1
|
Tsuji A, Inabe K, Hidese R, Kato Y, Domingues L, Kondo A, Hasunuma T. Pioneering precision in markerless strain development for Synechococcus sp. PCC 7002. Microb Cell Fact 2024; 23:268. [PMID: 39379966 PMCID: PMC11462663 DOI: 10.1186/s12934-024-02543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
Marine cyanobacteria such as Picosynechococcus sp. (formerly called Synechococcus sp.) PCC 7002 are promising chassis for photosynthetic production of commodity chemicals with low environmental burdens. Genetic engineering of cyanobacteria conventionally employs antibiotic resistance markers. However, limited availability of antibiotic-resistant markers is a problem for highly multigenic strain engineering. Although several markerless genetic manipulation methods have been developed for PCC 7002, they often lack versatility due to the requirement of gene disruption in the host strain. To achieve markerless transformation in Synechococcus sp. with no requirements for the host strain, this study developed a method in which temporarily introduces a mutated phenylalanyl-tRNA synthetase gene (pheS) into the genome for counter selection. Amino acid substitutions in the PheS that cause high susceptibility of PCC 7002 to the phenylalanine analog p-chlorophenylalanine were examined, and the combination of T261A and A303G was determined as the most suitable mutation. The mutated PheS-based selection was utilized for the markerless knockout of the nblA gene in PCC 7002. In addition, the genetic construct containing the lldD and lldP genes from Escherichia coli was introduced into the ldhA gene site using the counter selection strategy, resulting in a markerless recombinant strain. The repeatability of this method was demonstrated by the double markerless knockin recombinant strain, suggesting it will be a powerful tool for multigenic strain engineering of cyanobacteria.
Collapse
Affiliation(s)
- Ayaka Tsuji
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Kosuke Inabe
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Ryota Hidese
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Yuichi Kato
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Lucília Domingues
- CEB-Centre of Biological Engineering, University of Minho, Braga, 4710-057, Portugal
- LABBELS-Associate Laboratory, Braga/Guimarães, Portugal
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
2
|
Jiang J, Zhao Y, Chen A, Sun J, Zhou M, Hu J, Cao X, Dai N, Liang Z, Feng S. Efficient markerless genetic manipulation of Pasteurella multocida using lacZ and pheSm as selection markers. Appl Environ Microbiol 2024; 90:e0204323. [PMID: 38547470 PMCID: PMC11022533 DOI: 10.1128/aem.02043-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/07/2024] [Indexed: 04/18/2024] Open
Abstract
Pasteurella multocida is a zoonotic conditional pathogen that infects multiple livestock species, causing substantial economic losses in the animal husbandry industry. An efficient markerless method for gene manipulation may facilitate the investigations of P. multocida gene function and pathogenesis of P. multocida. Herein, a temperature-sensitive shuttle vector was constructed using lacZ as a selection marker, and markerless glgB, opa, and hyaE mutants of P. multocida were subsequently constructed through blue-white colony screening. The screening efficiency of markerless deletion strains was improved by the lacZ system, and the method could be used for multiple gene deletions. However, the fur mutant was unavailable via this method. Therefore, we constructed a pheSm screening system based on mutated phenylalanine tRNA synthetase as a counterselection marker to achieve fur deletion mutant. The transformed strain was sensitive to 20 mM p-chloro-phenylalanine, demonstrating the feasibility of pheSm as a counter-selective marker. The pheSm system was used for markerless deletions of glgB, opa, and hyaE as well as fur that could not be screened by the lacZ system. A comparison of screening efficiencies of the system showed that the pheSm counterselection system was more efficient than the lacZ system and broadly applicable for mutant screening. The methods developed herein may provide valuable tools for genetic manipulation of P. multocida.IMPORTANCEPasteurella multocida is a highly contagious zoonotic pathogen. An understanding of its underlying pathogenic mechanisms is of considerable importance and requires efficient species-specific genetic tools. Herein, we propose a screening system for P. multocida mutants using lacZ or pheSm screening markers. We evaluated the efficiencies of both systems, which were used to achieve markerless deletion of multiple genes. The results of this study support the use of lacZ or pheSm as counterselection markers to improve counterselection efficiency in P. multocida. This study provides an effective genetic tool for investigations of the virulence gene functions and pathogenic mechanisms of P. multocida.
Collapse
Affiliation(s)
- Jinfei Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yishan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Aihua Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Juan Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mengruo Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jialian Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xuewei Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ning Dai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhaoping Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
| | - Saixiang Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
| |
Collapse
|
3
|
Zheng Y, Fu H, Chen J, Li J, Bian Y, Hu P, Lei L, Liu Y, Yang J, Peng W. Development of a counterselectable system for rapid and efficient CRISPR-based genome engineering in Zymomonas mobilis. Microb Cell Fact 2023; 22:208. [PMID: 37833755 PMCID: PMC10571335 DOI: 10.1186/s12934-023-02217-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Zymomonas mobilis is an important industrial bacterium ideal for biorefinery and synthetic biology studies. High-throughput CRISPR-based genome editing technologies have been developed to enable targeted engineering of genes and hence metabolic pathways in the model ZM4 strain, expediting the exploitation of this biofuel-producing strain as a cell factory for sustainable chemicals, proteins and biofuels production. As these technologies mainly take plasmid-based strategies, their applications would be impeded due to the fact that curing of the extremely stable plasmids is laborious and inefficient. Whilst counterselection markers have been proven to be efficient for plasmid curing, hitherto only very few counterselection markers have been available for Z. mobilis. RESULTS We constructed a conditional lethal mutant of the pheS gene of Z. mobilis ZM4, clmPheS, containing T263A and A318G substitutions and coding for a mutated alpha-subunit of phenylalanyl-tRNA synthetase to allow for the incorporation of a toxic analog of phenylalanine, p-chloro-phenylalanine (4-CP), into proteins, and hence leading to inhibition of cell growth. We demonstrated that expression of clmPheS driven by a strong Pgap promoter from a plasmid could render the Z. mobilis ZM4 cells sufficient sensitivity to 4-CP. The clmPheS-expressing cells were assayed to be extremely sensitive to 0.2 mM 4-CP. Subsequently, the clmPheS-assisted counterselection endowed fast curing of genome engineering plasmids immediately after obtaining the desired mutants, shortening the time of every two rounds of multiplex chromosome editing by at least 9 days, and enabled the development of a strategy for scarless modification of the native Z. mobilis ZM4 plasmids. CONCLUSIONS This study developed a strategy, coupling an endogenous CRISPR-based genome editing toolkit with a counterselection marker created here, for rapid and efficient multi-round multiplex editing of the chromosome, as well as scarless modification of the native plasmids, providing an improved genome engineering toolkit for Z. mobilis and an important reference to develope similar genetic manipulation systems in other non-model organisms.
Collapse
Affiliation(s)
- Yanli Zheng
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Hongmei Fu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Jue Chen
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Jie Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, 430062, P.R. China
| | - Yuejie Bian
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, 430062, P.R. China
| | - Ping Hu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Lei Lei
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.
| | - Jiangke Yang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, P. R. China.
| | - Wenfang Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, 430062, P.R. China.
| |
Collapse
|
4
|
Yuan L, Wang D, Chen J, Lyu Y, Feng E, Zhang Y, Liu X, Wang H. Genome Sequence and Phenotypic Analysis of a Protein Lysis-Negative, Attenuated Anthrax Vaccine Strain. BIOLOGY 2023; 12:biology12050645. [PMID: 37237459 DOI: 10.3390/biology12050645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/30/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Bacillus anthracis is a Gram-positive bacterium that causes the zoonotic disease anthrax. Here, we studied the characteristic phenotype and virulence attenuation of the putative No. II vaccine strain, PNO2, which was reportedly introduced from the Pasteur Institute in 1934. Characterization of the strain showed that, compared with the control strain, A16Q1, the attenuated PNO2 (PNO2D1) was phospholipase-positive, with impaired protein hydrolysis and significantly reduced sporulation. Additionally, PNO2D1 significantly extended the survival times of anthrax-challenged mice. An evolutionary tree analysis revealed that PNO2D1 was not a Pasteur strain but was more closely related to a Tsiankovskii strain. A database comparison revealed a seven-base insertion mutation in the nprR gene. Although it did not block nprR transcription, the insertion mutation resulted in the premature termination of protein translation. nprR deletion of A16Q1 resulted in a nonproteolytic phenotype that could not sporulate. The database comparison revealed that the abs gene is also prone to mutation, and the abs promoter activity was much lower in PNO2D1 than in A16Q1. Low abs expression may be an important reason for the decreased virulence of PNO2D1.
Collapse
Affiliation(s)
- Lu Yuan
- College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Nanhui New City, Shanghai 201306, China
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Dongshu Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
- Laboratory of Advanced Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Jie Chen
- College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Nanhui New City, Shanghai 201306, China
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Yufei Lyu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
- Laboratory of Advanced Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Erling Feng
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Yan Zhang
- College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Nanhui New City, Shanghai 201306, China
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Xiankai Liu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
- Laboratory of Advanced Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Hengliang Wang
- College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Nanhui New City, Shanghai 201306, China
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| |
Collapse
|
5
|
Gao G, Wei D, Li G, Chen P, Wu L, Liu S, Zhang Y. Highly Effective Markerless Genetic Manipulation of Streptococcus suis Using a Mutated PheS-Based Counterselectable Marker. Front Microbiol 2022; 13:947821. [PMID: 35910605 PMCID: PMC9329067 DOI: 10.3389/fmicb.2022.947821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus suis is an important zoonotic pathogen, however, an efficient markerless genetic manipulation system is still lacking for further physiological and pathological studies on this bacterium. Several techniques have been developed for markerless genetic manipulation of S. suis utilizing either a temperature-sensitive vector or a counterselectable markers (CSMs), however, at present, the efficiency of these techniques is not very satisfactory. In this study, we developed a strategy for markerless genetic manipulation of S. suis employing a CSM based on a conditionally lethal mutant allele of pheS, which encodes the α-subunit of phenylalanyl-tRNA synthetase (PheS). This mutant pheS, mPheS, was constructed by introducing site-directed mutations for a T261S/A315G double-substitution and a number of silent mutations to decrease its similarity with the endogenous wild type pheS gene (wtPheS). Additionally, five potentially strong promoters from S. suis were screened for their ability to drive high-level expression of mPheS, thus endowing the carrier strain with sufficient sensitivity to the phenylalanine analog p-chloro-phenylalanine (p-Cl-phe). Insertion of these P-mPheS cassettes into a vector or into the chromosomal locus via a linked erythromycin resistance gene revealed that mPheS allele driven by promoters P0530 and P1503 renders S. suis sensitive to as low as 0.01% (or 0.5 mM) of p-Cl-phe. This offers two potential CSMs for S. suis with p-Cl-phe as a counterselective agent. P1503-mPheS was revealed to be 100% efficient for counter-selection in S. suis by application in a precise gene deletion. Using P1503-mPheS as a CSM, a two-step insertion and excision strategy for markerless genetic manipulation of S. suis were developed, supplying a powerful tool for markerless genetic manipulation of S. suis.
Collapse
|
6
|
Wang Y, Jiang N, Wang B, Tao H, Zhang X, Guan Q, Liu C. Integrated Transcriptomic and Proteomic Analyses Reveal the Role of NprR in Bacillus anthracis Extracellular Protease Expression Regulation and Oxidative Stress Responses. Front Microbiol 2020; 11:590851. [PMID: 33362738 PMCID: PMC7756075 DOI: 10.3389/fmicb.2020.590851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022] Open
Abstract
NprR is a protein of Bacillus anthracis that exhibits moonlighting functions as either a phosphatase or a neutral protease regulator that belongs to the RNPP family. We previously observed that the extracellular protease activity of an nprR deletion mutant significantly decreased within in vitro cultures. To identify the genes within the regulatory network of nprR that contribute to its protease activity, integrated transcriptomic and proteomic analyses were conducted here by comparing the nprR deletion mutant and parent strains. A total of 366 differentially expressed genes (DEGs) between the strains were observed via RNA-seq analysis. In addition, label-free LC-MS/MS analysis revealed 503 differentially expressed proteins (DEPs) within the intracellular protein fraction and 213 extracellular DEPs with significant expressional differences between the strains. The majority of DEGs and DEPs were involved in environmental information processing and metabolism. Integrated transcriptomic and proteomic analyses indicated that oxidation-reduction-related GO terms for intracellular DEPs and endopeptidase-related GO terms for extracellular DEPs were significantly enriched in the mutant strain. Notably, many genes involved in protease activity were largely downregulated in the nprR deletion mutant cultures. Moreover, western blot analysis revealed that the major extracellular neutral protease Npr599 was barely expressed in the nprR deletion mutant strain. The mutant also exhibited impaired degradation of protective antigen, which is a major B. anthracis toxin component, thereby resulting in higher protein yields. Concomitantly, another global transcriptional regulator, SpxA1, was also dramatically downregulated in the nprR deletion mutant, resulting in higher sensitivity to oxidative and disulfide stress. These data consequently indicate that NprR is a transcriptional regulator that controls genes whose products function as extracellular proteases and also is involved in oxidative stress responses. This study thus contributes to a more comprehensive understanding of the biological function of NprR, and especially in the middle growth stages of B. anthracis.
Collapse
Affiliation(s)
- Yanchun Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Na Jiang
- Beijing Fisheries Research Institute, Beijing, China
| | - Bowen Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Haoxia Tao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Xin Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Qing Guan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Chunjie Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
7
|
Wang Y, Wang D, Wang X, Tao H, Feng E, Zhu L, Pan C, Wang B, Liu C, Liu X, Wang H. Highly Efficient Genome Engineering in Bacillus anthracis and Bacillus cereus Using the CRISPR/Cas9 System. Front Microbiol 2019; 10:1932. [PMID: 31551942 PMCID: PMC6736576 DOI: 10.3389/fmicb.2019.01932] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022] Open
Abstract
Genome editing is an effective tool for the functional examination of bacterial genes and for live attenuated vaccine construction. Here, we report a method to edit the genomic DNA of Bacillus anthracis and Bacillus cereus using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)9 system. Using two prophages in B. anthracis as targets, large-fragment deletion mutants were achieved with rates of 100 or 20%. In B. cereus, we successfully introduced precise point mutations into plcR, with phenotypic assays showing that the resulting mutants lost hemolytic and phospholipase enzyme activities similar to B. anthracis, which is a natural plcR mutant. Our study indicates that CRISPR/Cas9 is a powerful genetic tool for genome editing in the Bacillus cereus group, and can efficiently modify target genes without the need for residual foreign DNA such as antibiotic selection markers. This system could be developed for use in the generation of marker-free live anthrax vaccines or for safer construction of microbiological candidate-based recombinant B. cereus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chunjie Liu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Xiankai Liu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Hengliang Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
8
|
Schuster CF, Howard SA, Gründling A. Use of the counter selectable marker PheS* for genome engineering in Staphylococcus aureus. Microbiology (Reading) 2019; 165:572-584. [DOI: 10.1099/mic.0.000791] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Christopher F. Schuster
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Sophie A. Howard
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Angelika Gründling
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| |
Collapse
|
9
|
Qiu Y, Zhu Y, Zhang Y, Sha Y, Xu Z, Li S, Feng X, Xu H. Characterization of a Regulator pgsR on Endogenous Plasmid p2Sip and Its Complementation for Poly(γ-glutamic acid) Accumulation in Bacillus amyloliquefaciens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3711-3722. [PMID: 30866628 DOI: 10.1021/acs.jafc.9b00332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bacillus amyloliquefaciens NX-2S154 is a promising poly(γ-glutamic acid) (γ-PGA) producing strain discovered in previous studies. However, the wild-type strain contains an unknown endogenous plasmid, p2Sip, which causes low transformation efficiency and instability of exogenous plasmids. In our study, p2Sip is 5622 bp with 41% G+C content and contains four putative open reading frames (ORFs), including genes repB, hsp, and mobB and γ-PGA-synthesis regulator, pgsR. Elimination of p2Sip from strain NX-2S154 delayed γ-PGA secretion and decreased production of γ-PGA by 18.1%. Integration of a pgsR expression element into the genomic BamHI locus using marker-free manipulation based on pheS* increased the γ-PGA titer by 8%. pgsR overexpression upregulated the expression of γ-PGA synthase pgsB, regulator degQ, and glutamic acid synthase gltA, thus increasing the γ-PGA production in B. amyloliquefaciens NB. Our results indicated that pgsR from p2Sip plays an important regulatory role in γ-PGA synthesis in B. amyloliquefaciens.
Collapse
Affiliation(s)
- Yibin Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Yifan Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Yatao Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Yuanyuan Sha
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Zongqi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Xiaohai Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| |
Collapse
|