Analysis of the lung microbiota in dogs with Bordetella bronchiseptica infection and correlation with culture and quantitative polymerase chain reaction.
Vet Res 2020;
51:46. [PMID:
32209128 PMCID:
PMC7092585 DOI:
10.1186/s13567-020-00769-x]
[Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/02/2020] [Indexed: 12/29/2022] Open
Abstract
Infection with Bordetella bronchiseptica (Bb), a pathogen involved in canine infectious respiratory disease complex, can be confirmed using culture or qPCR. Studies about the canine lung microbiota (LM) are recent, sparse, and only one paper has been published in canine lung infection. In this study, we aimed to compare the LM between Bb infected and healthy dogs, and to correlate sequencing with culture and qPCR results. Twenty Bb infected dogs diagnosed either by qPCR and/or culture and 4 healthy dogs were included. qPCR for Mycoplasma cynos (Mc) were also available in 18 diseased and all healthy dogs. Sequencing results, obtained from bronchoalveolar lavage fluid after DNA extraction, PCR targeting the V1–V3 region of the 16S rDNA and sequencing, showed the presence of Bb in all diseased dogs, about half being co-infected with Mc. In diseased compared with healthy dogs, the β-diversity changed (P = 0.0024); bacterial richness and α-diversity were lower (P = 0.012 and 0.0061), and bacterial load higher (P = 0.004). Bb qPCR classes and culture results correlated with the abundance of Bb (r = 0.71, P < 0.001 and r = 0.70, P = 0.0022). Mc qPCR classes also correlated with the abundance of Mc (r = 0.73, P < 0.001). Bb infection induced lung dysbiosis, characterized by high bacterial load, low richness and diversity and increased abundance of Bb, compared with healthy dogs. Sequencing results highly correlate with qPCR and culture results showing that sequencing can be reliable to identify microorganisms involved in lung infectious diseases.
Collapse