1
|
Kayama S, Yahara K, Sugawara Y, Kawakami S, Kondo K, Zuo H, Kutsuno S, Kitamura N, Hirabayashi A, Kajihara T, Kurosu H, Yu L, Suzuki M, Hisatsune J, Sugai M. National genomic surveillance integrating standardized quantitative susceptibility testing clarifies antimicrobial resistance in Enterobacterales. Nat Commun 2023; 14:8046. [PMID: 38052776 PMCID: PMC10698200 DOI: 10.1038/s41467-023-43516-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023] Open
Abstract
Antimicrobial resistance is a global health concern; Enterobacterales resistant to third-generation cephalosporins (3GCs) and carbapenems are of the highest priority. Here, we conducted genome sequencing and standardized quantitative antimicrobial susceptibility testing of 4,195 isolates of Escherichia coli and Klebsiella pneumoniae resistant to 3GCs and Enterobacterales with reduced meropenem susceptibility collected across Japan. Our analyses provided a complete classification of 3GC resistance mechanisms. Analyses with complete reference plasmids revealed that among the blaCTX-M extended-spectrum β-lactamase genes, blaCTX-M-8 was typically encoded in highly similar plasmids. The two major AmpC β-lactamase genes were blaCMY-2 and blaDHA-1. Long-read sequencing of representative plasmids revealed that approximately 60% and 40% of blaCMY-2 and blaDHA-1 were encoded by such plasmids, respectively. Our analyses identified strains positive for carbapenemase genes but phenotypically susceptible to carbapenems and undetectable by standard antimicrobial susceptibility testing. Systematic long-read sequencing enabled reconstruction of 183 complete plasmid sequences encoding three major carbapenemase genes and elucidation of their geographical distribution stratified by replicon types and species carrying the plasmids and potential plasmid transfer events. Overall, we provide a blueprint for a national genomic surveillance study that integrates standardized quantitative antimicrobial susceptibility testing and characterizes resistance determinants.
Collapse
Affiliation(s)
- Shizuo Kayama
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Yo Sugawara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Sayoko Kawakami
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kohei Kondo
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hui Zuo
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shoko Kutsuno
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Norikazu Kitamura
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Aki Hirabayashi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Toshiki Kajihara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hitomi Kurosu
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Liansheng Yu
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masato Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Junzo Hisatsune
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
2
|
Urase T, Goto S, Sato M. Monitoring Carbapenem-Resistant Enterobacterales in the Environment to Assess the Spread in the Community. Antibiotics (Basel) 2022; 11:antibiotics11070917. [PMID: 35884172 PMCID: PMC9311640 DOI: 10.3390/antibiotics11070917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
The usefulness of wastewater-based epidemiology (WBE) was proven during the COVID-19 pandemic, and the role of environmental monitoring of emerging infectious diseases has been recognized. In this study, the prevalence of carbapenem-resistant Enterobacterales (CRE) in Japanese environmental samples was measured in the context of applying WBE to CRE. A total of 247 carbapenem-resistant isolates were obtained from wastewater, treated wastewater, and river water. Treated wastewater was shown to be an efficient target for monitoring CRE. The results of the isolate analysis showed that WBE may be applicable to Escherichia coli-carrying New Delhi metallo-β-lactamase (NDM)-type carbapenemase, the Enterobacter cloacae complex and Klebsiella pneumoniae complex-carrying IMP-type carbapenemase. In addition, a certain number of CRE isolated in this study carried Guiana extended spectrum (GES)-type carbapenemase although their clinical importance was unclear. Only a few isolates of Klebsiella aerogenes were obtained from environmental samples in spite of their frequent detection in clinical isolates. Neither the KPC-type, the oxacillinase (OXA)-type nor the VIM-type of carbapenemase was detected in the CRE, which reflected a low regional prevalence. These results indicated the expectation and the limitation of applying WBE to CRE.
Collapse
|
3
|
Rapid Detection of blaKPC-9 Allele from Clinical Isolates. Pathogens 2021; 10:pathogens10040487. [PMID: 33920533 PMCID: PMC8072647 DOI: 10.3390/pathogens10040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022] Open
Abstract
The emergence of Klebsiella pneumoniae carbapenemase (KPC) nosocomial outbreaks related to specific blaKPC gene variants dictates the need for applicable diagnostic methods for allele discrimination. We report here a simple method of blaKPC-9 allele recognition based on a combination of endonuclease digestion analysis and PCR amplification using unique primers. K. pneumoniae isolates carrying the blaKPC gene were tested. Digestion with RsaI restriction endonuclease was found to efficiently differentiate the blaKPC-2 from the blaKPC-9 variants into two distinct groups of digestion patterns named KPC-2-like and KPC-9-like, respectively. An additional procedure, the amplification refractory mutation system (ARMS) method, was applied to identify the variant within the same group. The principles of this procedure could be developed to identify several blaKPC gene variants, as well as monitoring the spread and evolution of specific KPC variants within local geographical regions.
Collapse
|
4
|
Watahiki M, Kawahara R, Suzuki M, Aoki M, Uchida K, Matsumoto Y, Kumagai Y, Noda M, Masuda K, Fukuda C, Harada S, Senba K, Suzuki M, Matsui M, Suzuki S, Shibayama K, Shinomiya H. Single-Tube Multiplex Polymerase Chain Reaction for the Detection of Genes Encoding Enterobacteriaceae Carbapenemase. Jpn J Infect Dis 2019; 73:166-172. [PMID: 31787735 DOI: 10.7883/yoken.jjid.2019.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A multiplex PCR assay in a single tube was developed for the detection of the carbapenemase genes of Enterobacteriaceae. Primers were designed to amplify the following six carbapenemase genes: blaKPC, blaIMP, blaNDM, blaVIM, blaOXA-48-like, and blaGES. Of 70 blaIMP variants, 67 subtypes were simulated to be PCR-positive based on in silico simulation and the primer-design strategy. After determining the optimal PCR conditions and performing in vitro assays, the performance of the PCR assay was evaluated using 51 and 91 clinical isolates with and without carbapenemase genes, respectively. In conclusion, the combination of multiplex PCR primers and QIAGEN Multiplex PCR Plus Kit was used to determine the best performance for the rapid and efficient screening of carbapenemase genes in Enterobacteriaceae. The assay had an overall sensitivity and specificity of 100%. This PCR assay compensates for the limitations of phenotypic testing, such as antimicrobial susceptibility testing and the modified carbapenem inactivation method, in clinical and public health settings.
Collapse
Affiliation(s)
| | - Ryuji Kawahara
- Division of Microbiology, Osaka Institute of Public Health
| | - Masahiro Suzuki
- Department of Microbiology and Medical Zoology, Aichi Prefectural Institute of Public Health.,Present Address: Department of Microbiology, School of Medicine, Fujita Health University
| | - Miyako Aoki
- Department of Microbiology and Medical Zoology, Aichi Prefectural Institute of Public Health
| | - Kaoru Uchida
- Department of Bacteriology, Toyama Institute of Health
| | - Yuko Matsumoto
- Microbiological Testing and Research Division, Yokohama City Institute of Public Health
| | - Yuko Kumagai
- Hygiene Division, Bacteriology Section, Akita Prefectural Research Center for Public Health and Environment
| | - Makiko Noda
- Department of Infectious Diseases, Gifu Prefectural Research Institute for Health and Environmental Sciences
| | - Kanako Masuda
- Hiroshima Prefectural Technology Research Institute, Public Health and Environment Center
| | - Chiemi Fukuda
- Department of Microbiology, Kagawa Prefectural Research Institute for Environmental Sciences and Public Health
| | - Seiya Harada
- Department of Microbiology, Kumamoto Prefectural Institute of Public Health and Environmental Science
| | - Keiko Senba
- Department of Microbiology, Ehime Prefectural Institute of Public Health and Environmental Science
| | - Masato Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases
| | - Mari Matsui
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases
| | - Satowa Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases
| | - Hiroto Shinomiya
- Department of Microbiology, Ehime Prefectural Institute of Public Health and Environmental Science
| |
Collapse
|
5
|
Bommer A, Böhler O, Johannsen E, Dobrindt U, Kuczius T. Effect of chlorine on cultivability of Shiga toxin producing Escherichia coli (STEC) and β-lactamase genes carrying E. coli and Pseudomonas aeruginosa. Int J Med Microbiol 2018; 308:1105-1112. [PMID: 30262431 DOI: 10.1016/j.ijmm.2018.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/02/2018] [Accepted: 09/13/2018] [Indexed: 11/15/2022] Open
Abstract
The worldwide spread of toxin-producing and multi-drug resistant bacteria in water, food and the environment is considered a major threat to human health. Drinking water quality is controlled by inspection of fecal indicators presence whereby viable contaminants will be efficiently reduced by chlorination which is a common process for disinfection. However, the all-out efficiency is arguable, because bacterial regrowth has been documented after disinfection. In this study, we investigated the stability of Shiga toxin producing Escherichia coli (STEC) and β-lactamase expressing E. coli and Pseudomonas aeruginosa isolates, both equipped with multiple or single β-lactamase resistance genes. The aim of the study was to analyze the efficiency of chlorine (Cl2) disinfection against shigatoxigenic or β-lactamase producing bacteria. Cl2 reacts with the bacterial cells after first contact. Counts of antibiotic resistant E. coli were lower after short than upon extended Cl2 treatment. P. aeruginosa counts decreased moderately upon 15-60 min treatment with 1.2 mg Cl2/l, while cells adapted to tap water were not cultivable anymore. We assume that the bacterial physiology changed to a temporary non-cultivatable state at first Cl2 contact followed by resuscitation of some cells at later stages. STEC viability went down continuously at low Cl2 concentrations and these toxigenic E. coli isolates exhibited slightly increased stability to Cl2 treatment compared with non-toxigenic E. coli. Controlling the efficiency of disinfection, realistic counts of cultivatable cells are achieved after extended Cl2 action.
Collapse
Affiliation(s)
- Anni Bommer
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149 Münster, Germany
| | - Olga Böhler
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149 Münster, Germany
| | - Eva Johannsen
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149 Münster, Germany
| | - Ulrich Dobrindt
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149 Münster, Germany
| | - Thorsten Kuczius
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149 Münster, Germany.
| |
Collapse
|