1
|
Shalileh F, Shamani N, Golbashy M, Dadmehr M, Hosseini M. Synergistic applications of quantum dots and magnetic nanomaterials in pathogen detection: a comprehensive review. NANOTECHNOLOGY 2024; 36:052002. [PMID: 39413804 DOI: 10.1088/1361-6528/ad8751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/16/2024] [Indexed: 10/18/2024]
Abstract
The rapid and accurate detection of pathogens is crucial for effective disease prevention and management in healthcare, food safety, and environmental monitoring. While conventional pathogen detection methods like culture-based techniques and PCR are sensitive and selective, they are often time-consuming, require skilled operators, and are not suitable for point-of-care or on-site testing. To address these limitations, innovative sensor technologies have emerged that leverage the unique properties of nanomaterials. Quantum dots (QDs) and magnetic nanomaterials are two classes of nanomaterials that have shown particular promise for pathogen sensing. This review comprehensively examines the synergistic applications of QDs and magnetic nanomaterials for detecting bacteria, viruses, phages, and parasites.
Collapse
Affiliation(s)
- Farzaneh Shalileh
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Negin Shamani
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Mohammad Golbashy
- Department of Plant Production and Genetics Engineering, College of Agriculture, Agricultural Sciences and Natural Resources, University of Khuzestan, Mollasani, Iran
| | - Mehdi Dadmehr
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Morteza Hosseini
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Rahmatian N, Abbasi S, Abbasi N, Tavakkoli Yaraki M. Green-synthesized chitosan‑carbon dot nanocomposite as turn-on aptasensor for detection and quantification of Leishmania infantum parasite. Int J Biol Macromol 2024; 270:132483. [PMID: 38763252 DOI: 10.1016/j.ijbiomac.2024.132483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Leishmania is one of the most common diseases between human and animals, caused by Leishmania infantum parasite. Here, we have developed an ultra-selective turn-on fluorescent probe based on an aptamer and Chitosan-CD nanocomposite. The CD used in this study were synthesized using Quercus cap extract and a microwave-assisted approach. The Chitosan-CD nanocomposite was optimized using several microscopic and spectroscopic techniques to possess a bright fluorescence emission before adding aptamer and totally quenched fluorescence after addition of aptamer. The designed probe was proficient in the detection and quantification Leishmania infantum parasite by selective targeting of poly(A) binding protein (PABP) on the surface of the parasite. The designed fluorescent biosensor with high sensitivity, excellent selectivity, and a limit of detection (LOD) of 94 cells/mL of the Leishmania infantum parasite as well as a linear response in the ranges of 188-750 cells/mL and 3000-6000 cells/mL (R2 ≥ 0.98 for both linear ranges). Additionally, the selectivity of the designed probe was evaluated in the presence of different pathogenic species such as Trypanosoma brucei parasite and Staphylococcus aureus bacteria, as well as LiIF2α and LiP2a and BSA proteins as interference substances. The results of this study shows that using Chitosan-CD nanocomposite is a great strategy for developing selective turn-on probes with extraordinary accuracy and sensitivity in identifying Leishmania infantum parasite, especially in the early stages of the disease, and it is promising for the future clinical applications.
Collapse
Affiliation(s)
| | | | - Naser Abbasi
- Department of Pharmacology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
3
|
Arshad R, Sargazi S, Fatima I, Mobashar A, Rahdar A, Ajalli N, Kyzas GZ. Nanotechnology for Therapy of Zoonotic Diseases: A Comprehensive Overview. ChemistrySelect 2022. [DOI: 10.1002/slct.202201271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy University of Lahore Lahore 54000 Pakistan
| | - Saman Sargazi
- Cellular and Molecular Research Center Research Institute of Cellular and Molecular Sciences in Infectious Diseases Zahedan University of Medical Sciences Zahedan 98167-43463 Iran
| | - Iqra Fatima
- Department of Pharmacy Quaid-i-Azam University Islamabad Islamabad Pakistan
| | - Aisha Mobashar
- Faculty of Pharmacy University of Lahore Lahore 54000 Pakistan
| | - Abbas Rahdar
- Department of Physics University of Zabol Zabol P. O. Box. 98613–35856 Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering University of Tehran Tehran Iran
| | - George Z. Kyzas
- Department of Chemistry International Hellenic University Kavala Greece
| |
Collapse
|
4
|
Kammona O, Tsanaktsidou E. Nanotechnology-aided diagnosis, treatment and prevention of leishmaniasis. Int J Pharm 2021; 605:120761. [PMID: 34081999 DOI: 10.1016/j.ijpharm.2021.120761] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Leishmaniasis is a prevalent parasitic infection belonging to neglected tropical diseases. It is caused by Leishmania protozoan parasites transmitted by sandflies and it is responsible for increased morbidity/mortality especially in low- and middle-income countries. The lack of cheap, portable, easy to use diagnostic tools exhibiting high efficiency and specificity impede the early diagnosis of the disease. Furthermore, the typical anti-leishmanial agents are cytotoxic, characterized by low patient compliance and require long-term regimen and usually hospitalization. In addition, due to the intracellular nature of the disease, the existing treatments exhibit low bioavailability resulting in low therapeutic efficacy. The above, combined with the common development of resistance against the anti-leishmanial agents, denote the urgent need for novel therapeutic strategies. Furthermore, the lack of effective prophylactic vaccines hinders the control of the disease. The development of nanoparticle-based biosensors and nanocarrier-aided treatment and vaccination strategies could advance the diagnosis, therapy and prevention of leishmaniasis. The present review intends to highlight the various nanotechnology-based approaches pursued until now to improve the detection of Leishmania species in biological samples, decrease the side effects and increase the efficacy of anti-leishmanial drugs, and induce enhanced immune responses, specifically focusing on the outcome of their preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Olga Kammona
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece.
| | - Evgenia Tsanaktsidou
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
| |
Collapse
|
5
|
Jain S, Santana W, Dolabella SS, Santos ALS, Souto EB, Severino P. Are Nanobiosensors an Improved Solution for Diagnosis of Leishmania? Pharmaceutics 2021; 13:491. [PMID: 33916812 PMCID: PMC8066167 DOI: 10.3390/pharmaceutics13040491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
Leishmaniasis is one of the deadliest neglected tropical diseases affecting 12-15 million people worldwide, especially in middle- and low-income countries. Rapid and accurate diagnosis of the disease is important for its adequate management and treatment. Several techniques are available for the diagnosis of leishmaniasis. Among these, parasitological and immunological tests are most widely used. However, in most cases, the utilized diagnostic techniques are not good enough, showing cross-reactivity and reduced accuracy. In recent years, many new methods have been reported with potential for improved diagnosis. This review focuses on the diagnosis of Leishmania exploring the biosensors and nanotechnology-based options for their detection. New developments including the use of nanomaterials as fluorophores, fluorescence quenchers as reducing agents and as dendrimers for signal improvement and amplification, together with the use of aptamers to replace antibodies are described. Future research opportunities to overcome the current limitations on the available diagnostic approaches are also discussed.
Collapse
Affiliation(s)
- Sona Jain
- Postgraduate Program in Industrial Biotechnology, Universidade Tiradentes, Aracaju 49032-490, Brazil; (W.S.); (P.S.)
| | - Wanessa Santana
- Postgraduate Program in Industrial Biotechnology, Universidade Tiradentes, Aracaju 49032-490, Brazil; (W.S.); (P.S.)
| | - Silvio S. Dolabella
- Department of Morphology, Federal University of Sergipe, São Cristóvão 49100-000, Brazil;
| | - André L. S. Santos
- Paulo de Góes Microbiology Institute, Departament of General Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil;
| | - Eliana B. Souto
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3004-531 Coimbra, Portugal
| | - Patrícia Severino
- Postgraduate Program in Industrial Biotechnology, Universidade Tiradentes, Aracaju 49032-490, Brazil; (W.S.); (P.S.)
| |
Collapse
|
6
|
Wang E, Liu J, Zhao C, Xu Z, Murugan K, Wang L. Reproductive toxicity of quantum dots on gonads of the fresh water crab Sinopotamon henanense. Comp Biochem Physiol C Toxicol Pharmacol 2021; 241:108968. [PMID: 33418082 DOI: 10.1016/j.cbpc.2020.108968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
Since nano-quantum dots (QDs) are increasingly used as fluorescent dyes in biomedical sciences, the possibility of QDs contaminating aquatic environments is generally increasing. There is concern about potential toxicity of QDs. However, their risks in the aquatic environment are not entirely understood. In this study, the freshwater crab Sinopotamon henanense was exposed to cadmium telluride (CdTe) QDs by intraperitoneal injection to detect the reproductive toxicity of QDs (1/32, 1/16 and 1/4 LD50; Crab was exposed for 1, 3, 5, and 7 days). After CdTe QD exposure, no significant effect was detected on the body weight and gonadosomatic index. Additionally, morphological observations showed tissue vacuolation in the testis, and inflammatory cell infiltration in the ovary. The submicroscopic structure showed that exposure to CdTe QDs damaged the organelles and cell structures of the gonads of S. henanense. Among the adverse effects, pathological changes in the nuclear membrane, mitochondria and lysosomes were particularly significant. Antioxidant enzymes responded differently to different doses of QDs. The 0.5-mg/kg dose induced superoxide dismutase activity in the testes. And in the 1-mg/kg and 4-mg/kg dose QD exposure test, the testis responded by activating glutathione peroxidase and inducing reduced glutathione and overconsuming glutathione peroxidase. Respectively, the ovaries responded by overconsuming superoxide dismutase and glutathione peroxidase and reduced glutathione. Thus, we conclude that the gonads of S. henanense were injured by CdTe QD, and male are better indicators of the toxicity of QDs than female crabs according to greater alterations in tissue structure and antioxidant enzyme in the analyses.
Collapse
Affiliation(s)
- Ermeng Wang
- School of Life Science, Shanxi University, Taiyuan, China
| | - Jing Liu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Chenyun Zhao
- School of Life Science, Shanxi University, Taiyuan, China
| | - Zihan Xu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Kadarkarai Murugan
- Department of Zoology, School of Life Sciences, Bharathiar University, India
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan, China.
| |
Collapse
|
7
|
Chakraborty D, Naik S, Kumar S, Chandrasekaran N, Mukherjee A. Exploring the interactions between protein coronated CdSe quantum dots and nanoplastics. NEW J CHEM 2021; 45:7951-7958. [DOI: 10.1039/d1nj00441g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
QDs after protein coronation can undergo sequential interaction with other pollutants which may alter the physiochemical property of the QDs and influence the stability of the corona proteins.
Collapse
Affiliation(s)
| | - Sanjay Naik
- Centre for Bioseparation Technology
- Vellore Institute of Technology
- Vellore
- India
| | - Sanjit Kumar
- Centre for Bioseparation Technology
- Vellore Institute of Technology
- Vellore
- India
| | - N. Chandrasekaran
- Centre for Nanobiotechnology
- Vellore Institute of Technology
- Vellore
- India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology
- Vellore Institute of Technology
- Vellore
- India
| |
Collapse
|
8
|
Gedda MR, Madhukar P, Shukla A, Mudavath SL, Srivastava ON, Singh OP, Sundar S. Nanodiagnostics in leishmaniasis: A new frontiers for early elimination. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1675. [PMID: 33142369 DOI: 10.1002/wnan.1675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/23/2022]
Abstract
Visceral leishmaniasis (VL) is still a major public health concern in developing countries having the highest outbreak and mortality potential. While the treatment of VL has greatly improved in recent times, the current diagnostic tools are limited for use in the post-elimination setting. Although conventional serological methods of detection are rapid, they can only differentiate between active disease in strict combination with clinical criteria, and thus are not sufficient enough to diagnose relapse patients. Therefore, there is a dire need for a portable, authentic, and reliable assay that does not require large space, specialized instrument facilities, or highly trained laboratory personnel and can be carried out in primary health care settings. Advances in the nanodiagnostic approaches have led to the expansion of new frontiers in the concerned area. The nanosized particles are blessed with an ability to interact one-on-one with the biomolecules because of their unique optical and physicochemical properties and high surface area to volume ratio. Biomolecular detection systems based on nanoparticles (NPs) are cost-effective, rapid, nongel, non-PCR, and nonculture based that provide fast, one-step, and reliable results with acceptable sensitivity and specificity. In this review, we discuss different NPs that are being used for the identification of molecular markers and other biomarkers, such as toxins and antigens associated with leishmaniasis. The most promising diagnostic approaches have been included in the article, and the ability of biomolecular recognition, advantages, and disadvantages have been discussed in detail to showcase the enormous potential of nanodiagnostics in human and veterinary medicine. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Mallikarjuna Rao Gedda
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.,Center for Cellular Engineering, NIH Clinical Center, Bethesda, Maryland, USA
| | - Prasoon Madhukar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ashish Shukla
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science & Technology, Habitat Centre, Mohali, Punjab, India
| | - Onkar Nath Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Om Prakash Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
9
|
Farshchi F, Saadati A, Hasanzadeh M. Optimized DNA-based biosensor for monitoring Leishmania infantum in human plasma samples using biomacromolecular interaction: a novel platform for infectious disease diagnosis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4759-4768. [PMID: 32936128 DOI: 10.1039/d0ay01516d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Leishmania parasite identification is very important in clinical studies of leishmaniasis and its diagnosis. Though there are various clinical and epidemiological approaches to identifying Leishmania infantum, due to some limitations of the traditional methods, sensitive and specific techniques are needed and are in great demand. To achieve selective and rapid detection, a sensitive signal transducer with high surface area is necessary. In this work, a new paper sensor was fabricated using silver nanoprisms electrodeposited on the GQD conductive nano-ink (Ag NPr/GQDs nano-ink). A high surface area and suitable interface for anchoring biomolecules was achieved by electrodepositing gold nanoparticles (AuNPs) functionalized with cysteamine (AuNPs-CysA) on the surface of the paper sensor altered by Ag NPr/GQDs nano-ink. To prepare a sensitive and selective bio-device for the recognition of Leishmania in human plasma specimens, a DNA-thiol probe was stabilized on the surface of the platform. Hybridization of DNA was evaluated by chronoamperometry (ChA). The engineered DNA-based paper biosensor showed high sensitivity and selectivity for the identification of Leishmania genomic DNA. Under optimum circumstances, a linear range was obtained using photographic paper from 1 μM to 1 zM and an ivory sheet from 1 nM to 1 zM. The lower limits of quantitation (LLOQ) on the photographic paper and ivory sheet were 1 zM. In addition, the designed DNA-based biosensor revealed well-defined performance in the recognition of mismatched sequences (single base, two base and three base mismatches) and selectivity.
Collapse
Affiliation(s)
- Fatemeh Farshchi
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | | |
Collapse
|
10
|
Tang C, He Z, Liu H, Xu Y, Huang H, Yang G, Xiao Z, Li S, Liu H, Deng Y, Chen Z, Chen H, He N. Application of magnetic nanoparticles in nucleic acid detection. J Nanobiotechnology 2020; 18:62. [PMID: 32316985 PMCID: PMC7171821 DOI: 10.1186/s12951-020-00613-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
Nucleic acid is the main material for storing, copying, and transmitting genetic information. Gene sequencing is of great significance in DNA damage research, gene therapy, mutation analysis, bacterial infection, drug development, and clinical diagnosis. Gene detection has a wide range of applications, such as environmental, biomedical, pharmaceutical, agriculture and forensic medicine to name a few. Compared with Sanger sequencing, high-throughput sequencing technology has the advantages of larger output, high resolution, and low cost which greatly promotes the application of sequencing technology in life science research. Magnetic nanoparticles, as an important part of nanomaterials, have been widely used in various applications because of their good dispersion, high surface area, low cost, easy separation in buffer systems and signal detection. Based on the above, the application of magnetic nanoparticles in nucleic acid detection was reviewed.
Collapse
Affiliation(s)
- Congli Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Ziyu He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Hongmei Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Yuyue Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Hao Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Gaojian Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Ziqi Xiao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Hongna Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096 China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096 China
| |
Collapse
|
11
|
Singh OP, Gedda MR, Mudavath SL, Srivastava ON, Sundar S. Envisioning the innovations in nanomedicine to combat visceral leishmaniasis: for future theranostic application. Nanomedicine (Lond) 2019; 14:1911-1927. [PMID: 31313971 PMCID: PMC7006826 DOI: 10.2217/nnm-2018-0448] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/12/2019] [Indexed: 01/06/2023] Open
Abstract
Visceral leishmaniasis (VL) is a life-threatening parasitic disease affecting impoverished people of the developing world; and much effort has been spent on the early case detection and treatment. However, current diagnostics and treatment options are not sufficient for appropriate surveillance in VL elimination setting. Hence, there is a dire need to develop highly sensitive diagnostics and less toxic effective treatments for proper management of cases and to achieve the sustained disease elimination. Although, promising results have been observed with nanomedicines in leishmaniasis; there are great challenges ahead especially in translating this to clinical setting. This review provides updated progress of nanomedicines in VL, and discussed how these innovations and future directions play vital role in achieving VL elimination.
Collapse
Affiliation(s)
- Om Prakash Singh
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Mallikarjuna Rao Gedda
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Lal Mudavath
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Department of Chemical Biology & Therapeutics, Institute of Nano Science & Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab, India
| | - Onkar Nath Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
12
|
Casein-Conjugated Gold Nanoparticles for Amperometric Detection of Leishmania infantum. BIOSENSORS-BASEL 2019; 9:bios9020068. [PMID: 31137793 PMCID: PMC6627895 DOI: 10.3390/bios9020068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022]
Abstract
Sensitive and reliable approaches targeting the detection of Leishmania are critical for effective early diagnosis and treatment of leishmaniasis. In this frame, this paper describes a rapid quantification assay to detect Leishmania parasites based on the combination of the electrocatalytic ability of gold nanoparticles (AuNPs) to act as a catalyst for the hydrogen formation reaction along with the specificity of the interaction between casein and the major surface protease of the Leishmania parasite, GP63. First, pure and casein-modified AuNPs were prepared and characterized by scanning electron microscopy and ultraviolet-visible spectroscopy. Then, casein-conjugated AuNPs were incubated with Leishsmania parasites in solution; the formed complex was collected by centrifugation, treated by acidic solution, and the pelleted AuNPs were placed on screen-printed carbon electrodes (SPCEs) and chronoamperometric measurements were carried out. Our results suggest that it is possible to detect Leishmania parasites, with a limit less than 1 parasite/mL. A linear response over a wide concentration interval, ranging from 2 × 10-2 to 2 × 105 parasites/mL, was achieved. Additionally, a pretreatment of Leishmania parasites with Amphotericin B, diminished their interaction with casein. This findings and methodology are very useful for drug efficacy assessment.
Collapse
|
13
|
Shams SF, Ghazanfari MR, Schmitz-Antoniak C. Magnetic-Plasmonic Heterodimer Nanoparticles: Designing Contemporarily Features for Emerging Biomedical Diagnosis and Treatments. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E97. [PMID: 30642128 PMCID: PMC6358957 DOI: 10.3390/nano9010097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/28/2022]
Abstract
Magnetic-plasmonic heterodimer nanostructures synergistically present excellent magnetic and plasmonic characteristics in a unique platform as a multipurpose medium for recently invented biomedical applications, such as magnetic hyperthermia, photothermal therapy, drug delivery, bioimaging, and biosensing. In this review, we briefly outline the less-known aspects of heterodimers, including electronic composition, interfacial morphology, critical properties, and present concrete examples of recent progress in synthesis and applications. With a focus on emerging features and performance of heterodimers in biomedical applications, this review provides a comprehensive perspective of novel achievements and suggests a fruitful framework for future research.
Collapse
Affiliation(s)
- S Fatemeh Shams
- Peter-Grünberg-Institut (PGI-6), Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Mohammad Reza Ghazanfari
- Department of Materials Science and Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | | |
Collapse
|
14
|
Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, Iancu C, Mocan L. Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine 2017; 12:5421-5431. [PMID: 28814860 PMCID: PMC5546783 DOI: 10.2147/ijn.s138624] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Quantum dots (QDs), also known as nanoscale semiconductor crystals, are nanoparticles with unique optical and electronic properties such as bright and intensive fluorescence. Since most conventional organic label dyes do not offer the near-infrared (>650 nm) emission possibility, QDs, with their tunable optical properties, have gained a lot of interest. They possess characteristics such as good chemical and photo-stability, high quantum yield and size-tunable light emission. Different types of QDs can be excited with the same light wavelength, and their narrow emission bands can be detected simultaneously for multiple assays. There is an increasing interest in the development of nano-theranostics platforms for simultaneous sensing, imaging and therapy. QDs have great potential for such applications, with notable results already published in the fields of sensors, drug delivery and biomedical imaging. This review summarizes the latest developments available in literature regarding the use of QDs for medical applications.
Collapse
Affiliation(s)
- Cristian T Matea
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology "Octavian Fodor"
| | - Teodora Mocan
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology "Octavian Fodor".,Department of Physiology, University of Medicine and Pharmacy, "Iuliu Hatieganu"
| | - Flaviu Tabaran
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology "Octavian Fodor".,Department of Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine
| | - Teodora Pop
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology "Octavian Fodor".,Department of Gastroenterology
| | - Ofelia Mosteanu
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology "Octavian Fodor".,Department of Gastroenterology
| | - Cosmin Puia
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology "Octavian Fodor".,Department of Surgery, University of Medicine and Pharmacy, "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Cornel Iancu
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology "Octavian Fodor".,Department of Surgery, University of Medicine and Pharmacy, "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Lucian Mocan
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology "Octavian Fodor".,Department of Surgery, University of Medicine and Pharmacy, "Iuliu Hatieganu", Cluj-Napoca, Romania
| |
Collapse
|
15
|
Toubanaki DK, Athanasiou E, Karagouni E. Gold nanoparticle-based lateral flow biosensor for rapid visual detection of Leishmania-specific DNA amplification products. J Microbiol Methods 2016; 127:51-58. [PMID: 27255490 DOI: 10.1016/j.mimet.2016.05.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/26/2016] [Accepted: 05/28/2016] [Indexed: 01/22/2023]
Abstract
Leishmaniasis is a disease, caused by Leishmania parasites, which infect humans and animals, posing a major social and economic burden worldwide. The need for accurate and sensitive disease diagnosis led to the widespread adoption of PCR amplification. Detection of the amplification products (i.e. gel electrophoresis) require time-consuming protocols performed by trained personnel, with high cost. Aim of the present study was the simplification of PCR product detection, using a nucleic acid lateral flow, combined with functionalized gold nanoparticles. Amplification reactions targeting kinetoplastid DNA of Leishmania spp were performed on canine blood samples and a positive signal was formed as a red test zone. The visual detection was completed in 20min. Extensive optimization enabled the detection of 100fmol of target DNA. Clinical samples of infected dog blood were analyzed with high specificity. Overall, the proposed lateral flow biosensor can be considered an appealing alternative platform for Leishmania-specific amplification products detection with low cost and attractive simplicity.
Collapse
Affiliation(s)
- Dimitra K Toubanaki
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, 127 Vas. Sofias Ave., 11521 Athens, Greece.
| | - Evita Athanasiou
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, 127 Vas. Sofias Ave., 11521 Athens, Greece.
| | - Evdokia Karagouni
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, 127 Vas. Sofias Ave., 11521 Athens, Greece.
| |
Collapse
|