1
|
Li H, Hu Y, Huang Y, Ding S, Zhu L, Li X, Lan M, Huang W, Lin X. The mutual interactions among Helicobacter pylori, chronic gastritis, and the gut microbiota: a population-based study in Jinjiang, Fujian. Front Microbiol 2024; 15:1365043. [PMID: 38419635 PMCID: PMC10899393 DOI: 10.3389/fmicb.2024.1365043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Objectives Helicobacter pylori (H. pylori) is a type of bacteria that infects the stomach lining, and it is a major cause of chronic gastritis (CG). H. pylori infection can influence the composition of the gastric microbiota. Additionally, alterations in the gut microbiome have been associated with various health conditions, including gastrointestinal disorders. The dysbiosis in gut microbiota of human is associated with the decreased secretion of gastric acid. Chronic atrophic gastritis (CAG) and H. pylori infection are also causes of reduced gastric acid secretion. However, the specific details of how H. pylori infection and CG, especially for CAG, influence the gut microbiome can vary and are still an area of ongoing investigation. The incidence of CAG and infection rate of H. pylori has obvious regional characteristics, and Fujian Province in China is a high incidence area of CAG as well as H. pylori infection. We aimed to characterize the microbial changes and find potential diagnostic markers associated with infection of H. pylori as well as CG of subjects in Jinjiang City, Fujian Province, China. Participants Enrollment involved sequencing the 16S rRNA gene in fecal samples from 176 cases, adhering to stringent inclusion and exclusion criteria. For our study, we included healthy volunteers (Normal), individuals with chronic non-atrophic gastritis (CNAG), and those with CAG from Fujian, China. The aim was to assess gut microbiome dysbiosis based on various histopathological features. QIIME and LEfSe analyses were performed. There were 176 cases, comprising 126 individuals who tested negative for H. pylori and 50 who tested positive defined by C14 urea breath tests and histopathological findings in biopsies obtained through endoscopy. CAG was also staged by applying OLGIM system. Results When merging the outcomes from 16S rRNA gene sequencing results, there were no notable variations in alpha diversity among the following groups: Normal, CNAG, and CAG; OLGIM I and OLGIM II; and H. pylori positive [Hp (+)] and H. pylori negative [Hp (-)] groups. Beta diversity among different groups show significant separation through the NMDS diagrams. LEfSe analyses confirmed 2, 3, and 6 bacterial species were in abundance in the Normal, CNAG, and CAG groups; 26 and 2 species in the OLGIM I and OLGIM II group; 22 significant phylotypes were identified in Hp (+) and Hp (-) group, 21 and 1, respectively; 9 bacterial species exhibited significant differences between individuals with CG who were Hp (+) and those who were Hp (-). Conclusion The study uncovered notable distinctions in the characteristics of gut microbiota among the following groups: Normal, CNAG, and CAG; OLGIM I and OLGIM II; and Hp (+) and Hp (-) groups. Through the analysis of H. pylori infection in CNAG and CAG groups, we found the gut microbiota characteristics of different group show significant difference because of H. pylori infection. Several bacterial genera could potentially serve as diagnostic markers for H. pylori infection and the progression of CG.
Collapse
Affiliation(s)
- Hanjing Li
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| | - Yingying Hu
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| | - Yanyu Huang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| | - Shanshan Ding
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| | - Long Zhu
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| | - Xinghui Li
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| | - Meng Lan
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| | - Weirong Huang
- Jinjiang Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, Jinjiang, China
| | - Xuejuan Lin
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| |
Collapse
|
2
|
Wang C, Liu S, Wang Z, Wang M, Pang H, Liu Y, Chang H, Sui Z. Rapid and Accurate Quantification of Viable Lactobacillus Cells in Infant Formula by Flow Cytometry Combined with Propidium Monoazide and Signal-Enhanced Fluorescence In Situ Hybridization. Anal Chem 2024; 96:1093-1101. [PMID: 38204177 DOI: 10.1021/acs.analchem.3c03742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Lactobacillus is an important member of the probiotic bacterial family for regulating human intestinal microflora and preserving its normalcy, and it has been widely used in infant formula. An appropriate and feasible method to quantify viable Lactobacilli cells is urgently required to evaluate the quality of probiotic-fortified infant formula. This study presents a rapid and accurate method to count viable Lactobacilli cells in infant formula using flow cytometry (FCM). First, Lactobacillus cells were specifically and rapidly stained by oligonucleotide probes based on a signal-enhanced fluorescence in situ hybridization (SEFISH) technique. A DNA-binding fluorescent probe, propidium monoazide (PMA), was then used to accurately recognize viable Lactobacillus cells. The entire process of this newly developed PMA-SEFISH-FCM method was accomplished within 2.5 h, which included pretreatment, dual staining, and FCM analysis; thus, this method showed considerably shorter time-to-results than other rapid methods. This method also demonstrated a good linear correlation (R2 = 0.9994) with the traditional plate-based method with a bacterial recovery rate of 91.24%. To the best of our knowledge, the present study is the first report of FCM combined with PMA and FISH for the specific detection of viable bacterial cells.
Collapse
Affiliation(s)
- Chenglong Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 10002, China
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Siyuan Liu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 10002, China
| | - Ziquan Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 10002, China
| | - Meng Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 10002, China
| | - Huimin Pang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 10002, China
| | - Yingying Liu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 10002, China
| | - Haiyan Chang
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhiwei Sui
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 10002, China
| |
Collapse
|
3
|
Ozcan T, Eroglu E. In vitro fermentation assay on the bifidogenic effect of steviol glycosides of Stevia rebaudiana plant for the development of dietetic novel products. Prep Biochem Biotechnol 2023; 53:1099-1108. [PMID: 36709420 DOI: 10.1080/10826068.2023.2169935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The relationship between excessive sugar consumption and many diseases such as dental caries, obesity, diabetes and coronary heart has been increasing in recent years. In this study, utilization of natural sugar replacer steviol glycosides and bifidogenic effect by Bifidobacterium animalis subsp. lactis was assayed in vitro model system. The basal medium (non-carbohydrate containing MRS, Man, Rogosa and Sharpe Agar) were supplemented with 0.025% and 1% stevia, 0.025% stevia + 1% inulin, %1 stevia + 1% inulin. The medium which contained no carbohydrate was designated as negative control, whereas the medium containing 1% glucose or inulin were evaluated as positive and evaluated on the 0, 12, 24, 36 and 48 h of fermentation. Steviol glycosides in both system significantly stimulated the growth of Bifidobacterium animalis subsp. lactis to varying degrees with highest prebiotic activity score, short chain fatty acid production and growth parameters as much as glucose and prebiotic inulin. The viability of the probiotic bacteria was determined within the bio-therapeutic level with potential prebiotic effects depending on the probiotic bacterial strain growing and the type of carbohydrate source utilized. In the study, stevia at lower concentration showed a higher growth rate of with inulin. In conclusion, stevia can be used as functional ingredients for the modulation of the gut microbiota and design of synbiotic systems as a prebiotic substrate and sugar substitute.
Collapse
Affiliation(s)
- Tulay Ozcan
- Faculty of Agriculture, Department of Food Engineering, Bursa Uludag University, Bursa, Turkey
| | - Ezgi Eroglu
- Republic of Turkey Ministry of Agriculture and Forestry, Hafik, Sivas, Turkey
| |
Collapse
|
4
|
Qiao B, Li X, Peng M, Hui H, Tan Z. Alteration of intestinal mucosal microbiota in mice with Chinese dampness-heat syndrom diarrhea by improper diet combined with high temperature and humidity environments. Front Cell Infect Microbiol 2023; 12:1096202. [PMID: 36683693 PMCID: PMC9845886 DOI: 10.3389/fcimb.2022.1096202] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Background Environment, diet, and emotion may trigger diarrhea, but the mechanism is unclear. Dietary habits or environmental factors affect the composition of gut microbiota. This study aimed to investigate the effects of improper diet combined with high humidity and temperature (HTH) environment on the intestinal mucosal microbiota. Materials and methods Kunming mice were randomly assigned to two equal groups of five mice, namely the control (ccm) group and the model (cmm) group. Diarrhea mice with dampness-heat (DSH) were established by improper diet combined with HTH environments. We used 16S rRNA gene amplicon sequencing to analyze the characteristics of intestinal mucosal microbiota and the interaction relationship of function. Results Our study shows that the intestinal mucosal microbiota of mice changed significantly after an improper diet combined with the HTH environments. The abundance of Fusobacteria and Haemophilus increased dramatically in the cmm group compared to the ccm group (P<0.05). And the abundance of Firmicutes, Lactobacillus, and Lonsdalea was significantly decreased in the cmm group (P<0.05). According to the functional predictive analysis, we found that Lactobacillus showed a significant negative correlation with Protein export, Homologous recombination, Phenylalanine, tyrosine, tryptophan biosynthesis, Citrate cycle, and Lipoic acid metabolism. Conclusion Diarrhea with DSH constructed under improper diet and HTH environment may be related to Lactobacillus and Haemophilus. And long-term consumption of improper diet and the HTH environment may affect metabolism.
Collapse
Affiliation(s)
- Bo Qiao
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoya Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Maijiao Peng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Huaying Hui
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
Kim SH, Singh D, Son SY, Lee S, Suh DH, Lee NR, Park GS, Kang J, Lee CH. Characterization and temporal dynamics of the intra- and extracellular environments of Lactiplantibacillus plantarum using multi-platform metabolomics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Wu M, Zuo S, Maiorano G, Kosobucki P, Stadnicka K. How to employ metabolomic analysis to research on functions of prebiotics and probiotics in poultry gut health? Front Microbiol 2022; 13:1040434. [PMID: 36452931 PMCID: PMC9701725 DOI: 10.3389/fmicb.2022.1040434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/19/2022] [Indexed: 10/21/2023] Open
Abstract
Gut health can be considered one of the major, manageable constituents of the animal immunity and performance. The fast spread of intestinal diseases, and increase of antimicrobial resistance have been observed, therefore the intestinal health has become not only economically relevant, but also highly important subject addressing the interest of public health. It is expected, that the strategies to control infections should be based on development of natural immunity in animals and producing resilient flocks using natural solutions, whilst eliminating antibiotics and veterinary medicinal products from action. Probiotics and prebiotics have been favored, because they have potential to directly or indirectly optimize intestinal health by manipulating the metabolism of the intestinal tract, including the microbiota. Studying the metabolome of probiotics and gut environment, both in vivo, or using the in vitro models, is required to attain the scientific understanding about the functions of bioactive compounds in development of gut health and life lasting immunity. There is a practical need to identify new metabolites being the key bioactive agents regulating biochemical pathways of systems associated with gut (gut-associated axes). Technological advancement in metabolomics studies, and increasing access to the powerful analytical platforms have paved a way to implement metabolomics in exploration of the effects of prebiotics and probiotics on the intestinal health of poultry. In this article, the basic principles of metabolomics in research involving probiotics and probiotics are introduced, together with the overview of existing strategies and suggestions of their use to study metabolome in poultry.
Collapse
Affiliation(s)
- Mengjun Wu
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Sanling Zuo
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Giuseppe Maiorano
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Przemysław Kosobucki
- Department of Food Analysis and Environmental Protection, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Katarzyna Stadnicka
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
- Department of Geriatrics, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
7
|
Yao D, Yu Q, Xu L, Su T, Ma L, Wang X, Wu M, Li Z, Zhang D, Wang C. Wheat supplement with buckwheat affect gut microbiome composition and circulate short-chain fatty acids. Front Nutr 2022; 9:952738. [PMID: 36147303 PMCID: PMC9486400 DOI: 10.3389/fnut.2022.952738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/08/2022] [Indexed: 12/23/2022] Open
Abstract
Buckwheat has beneficial effects on human intestinal health, which is often compounded with wheat to make food. Therefore, the effect of cereals mixture via in vitro fermentation on gut microbes and short-chain fatty acids (SCFAs) were investigated in this study. The mixture of wheat and tartary buckwheat (WT) produced more lactate and acetate, and the mixture of wheat and sweet buckwheat (WE) produced more propionate and butyrate. Compared with wheat (WA), the relative abundance of some beneficial bacteria significantly increased, such as Sutterella in WT and Faecalibacterium in WE. Cereals mixture also affected the expression of functional genes, involved in metabolic pathways and carbohydrate-active enzymes (CAZymes) that modulated SCFAs generation. This study provides new insights into the effects of sweet and tartary buckwheat on intestinal function, which is beneficial to applying both types of buckwheat in practical.
Collapse
Affiliation(s)
- Di Yao
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Di Yao,
| | - Qiaoru Yu
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Lei Xu
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Tingting Su
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Lixue Ma
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiaoyu Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mengna Wu
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhijiang Li
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing, China
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongjie Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing, China
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing, China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
8
|
Sun H, Yang Z, Zhou L, Papadakis VG, Goula MA, Liu G, Zhang Y, Wang W. Calcium ion can alleviate ammonia inhibition on anaerobic digestion via balanced-strengthening dehydrogenases and reinforcing protein-binding structure: Model evaluation and microbial characterization. BIORESOURCE TECHNOLOGY 2022; 354:127165. [PMID: 35439562 DOI: 10.1016/j.biortech.2022.127165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Experimental investigation and model simulation was combined to identify the effect of metal ions on mitigating ammonia inhibition during anaerobic digestion. Five metal ions (Ca, Mg, Cu, Zn, Fe) were tested in reactors with 1 g-glucose/L/d and 5 g-N/L under fed batch operation. Ca addition was considered the optimal approach with a 25% increment in methane production via balanced-strengthening dehydrogenases and reinforcing protein-binding structure. Gene-sequencing results suggested 50% and 15% increment in acetotrophic-related and hydrogenotrophic-related dehydrogenases, respectively, after Ca addition. The Anaerobic Digestion Model No.1 was modified by introducing lactate-related reactions, syntrophic acetate oxidation process, and kinetic equation of metal ions, with satisfactory predictions of methane and intermediates (R2 > 0.80). The lowest affinity constant KI_MI value was obtained with Ca supplement, indicating the highest conversion rate of substrates to methane. The model evaluation revealed the balanced ratio on the enzyme contribution of acetotrophic to hydrogenotrophic methanogenesis.
Collapse
Affiliation(s)
- Hangyu Sun
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziyi Yang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ling Zhou
- Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region, Tarim University, Alar, Xinjiang Uygur Autonomous Region 843300, China
| | - Vagelis G Papadakis
- Department of Environmental Engineering, University of Patras, Seferi 2, 30100 Agrinio, Greece
| | - Maria A Goula
- Laboratory of Alternative Fuels and Environmental Catalysis, Department of Chemical Engineering, University of Western Macedonia, GR-50100, Greece
| | - Guangqing Liu
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yi Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wen Wang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
9
|
Zhang S, Zhu J. Untargeted Metabolomics Sensitively Differentiates Gut Bacterial Species in Single Culture and Co-Culture Systems. ACS OMEGA 2022; 7:14643-14652. [PMID: 35557670 PMCID: PMC9088763 DOI: 10.1021/acsomega.1c07114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/15/2022] [Indexed: 05/28/2023]
Abstract
Gut microbiome plays a vital role in human health, and its characteristic has been widely identified through next-generation sequencing techniques. Although with great genomic insights into gut microbiome, its functional information is not clearly elaborated through metagenomic techniques. On the other hand, it is suggested that fecal metabolome can be used as a functional readout of the microbiome composition; therefore, we designed a proof-of-concept study to first characterize the metabolome of different gut microbes and then investigate the relationship between bacterial metabolomes and their compositions in co-culture systems. We selected eight representative bacteria species from Bifidobacterium (2), Bacteroides (1), Lactobacillus (4), and Akkermansia (1) genera as our model microbes. Liquid chromatography coupled mass spectrometry-based untargeted metabolomics was utilized to explore the microbial metabolome of bacteria single cultures and co-culture systems. Through spectral comparisons, our results showed that untargeted metabolomics could capture the similarity and differences in metabolic profiles from eight representative gut bacteria. Also, untargeted metabolomics could sensitively differentiate gut bacterial species based on our statistical analyses. For example, citrulline and histamine levels were significantly different among four Lactobacillus species. In addition, in the co-culture systems with different bacteria population ratios, gut bacterial metabolomes can be used to quantitatively reflect bacterial population in a mixed culture. For instance, the relative abundance of 2-hydroxybutyric acid changed proportionately with the changed population ratio of Lactobacillus reuteri in the co-culture system. In summary, we proposed a workflow that could demonstrate the capability of untargeted metabolomics in differentiating gut bacterial species and detecting their characteristic metabolites proportionally to the microbial population in co-culture systems.
Collapse
Affiliation(s)
- Shiqi Zhang
- Human
Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jiangjiang Zhu
- Human
Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, Ohio 43210, United States
- James
Comprehensive Cancer Center, The Ohio State
University, Columbus, Ohio 43210, United States
| |
Collapse
|
10
|
Application of metabolomics analysis to aid in understanding the pathogenicity of different lineages and different serotypes of Listeria monocytogenes. Int J Food Microbiol 2022; 373:109694. [DOI: 10.1016/j.ijfoodmicro.2022.109694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/19/2022]
|
11
|
Bu Y, Yang H, Li J, Liu Y, Liu T, Gong P, Zhang L, Wang S, Yi H. Comparative Metabolomics Analyses of Plantaricin Q7 Production by Lactobacillus plantarum Q7. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10741-10748. [PMID: 34478301 DOI: 10.1021/acs.jafc.1c03533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plantaricin Q7 is a bacteriocin produced by Lactobacillus plantarum Q7 with food preservation potential. Low yield is one of the bottlenecks of the wide application of plantaricin Q7. Nontargeted metabolomics was performed to reveal the mechanism of plantaricin Q7 biosynthesis. The results showed that the composition and abundance of intracellular metabolites varied significantly at key time points of plantaricin Q7 synthesis. Differential metabolic pathways were purine metabolism; pyrimidine metabolism; alanine, aspartate, and glutamate metabolism; amino acid biosynthesis; aminoacyl-tRNA biosynthesis; and ABC transporters. Differential metabolites were xanthine, deoxyadenosine, uracil, 5-methylcytosine, α-ketoglutarate, γ-aminobutyric acid, glutamate, glutamine, and tryptophan. Based on metabolomics information, the putative metabolic synthesis pathway of plantaricin Q7 was proposed. Glutamine, glutamate, and 5-methylcytosine could be critical metabolites and simulate plantaricin Q7 biosynthesis significantly (P < 0.05). Bacteriocin production was investigated by comparative metabolomics in this report, which could help to achieve higher plantaricin Q7 yield by metabolic regulation.
Collapse
Affiliation(s)
- Yushan Bu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Hui Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Jianxun Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Yinxue Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Tongjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Shumei Wang
- College of Food Engineering, Harbin University, Harbin 150086, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| |
Collapse
|
12
|
Zhang C, Yu X, Wang D, Gui Y, Wang C, Li Q, Wang J, Yin B, Pan Z, Gu R. Rapid strain-specific identification of two Lactobacillus rhamnosus strains using PCR based on gene family analysis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Chung HJ, Lee H, Na G, Jung H, Kim DG, Shin SI, Jung SE, Choi ID, Lee JH, Sim JH, Choi HK. Metabolic and Lipidomic Profiling of Vegetable Juices Fermented with Various Probiotics. Biomolecules 2020; 10:biom10050725. [PMID: 32384794 PMCID: PMC7281372 DOI: 10.3390/biom10050725] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/27/2020] [Accepted: 05/02/2020] [Indexed: 11/16/2022] Open
Abstract
Fermented vegetable juices have gained attention due to their various beneficial effects on human health. In this study, we employed gas chromatography-mass spectrometry, direct infusion-mass spectrometry, and liquid chromatography-mass spectrometry to identify useful metabolites, lipids, and carotenoids in vegetable juice (VJ) fermented with Lactobacillus plantarum HY7712, Lactobacillus plantarum HY7715, Lactobacillus helveticus HY7801, and Bifidobacterium animalis ssp. lactis HY8002. A total of 41 metabolites, 24 lipids, and 4 carotenoids were detected in the fermented and non-fermented VJ (control). The lycopene, α-carotene, and β-carotene levels were higher in VJ fermented with L. plantarum strains (HY7712 and HY7715) than in the control. Proline content was also elevated in VJ fermented with HY7715. Uracil, succinic acid, and α-carotene concentration was increased in VJ fermented with HY7801, while glycine and lycopene levels were raised in VJ fermented with HY8002. This study confirmed that each probiotic strain has distinctive characteristics and produces unique changes to metabolic profiles of VJ during fermentation. Our results suggest that probiotic-fermented VJ is a promising functional beverage that contains more beneficial metabolites and carotenoids than commercial non-fermented VJ.
Collapse
Affiliation(s)
- Hyuk-Jin Chung
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (H.-J.C.); (H.L.)
- Korea Yakult Co., Ltd., Yongin 17086, Korea; (G.N.); (H.J.); (D.-G.K.); (S.-I.S.); (S.-E.J.); (I.-d.C.); (J.-H.L.); (J.-H.S.)
| | - Hwanhui Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (H.-J.C.); (H.L.)
| | - Guknam Na
- Korea Yakult Co., Ltd., Yongin 17086, Korea; (G.N.); (H.J.); (D.-G.K.); (S.-I.S.); (S.-E.J.); (I.-d.C.); (J.-H.L.); (J.-H.S.)
| | - Heechul Jung
- Korea Yakult Co., Ltd., Yongin 17086, Korea; (G.N.); (H.J.); (D.-G.K.); (S.-I.S.); (S.-E.J.); (I.-d.C.); (J.-H.L.); (J.-H.S.)
| | - Dong-Gun Kim
- Korea Yakult Co., Ltd., Yongin 17086, Korea; (G.N.); (H.J.); (D.-G.K.); (S.-I.S.); (S.-E.J.); (I.-d.C.); (J.-H.L.); (J.-H.S.)
| | - Sang-Ick Shin
- Korea Yakult Co., Ltd., Yongin 17086, Korea; (G.N.); (H.J.); (D.-G.K.); (S.-I.S.); (S.-E.J.); (I.-d.C.); (J.-H.L.); (J.-H.S.)
| | - Seong-Eun Jung
- Korea Yakult Co., Ltd., Yongin 17086, Korea; (G.N.); (H.J.); (D.-G.K.); (S.-I.S.); (S.-E.J.); (I.-d.C.); (J.-H.L.); (J.-H.S.)
| | - Il-dong Choi
- Korea Yakult Co., Ltd., Yongin 17086, Korea; (G.N.); (H.J.); (D.-G.K.); (S.-I.S.); (S.-E.J.); (I.-d.C.); (J.-H.L.); (J.-H.S.)
| | - Jae-Hwan Lee
- Korea Yakult Co., Ltd., Yongin 17086, Korea; (G.N.); (H.J.); (D.-G.K.); (S.-I.S.); (S.-E.J.); (I.-d.C.); (J.-H.L.); (J.-H.S.)
| | - Jae-Hun Sim
- Korea Yakult Co., Ltd., Yongin 17086, Korea; (G.N.); (H.J.); (D.-G.K.); (S.-I.S.); (S.-E.J.); (I.-d.C.); (J.-H.L.); (J.-H.S.)
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (H.-J.C.); (H.L.)
- Correspondence: ; Tel.: +82-2-820-5605; Fax: 82-2-812-3921
| |
Collapse
|