured in asbestos-exposed lung cancer cell medium. In contrast, increased proliferation and migration in lung cancer cells exposed to media from asbestos-exposed lung fibroblasts was observed for all types of asbestos. Media derived from lung fibroblasts exposed to other stressors, such as hydrogen peroxide and UV radiation didn't show as similar effect as asbestos exposure. An enzyme-linked immunosorbent assay (ELISA)-based cytokine array identified interleukin (IL)-6 and IL-8, which show pleiotropic regulatory effects on lung cancer cells, to be specifically produced in higher amounts by the three types of asbestos-exposed lung fibroblasts than normal lung fibroblasts. Thus, the present study demonstrated that interaction of lung fibroblasts with asbestos may support the growth and metastasis of lung cancer cells and that chrysotile exposure can lead to lung cancer similar to that caused by amphibole asbestos (amosite and crocidolite).
Collapse
Affiliation(s)
- Seunghye Yu
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Chemical Engineering, Soongsil University, Seoul, Korea
| | - Hee-Hyun Choi
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Il Won Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Korea
| | - Tae-Jung Kim
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- * E-mail:
| |
Collapse
|
12
|
Xenobiotics Formed during Food Processing: Their Relation with the Intestinal Microbiota and Colorectal Cancer. Int J Mol Sci 2019; 20:ijms20082051. [PMID: 31027304 PMCID: PMC6514608 DOI: 10.3390/ijms20082051] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 12/25/2022] Open
Abstract
The colonic epithelium is exposed to a mixture of compounds through diet, among which some are procarcinogens, whereas others have a protective effect. Therefore, the net impact of these compounds on human health depends on the overall balance between all factors involved. Strong scientific evidence has demonstrated the relationship between nitrosamines (NA), heterocyclic amines (HCAs), and polycyclic aromatic hydrocarbons (PAHs), which are the major genotoxins derived from cooking and food processing, and cancer. The mechanisms of the relationship between dietary toxic xenobiotics and cancer risk are not yet well understood, but it has been suggested that differences in dietary habits affect the colonic environment by increasing or decreasing the exposure to mutagens directly and indirectly through changes in the composition and activity of the gut microbiota. Several changes in the proportions of specific microbial groups have been proposed as risk factors for the development of neoplastic lesions and the enrichment of enterotoxigenic microbial strains in stool. In addition, changes in the gut microbiota composition and activity promoted by diet may modify the faecal genotoxicity/cytotoxicity, which can be associated with a higher or lower risk of developing cancer. Therefore, the interaction between dietary components and intestinal bacteria may be a modifiable factor for the development of colorectal cancer in humans and deserves more attention in the near future.
Collapse
|
13
|
Nogacka AM, Ruas-Madiedo P, Gómez E, Solís G, Fernández N, Suárez M, Suárez A, Salazar N, de Los Reyes-Gavilán CG, Gueimonde M. Real-time monitoring of HT29 epithelial cells as an in vitro model for assessing functional differences among intestinal microbiotas from different human population groups. J Microbiol Methods 2018; 152:210-216. [PMID: 30006229 DOI: 10.1016/j.mimet.2018.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022]
Abstract
Several in vitro screening tests have been used for selecting probiotic strains; however they often show low predictive value and only a limited number of strains have demonstrated functionality in vivo. The most used in vitro tests represent a very simplified version of the gut environment, especially since they do not consider the accompanying microbiota. Therefore, there is a need to develop sensitive and discriminating in vitro models including the microbiota. Here we developed an in vitro model to discriminate among microbiotas/fecal waters from different population groups. To this end samples were obtained from seven healthy adults, five IBD-patients, ten full-term and ten preterm newborns. Fecal microbiotas were purified and their impact, as well as that of the fecal waters, on HT29 cells was continuously monitored for 22 h using a real-time cell analyzer (RTCA). The composition of the purified microbiotas was assessed by 16S rRNA gene profiling and qPCR and the levels of short chain fatty acids (SCFA) determined by gas chromatography. The microbiota fractions and SCFA concentrations obtained from IBD-patients, full-term and preterm babies, showed clear differences with regard to those of the control group (healthy adults). Moreover, the purified intestinal microbiotas and fecal waters also differed from the control group in the response induced on the HT29 cells assay developed. In short, we have developed a real-time, impedance-based in vitro model for assessing the functional response induced by purified microbiotas and fecal waters upon intestinal epithelial cells. The capability of the assay for discriminating the functional responses induced, by microbiotas or fecal waters from different human groups, promises to be of help on the search for compounds/strains to restore the functionality of the microbiota-host's interaction.
Collapse
Affiliation(s)
- A M Nogacka
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Spain
| | - P Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain
| | - E Gómez
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain
| | - G Solís
- Pediatrics Service, Asturias Central University Hospital (HUCA), SESPA, Oviedo, Asturias, Spain
| | - N Fernández
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Spain; Pediatrics Service, Asturias Central University Hospital (HUCA), SESPA, Oviedo, Asturias, Spain
| | - M Suárez
- Pediatrics Service, Asturias Central University Hospital (HUCA), SESPA, Oviedo, Asturias, Spain
| | - A Suárez
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Spain; Digestive Service, Asturias Central University Hospital (HUCA), SESPA, Oviedo, Asturias, Spain
| | - N Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Spain
| | - C G de Los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Spain
| | - M Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Spain.
| |
Collapse
|
14
|
Probiotics for Prevention and Treatment of Clostridium difficile Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:161-176. [PMID: 29383669 DOI: 10.1007/978-3-319-72799-8_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Probiotics have been claimed as a valuable tool to restore the balance in the intestinal microbiota following a dysbiosis caused by, among other factors, antibiotic therapy. This perturbed environment could favor the overgrowth of Clostridium difficile and, in fact, the occurrence of C. difficile-associated infections (CDI) is being increasing in recent years. In spite of the high number of probiotics able to in vitro inhibit the growth and/or toxicity of this pathogen, its application for treatment or prevention of CDI is still scarce since there are not enough well-defined clinical studies supporting efficacy. Only a few strains, such as Lactobacillus rhamnosus GG and Saccharomyces boulardii have been studied in more extent. The increasing knowledge about the probiotic mechanisms of action against C. difficile, some of them reviewed here, makes promising the application of these live biotherapeutic agents against CDI. Nevertheless, more effort must be paid to standardize the clinical studied conducted to evaluate probiotic products, in combination with antibiotics, in order to select the best candidate for C. difficile infections.
Collapse
|
15
|
Immunological Stability of Clostridium difficile Toxins in Clinical Specimens. Infect Control Hosp Epidemiol 2018; 39:434-438. [PMID: 29457584 DOI: 10.1017/ice.2018.20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The impact of storage on stability and detection of Clostridium difficile toxins in feces is poorly understood. The objective of this study was to investigate the immunological stability of C. difficile toxins in clinical stool specimens under different storage conditions by evaluating this stability using toxin detection by enzyme immunoassay (EIA). METHODS Stool specimens positive for C. difficile infection (CDI) by quantitative polymerase chain reaction (qPCR) were used for EIA testing with the C. difficile Tox A/B II kit. The EIA-positive specimens were stored aerobically under refrigerated (4-10°C) and frozen (-30°C and -80°C) conditions. Measurement of toxin quantity was conducting using optical density (OD) on days 0, 14, 30, 60, 90, and 120 of storage. RESULTS Clostridium difficile toxins demonstrated good detection in undiluted stool specimens by EIA up to 120 days of storage. Good detection of the toxins was observed in diluted samples at refrigerated and -80°C temperatures. Dilution detrimentally affected toxin detection at -30°C. CONCLUSION Storage of undiluted clinical stool specimens at refrigerated, -30°C, and -80°C temperatures for up to 120 days has no discernible effect on the immunological stability of C. difficile cytotoxins. However, storage at -30°C has a detrimental effect on C. difficile toxin stability in diluted specimens. Infect Control Hosp Epidemiol 2018;39:434-438.
Collapse
|
16
|
Gutiérrez D, Fernández L, Martínez B, Ruas-Madiedo P, García P, Rodríguez A. Real-Time Assessment of Staphylococcus aureus Biofilm Disruption by Phage-Derived Proteins. Front Microbiol 2017; 8:1632. [PMID: 28883818 PMCID: PMC5573737 DOI: 10.3389/fmicb.2017.01632] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/11/2017] [Indexed: 01/03/2023] Open
Abstract
A current focus of research is the development of new tools for removing bacterial biofilms in industrial settings. Bacteriophage-encoded proteins, such as endolysins, virion-associated peptidoglycan hydrolases, and exopolysaccharide depolymerases, have been shown to be efficient against these structures. However, the current screening techniques for the identification of antibiofilm properties of phage-derived proteins have important shortcomings. The aim of this work was to use the rapid, reproducible and accurate technology "real-time cell analyzer" for screening and comparing the antibiofilm ability of four phage-derived compounds, three lytic proteins (LysH5, CHAP-SH3b, and HydH5-SH3b) and one exopolysaccharide depolymerase (Dpo7) against Staphylococcus aureus biofilms, which have been associated with recurrent contamination of food products. The data generated after biofilm treatment allowed for the calculation of different antibiofilm parameters: (1) the minimum biofilm eradicating concentration that removes 50% of the biofilm (ranging from 3.5 ± 1.1 to 6.6 ± 0.5 μM), (2) the lowest concentration needed to observe an antibiofilm effect (∼1.5 μM for all the proteins), and (3) the specific antibiofilm activity and the percentage of biofilm removal that revealed LysH5 as the best antibiofilm compound. Overall, this technology might be used to quickly assess and compare by standardized parameters the disaggregating activity of phage antibiofilm proteins.
Collapse
Affiliation(s)
- Diana Gutiérrez
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones CientíficasVillaviciosa, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Gutiérrez D, Hidalgo-Cantabrana C, Rodríguez A, García P, Ruas-Madiedo P. Monitoring in Real Time the Formation and Removal of Biofilms from Clinical Related Pathogens Using an Impedance-Based Technology. PLoS One 2017. [PMID: 27695058 DOI: 10.1371/journalpone0163966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Bacteria found in diverse ecosystems grow in a community of aggregated cells that favors their survival and colonization. Different extracellular polymeric substances are used to entrap this multispecies community forming a biofilm, which can be associated to biotic and abiotic surfaces. This widespread and successful way of bacterial life, however, can lead to negative effects for human activity since many pathogen and spoiling bacteria form biofilms which are not easy to eradicate. Therefore, the search for novel anti-biofilm bio-active molecules is a very active research area for which simple, reliable, and fast screening methods are demanded. In this work we have successfully validated an impedance-based method, initially developed for the study of adherent eukaryotic cells, to monitor the formation of single-species biofilms of three model bacteria in real time. The xCelligence real time cell analyzer (RTCA) equipment uses specific microtiter E-plates coated with gold-microelectrodes that detect the attachment of adherent cells, thus modifying the impedance signal. In the current study, this technology allowed the distinction between biofilm-producers and non-producers of Staphylococcus aureus and Staphylococcus epidermidis, as well as the formation of Streptococcus mutans biofilms only when sucrose was present in the culture medium. Besides, different impedance values permitted discrimination among the biofilm-producing strains tested regardless of the nature of the polymeric biofilm matrix. Finally, we have continuously monitored the inhibition of staphylococcal biofilm formation by the bacteriophage phi-IPLA7 and the bacteriophage-encoded endolysin LysH5, as well as the removal of a preformed biofilm by this last antimicrobial treatment. Results observed with the impedance-based method showed high correlation with those obtained with standard approaches, such as crystal violet staining and bacteria enumeration, as well as with those obtained upon other abiotic surfaces (polystyrene and stainless steel). Therefore, this RTCA technology opens new opportunities in the biofilm research arena and its application could be further explored for other bacterial genera as well as for different bio-active molecules.
Collapse
Affiliation(s)
- Diana Gutiérrez
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Claudio Hidalgo-Cantabrana
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Ana Rodríguez
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Pilar García
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Patricia Ruas-Madiedo
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| |
Collapse
|
18
|
Li Z, Deng H, Zhou Y, Tan Y, Wang X, Han Y, Liu Y, Wang Y, Yang R, Bi Y, Zhi F. Bioluminescence Imaging to Track Bacteroides fragilis Inhibition of Vibrio parahaemolyticus Infection in Mice. Front Cell Infect Microbiol 2017; 7:170. [PMID: 28553617 PMCID: PMC5425466 DOI: 10.3389/fcimb.2017.00170] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/19/2017] [Indexed: 12/17/2022] Open
Abstract
Bacteroides fragilis is an anaerobic, Gram-negative, commensal bacterium of the human gut. It plays an important role in promoting the maturation of the immune system, as well as suppressing abnormal inflammation. Many recent studies have focused on the relationship between B. fragilis and human immunity, and indicate that B. fragilis has many useful probiotic effects. As inhibition of intestinal pathogens is an important characteristic of probiotic strains, this study examined whether B. fragilis could inhibit pathogenic bacteria. Results showed that Vibrio parahaemolyticus was inhibited by B. fragilis in vitro, and that B. fragilis could protect both RAW 264.7 and LoVo cells from damage caused by V. parahaemolyticus. Using in vivo imaging, we constructed a light-emitting V. parahaemolyticus strain and showed that B. fragilis might shorten the colonization time and reduce the number of lux-expressing bacteria in a mouse model. These results provide useful information for developing B. fragilis into a probiotic product, and also indicate that this commensal bacterium might aid in the clinical treatment of gastroenteritis caused by V. parahaemolyticus.
Collapse
Affiliation(s)
- Zhengchao Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical UniversityGuangzhou, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Huimin Deng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical UniversityGuangzhou, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Yazhou Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Xiaoyi Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Yangyang Liu
- Guangzhou ZhiYi Biotechnology Co. Ltd.Guangzhou, China
| | - Ye Wang
- Guangzhou ZhiYi Biotechnology Co. Ltd.Guangzhou, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| |
Collapse
|
19
|
Gutiérrez D, Hidalgo-Cantabrana C, Rodríguez A, García P, Ruas-Madiedo P. Monitoring in Real Time the Formation and Removal of Biofilms from Clinical Related Pathogens Using an Impedance-Based Technology. PLoS One 2016; 11:e0163966. [PMID: 27695058 PMCID: PMC5047529 DOI: 10.1371/journal.pone.0163966] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022] Open
Abstract
Bacteria found in diverse ecosystems grow in a community of aggregated cells that favors their survival and colonization. Different extracellular polymeric substances are used to entrap this multispecies community forming a biofilm, which can be associated to biotic and abiotic surfaces. This widespread and successful way of bacterial life, however, can lead to negative effects for human activity since many pathogen and spoiling bacteria form biofilms which are not easy to eradicate. Therefore, the search for novel anti-biofilm bio-active molecules is a very active research area for which simple, reliable, and fast screening methods are demanded. In this work we have successfully validated an impedance-based method, initially developed for the study of adherent eukaryotic cells, to monitor the formation of single-species biofilms of three model bacteria in real time. The xCelligence real time cell analyzer (RTCA) equipment uses specific microtiter E-plates coated with gold-microelectrodes that detect the attachment of adherent cells, thus modifying the impedance signal. In the current study, this technology allowed the distinction between biofilm-producers and non-producers of Staphylococcus aureus and Staphylococcus epidermidis, as well as the formation of Streptococcus mutans biofilms only when sucrose was present in the culture medium. Besides, different impedance values permitted discrimination among the biofilm-producing strains tested regardless of the nature of the polymeric biofilm matrix. Finally, we have continuously monitored the inhibition of staphylococcal biofilm formation by the bacteriophage phi-IPLA7 and the bacteriophage-encoded endolysin LysH5, as well as the removal of a preformed biofilm by this last antimicrobial treatment. Results observed with the impedance-based method showed high correlation with those obtained with standard approaches, such as crystal violet staining and bacteria enumeration, as well as with those obtained upon other abiotic surfaces (polystyrene and stainless steel). Therefore, this RTCA technology opens new opportunities in the biofilm research arena and its application could be further explored for other bacterial genera as well as for different bio-active molecules.
Collapse
Affiliation(s)
- Diana Gutiérrez
- Instituto de Productos Lácteos de Asturias–Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Claudio Hidalgo-Cantabrana
- Instituto de Productos Lácteos de Asturias–Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Ana Rodríguez
- Instituto de Productos Lácteos de Asturias–Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Pilar García
- Instituto de Productos Lácteos de Asturias–Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Patricia Ruas-Madiedo
- Instituto de Productos Lácteos de Asturias–Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| |
Collapse
|
20
|
Valdés-Varela L, Hernández-Barranco AM, Ruas-Madiedo P, Gueimonde M. Effect of Bifidobacterium upon Clostridium difficile Growth and Toxicity When Co-cultured in Different Prebiotic Substrates. Front Microbiol 2016; 7:738. [PMID: 27242753 PMCID: PMC4870236 DOI: 10.3389/fmicb.2016.00738] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/03/2016] [Indexed: 12/30/2022] Open
Abstract
The intestinal overgrowth of Clostridium difficile, often after disturbance of the gut microbiota by antibiotic treatment, leads to C. difficile infection (CDI) which manifestation ranges from mild diarrhea to life-threatening conditions. The increasing CDI incidence, not only in compromised subjects but also in traditionally considered low-risk populations, together with the frequent relapses of the disease, has attracted the interest for prevention/therapeutic options. Among these, probiotics, prebiotics, or synbiotics constitute a promising approach. In this study we determined the potential of selected Bifidobacterium strains for the inhibition of C. difficile growth and toxicity in different carbon sources. We conducted co-cultures of the toxigenic strain C. difficile LMG21717 with four Bifidobacterium strains (Bifidobacterium longum IPLA20022, Bifidobacterium breve IPLA20006, Bifidobacterium bifidum IPLA20015, and Bifidobacterium animalis subsp. lactis Bb12) in the presence of various prebiotic substrates (Inulin, Synergy, and Actilight) or glucose, and compared the results with those obtained for the corresponding mono-cultures. C. difficile and bifidobacteria levels were quantified by qPCR; the pH and the production of short chain fatty acids was also determined. Moreover, supernatants of the cultures were collected to evaluate their toxicity using a recently developed model. Results showed that co-culture with B. longum IPLA20022 and B. breve IPLA20006 in the presence of short-chain fructooligosaccharides, but not of Inulin, as carbon source significantly reduced the growth of the pathogen. With the sole exception of B. animalis Bb12, whose growth was enhanced, the presence of C. difficile did not show major effects upon the growth of the bifidobacteria. In accordance with the growth data, B. longum and B. breve were the strains showing higher reduction in the toxicity of the co-culture supernatants.
Collapse
Affiliation(s)
- L Valdés-Varela
- Microbiology and Biochemistry of Dairy Products, Probiotics and Prebiotics, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Ana M Hernández-Barranco
- Microbiology and Biochemistry of Dairy Products, Probiotics and Prebiotics, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Patricia Ruas-Madiedo
- Microbiology and Biochemistry of Dairy Products, Probiotics and Prebiotics, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Miguel Gueimonde
- Microbiology and Biochemistry of Dairy Products, Probiotics and Prebiotics, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| |
Collapse
|
21
|
Valdés-Varela L, Alonso-Guervos M, García-Suárez O, Gueimonde M, Ruas-Madiedo P. Screening of Bifidobacteria and Lactobacilli Able to Antagonize the Cytotoxic Effect of Clostridium difficile upon Intestinal Epithelial HT29 Monolayer. Front Microbiol 2016; 7:577. [PMID: 27148250 PMCID: PMC4840286 DOI: 10.3389/fmicb.2016.00577] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/08/2016] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is an opportunistic pathogen inhabiting the human gut, often being the aetiological agent of infections after a microbiota dysbiosis following, for example, an antibiotic treatment. C. difficile infections (CDI) constitute a growing health problem with increasing rates of morbidity and mortality at groups of risk, such as elderly and hospitalized patients, but also in populations traditionally considered low-risk. This could be related to the occurrence of virulent strains which, among other factors, have high-level of resistance to fluoroquinolones, more efficient sporulation and markedly high toxin production. Several novel intervention strategies against CDI are currently under study, such as the use of probiotics to counteract the growth and/or toxigenic activity of C. difficile. In this work, we have analyzed the capability of twenty Bifidobacterium and Lactobacillus strains, from human intestinal origin, to counteract the toxic effect of C. difficile LMG21717 upon the human intestinal epithelial cell line HT29. For this purpose, we incubated the bacteria together with toxigenic supernatants obtained from C. difficile. After this co-incubation new supernatants were collected in order to quantify the remnant A and B toxins, as well as to determine their residual toxic effect upon HT29 monolayers. To this end, the real time cell analyser (RTCA) model, recently developed in our group to monitor C. difficile toxic effect, was used. Results obtained showed that strains of Bifidobacterium longum and B. breve were able to reduce the toxic effect of the pathogen upon HT29, the RTCA normalized cell-index values being inversely correlated with the amount of remnant toxin in the supernatant. The strain B. longum IPLA20022 showed the highest ability to counteract the cytotoxic effect of C. difficile acting directly against the toxin, also having the highest capability for removing the toxins from the clostridial toxigenic supernatant. Image analysis showed that this strain prevents HT29 cell rounding; this was achieved by preserving the F-actin microstructure and tight-junctions between adjacent cells, thus keeping the typical epithelium-like morphology. Besides, preliminary evidence showed that the viability of B. longum IPLA20022 is needed to exert the protective effect and that secreted factors seems to have anti-toxin activity.
Collapse
Affiliation(s)
- Lorena Valdés-Varela
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Marta Alonso-Guervos
- Optical Microscopy and Image Processing Unit, University Institute of Oncology of Asturias, Scientific-Technical Services, University of Oviedo Oviedo, Spain
| | - Olivia García-Suárez
- Department of Morphology and Cellular Biology, University of Oviedo Oviedo, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| |
Collapse
|