1
|
Yang Y, Deng Y, Liu L, Yin X, Xu X, Wang D, Zhang T. Establishing reference material for the quest towards standardization in environmental microbial metagenomic studies. WATER RESEARCH 2023; 245:120641. [PMID: 37748344 DOI: 10.1016/j.watres.2023.120641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/02/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023]
Abstract
Breakthroughs in DNA-based technologies, especially in metagenomic sequencing, have drastically enhanced researchers' ability to explore environmental microbiome and the associated interplays within. However, as new methodologies are being actively developed for improvements in different aspects, metagenomic workflows become diversified and heterogeneous. Through a single-variable control approach, we quantified the microbial profiling variations arising from 6 common technical variables associated with metagenomic workflows for both simple and complex samples. The incurred variations were constantly the lowest in replicates of DNA isolation and DNA sequencing library construction. Different DNA extraction kits often caused the highest variation among all the tested variables. Additionally, sequencing run batch was an important source of variability for targeted platforms. As such, the development of an environmental reference material for complex environmental samples could be beneficial in benchmarking accrued non-biological variability within and between protocols and insuring reliable and reproducible sequencing outputs immediately upstream of bioinformatic analysis. To develop an environment reference material, sequencing of a well-homogenized environmental sample composed of activated sludge was performed using different pre-analytical assays in replications. In parallel, a certified mock community was processed and sequenced. Assays were ranked based on the reconstruction of the theoretical mock community profile. The reproducibility of the best-performing assay and the microbial profile of the reference material were further ascertained. We propose the adoption of our complex environmental reference material, which could reflect the degree of diversity in environmental microbiome studies, to facilitate accurate, reproducible, and comparable environmental metagenomics-based studies.
Collapse
Affiliation(s)
- Yu Yang
- Department of Civil Engineering, Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, The University of Hong Kong, Hong Kong, China
| | - Yu Deng
- Department of Civil Engineering, Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, The University of Hong Kong, Hong Kong, China
| | - Lei Liu
- Department of Civil Engineering, Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, The University of Hong Kong, Hong Kong, China
| | - Xiaole Yin
- Department of Civil Engineering, Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, The University of Hong Kong, Hong Kong, China
| | - Xiaoqing Xu
- Department of Civil Engineering, Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, The University of Hong Kong, Hong Kong, China
| | - Dou Wang
- Department of Civil Engineering, Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, The University of Hong Kong, Hong Kong, China
| | - Tong Zhang
- Department of Civil Engineering, Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, The University of Hong Kong, Hong Kong, China; School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong SAR, China; Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau SAR, China.
| |
Collapse
|
2
|
Luo Y, Kong Z, Yang B, He F, Huan C, Li J, Yi K. Relationship between Microflora Changes and Mammary Lipid Metabolism in Dairy Cows with Mastitis. Animals (Basel) 2023; 13:2773. [PMID: 37685037 PMCID: PMC10486416 DOI: 10.3390/ani13172773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/05/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Dairy mastitis is an inflammatory reaction caused by mechanical injury and stress within the mammary gland, during which microbial changes and abnormal lipid metabolism occur. However, the underlying mechanism is still unclear. The present study used a combination of 16S rDNA sequencing technology and lipidomics techniques to reveal the effects of mastitis on lactic microbiota and metabolites in the milk of dairy cows. Twenty multiparous Holstein dairy cows (2-3 parities) with an average body weight of 580 ± 30 kg were selected for this study. The dairy cows were allocated to control group (<5 × 104 cells /mL)) and mastitis group (>5 × 106 cells /mL) based on the somatic cell count. The results showed that mastitis caused a decrease trend in milk production (p = 0.058). The results of the 16 s sequencing indicated a significant decrease (p < 0.05) in the number of Proteobacteria, Tenericutes colonized in mastitis milk, and the number of Firmicutes, Bacteroidetes and Actinobacteria communities increased significantly (p < 0.05). The lipidomics results revealed that the changes in lipid content in mastitis milk were correlated with arachidonic acid metabolism, α -linolenic acid metabolism and glycerol phospholipid metabolism. The results showed that mastitis may cause abnormal lipid metabolism in milk by regulating the diversity of milk microflora, and ultimately affect the milk quality.
Collapse
Affiliation(s)
- Yang Luo
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China;
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Zhiwei Kong
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China;
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Bin Yang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Fang He
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (F.H.); (C.H.); (J.L.); (K.Y.)
| | - Cheng Huan
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (F.H.); (C.H.); (J.L.); (K.Y.)
| | - Jianbo Li
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (F.H.); (C.H.); (J.L.); (K.Y.)
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (F.H.); (C.H.); (J.L.); (K.Y.)
| |
Collapse
|
3
|
Stojan I, Trumbić Ž, Lepen Pleić I, Šantić D. Evaluation of DNA extraction methods and direct PCR in metabarcoding of mock and marine bacterial communities. Front Microbiol 2023; 14:1151907. [PMID: 37138601 PMCID: PMC10149847 DOI: 10.3389/fmicb.2023.1151907] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Recent advances in new molecular biology methods and next-generation sequencing (NGS) technologies have revolutionized metabarcoding studies investigating complex microbial communities from various environments. The inevitable first step in sample preparation is DNA extraction which introduces its own set of biases and considerations. In this study, we assessed the influence of five DNA extraction methods [B1: phenol/chloroform/isoamyl extraction, B2 and B3: isopropanol and ethanol precipitations, respectively-both modifications of B1, K1: DNeasy PowerWater Kit (QIAGEN), K2: modified DNeasy PowerWater Kit (QIAGEN) and direct PCR approach (P) that completely circumvents this step on community composition and DNA yield of mock and marine sample communities from the Adriatic Sea]. B1-B3 methods generally produced higher DNA yields and more similar microbial communities, but with higher interindividual variability. Each method demonstrated significant differences in a specific community structure, where rare taxa seem to play a crucial role. There was not one superior method closest to the theoretically expected mock community composition, they all demonstrated skewed ratios, but in a similar way which might be attributed to other factors, such as primer bias or 16S rRNA gene count for specific taxa. Direct PCR represents an interesting approach when high throughput in sample processing is required. We emphasize the importance of making a cautious decision about the choice of the extraction method or direct PCR approach, but even more importantly its consistent application throughout the study.
Collapse
Affiliation(s)
- Iva Stojan
- Laboratory of Microbiology, Institute of Oceanography and Fisheries, Split, Croatia
- Doctoral Study of Biophysics, Faculty of Science, University of Split, Split, Croatia
| | - Željka Trumbić
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Ivana Lepen Pleić
- Laboratory for Aquaculture, Institute of Oceanography and Fisheries, Split, Croatia
| | - Danijela Šantić
- Laboratory of Microbiology, Institute of Oceanography and Fisheries, Split, Croatia
| |
Collapse
|
4
|
Pawlowski J, Bruce K, Panksep K, Aguirre FI, Amalfitano S, Apothéloz-Perret-Gentil L, Baussant T, Bouchez A, Carugati L, Cermakova K, Cordier T, Corinaldesi C, Costa FO, Danovaro R, Dell'Anno A, Duarte S, Eisendle U, Ferrari BJD, Frontalini F, Frühe L, Haegerbaeumer A, Kisand V, Krolicka A, Lanzén A, Leese F, Lejzerowicz F, Lyautey E, Maček I, Sagova-Marečková M, Pearman JK, Pochon X, Stoeck T, Vivien R, Weigand A, Fazi S. Environmental DNA metabarcoding for benthic monitoring: A review of sediment sampling and DNA extraction methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151783. [PMID: 34801504 DOI: 10.1016/j.scitotenv.2021.151783] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/06/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Environmental DNA (eDNA) metabarcoding (parallel sequencing of DNA/RNA for identification of whole communities within a targeted group) is revolutionizing the field of aquatic biomonitoring. To date, most metabarcoding studies aiming to assess the ecological status of aquatic ecosystems have focused on water eDNA and macroinvertebrate bulk samples. However, the eDNA metabarcoding has also been applied to soft sediment samples, mainly for assessing microbial or meiofaunal biota. Compared to classical methodologies based on manual sorting and morphological identification of benthic taxa, eDNA metabarcoding offers potentially important advantages for assessing the environmental quality of sediments. The methods and protocols utilized for sediment eDNA metabarcoding can vary considerably among studies, and standardization efforts are needed to improve their robustness, comparability and use within regulatory frameworks. Here, we review the available information on eDNA metabarcoding applied to sediment samples, with a focus on sampling, preservation, and DNA extraction steps. We discuss challenges specific to sediment eDNA analysis, including the variety of different sources and states of eDNA and its persistence in the sediment. This paper aims to identify good-practice strategies and facilitate method harmonization for routine use of sediment eDNA in future benthic monitoring.
Collapse
Affiliation(s)
- J Pawlowski
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland; Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland; ID-Gene Ecodiagnostics, 1202 Geneva, Switzerland
| | - K Bruce
- NatureMetrics Ltd, CABI Site, Bakeham Lane, Egham TW20 9TY, UK
| | - K Panksep
- Institute of Technology, University of Tartu, Tartu 50411, Estonia; Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia; Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Estonia
| | - F I Aguirre
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Monterotondo, Rome, Italy
| | - S Amalfitano
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Monterotondo, Rome, Italy
| | - L Apothéloz-Perret-Gentil
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland; ID-Gene Ecodiagnostics, 1202 Geneva, Switzerland
| | - T Baussant
- Norwegian Research Center AS, NORCE Environment, Marine Ecology Group, Mekjarvik 12, 4070 Randaberg, Norway
| | - A Bouchez
- INRAE, CARRTEL, 74200 Thonon-les-Bains, France
| | - L Carugati
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona 60131, Italy
| | - K Cermakova
- ID-Gene Ecodiagnostics, 1202 Geneva, Switzerland
| | - T Cordier
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland; NORCE Climate, NORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Jahnebakken 5, 5007 Bergen, Norway
| | - C Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, Ancona 60131, Italy
| | - F O Costa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - R Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona 60131, Italy
| | - A Dell'Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona 60131, Italy
| | - S Duarte
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - U Eisendle
- University of Salzburg, Dept. of Biosciences, 5020 Salzburg, Austria
| | - B J D Ferrari
- Swiss Centre for Applied Ecotoxicology (Ecotox Centre), EPFL ENAC IIE-GE, 1015 Lausanne, Switzerland
| | - F Frontalini
- Department of Pure and Applied Sciences, Urbino University, Urbino, Italy
| | - L Frühe
- Technische Universität Kaiserslautern, Ecology Group, D-67663 Kaiserslautern, Germany
| | - A Haegerbaeumer
- Bielefeld University, Animal Ecology, 33615 Bielefeld, Germany
| | - V Kisand
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - A Krolicka
- Norwegian Research Center AS, NORCE Environment, Marine Ecology Group, Mekjarvik 12, 4070 Randaberg, Norway
| | - A Lanzén
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, Gipuzkoa, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - F Leese
- University of Duisburg-Essen, Faculty of Biology, Aquatic Ecosystem Research, Germany
| | - F Lejzerowicz
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - E Lyautey
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200 Thonon-les-Bains, France
| | - I Maček
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; Faculty of Mathematics, Natural Sciences and Information Technologies (FAMNIT), University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - M Sagova-Marečková
- Czech University of Life Sciences, Dept. of Microbiology, Nutrition and Dietetics, Prague, Czech Republic
| | - J K Pearman
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
| | - X Pochon
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; Institute of Marine Science, University of Auckland, Warkworth 0941, New Zealand
| | - T Stoeck
- Technische Universität Kaiserslautern, Ecology Group, D-67663 Kaiserslautern, Germany
| | - R Vivien
- Swiss Centre for Applied Ecotoxicology (Ecotox Centre), EPFL ENAC IIE-GE, 1015 Lausanne, Switzerland
| | - A Weigand
- National Museum of Natural History Luxembourg, 25 Rue Münster, L-2160 Luxembourg, Luxembourg
| | - S Fazi
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Monterotondo, Rome, Italy.
| |
Collapse
|
5
|
Papatheodorou SA, Halvatsiotis P, Houhoula D. A comparison of different DNA extraction methods and molecular techniques for the detection and identification of foodborne pathogens. AIMS Microbiol 2021; 7:304-319. [PMID: 34708174 PMCID: PMC8500797 DOI: 10.3934/microbiol.2021019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022] Open
Abstract
Foodborne infections continue to plague Europe. Food safety monitoring is in crisis as the existing techniques for detecting pathogens do not keep up with the global rising of food production and consumption. Thus, the development of innovative techniques for detecting and identifying pathogenic bacteria has become critical. The aim of the present study was firstly to develop an innovative simple and low cost method of extracting bacterial DNA from contaminated food and water samples with Salmonella enteric(a) subsp. enteric(a) serovar Typhimurium and Listeria monocytogenes and its comparison with two commercial DNA extraction kits (Qiagen, Macherey-Nagel). Finally, pathogens' detection using two molecular techniques (PCR-electrophoresis, LAMP), in order to evaluate the best combination of DNA extraction and identification based on their sensitivity, cost, rapidity and simplicity. Considering the above criteria, among them, best was proved an in-house bacterial DNA extraction method, based on the chloroform-isoamyl alcohol protocol, with certain modifications. This technique showed statistically similar results in terms of sensitivity, compared to the commercial kits, while at the same time maintained high rapidity and much lower cost. Lastly, between the molecular techniques, LAMP was found more promising considering its simplicity, high rapidity and sensitivity. Conclusively, the in-house DNA extraction method along with the LAMP technique, was proven to be the best among the presented combinations.
Collapse
Affiliation(s)
| | - Panagiotis Halvatsiotis
- 2nd Propaedeutic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, Chaidari Greece
| | - Dimitra Houhoula
- Department of Food Science & Technology, School of Food Sciences, University of West Attica
| |
Collapse
|
6
|
Mateus-Barros E, de Melo ML, Bagatini IL, Caliman A, Sarmento H. Local and Geographic Factors Shape the Occupancy-Frequency Distribution of Freshwater Bacteria. MICROBIAL ECOLOGY 2021; 81:26-35. [PMID: 32705311 DOI: 10.1007/s00248-020-01560-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Species prevalence across the landscape is related to their local abundance, which is a result of deterministic and stochastic processes that select organisms capable of recolonizing sites where they were once extinct, a process known as the rescue effect. The occupancy-frequency distribution (OFD) describes these patterns and has been extensively used to understand organism's distribution but has been poorly tested on microorganisms. In order to test OFD on freshwater bacteria, we collected data from 60 shallow lakes distributed across a wide area in southeastern Brazil, to determine the bacterial operational taxonomic units (OTUs) that were present in all sites (core) and at only one site (satellite). Then, we analyzed the spatial abundance distributions of individual OTUs to understand the influence of local abundances on regional occupancy patterns. Finally, we tested the environmental factors that influenced occupancy and abundance. We found a significant bimodal OFD for freshwater bacteria using both OTUs (97% clustering) and amplicon sequence variants (ASVs, unique sequences), with 13 core OTUs and 1169 satellite OTUs, but only three core ASVs. Core organisms had a bimodal or gamma abundance distribution. The main driver of the core community was pH, while nutrients were key when the core community was excluded and the rest of the community (mild and satellite taxa) was considered. This study demonstrates the close relationship between local environmental conditions and the abundance and dispersion of microorganisms, which shapes their distribution across the landscape.
Collapse
Affiliation(s)
- Erick Mateus-Barros
- Department of Hydrobiology, Laboratory of Microbial Processes and Biodiversity, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil.
- Post Graduate Program in Ecology and Natural Resources (PPG-ERN), UFSCar, São Carlos, SP, 13565-905, Brazil.
| | - Michaela L de Melo
- Department of Hydrobiology, Laboratory of Microbial Processes and Biodiversity, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
- Département Des Sciences Biologiques, Université du Québec à Montréal, Montreal, Canada
| | - Inessa L Bagatini
- Department of Botany, Laboratory of Phycology, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Adriano Caliman
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, RN, 59078-900, Brazil
| | - Hugo Sarmento
- Department of Hydrobiology, Laboratory of Microbial Processes and Biodiversity, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| |
Collapse
|