1
|
Benoit T, Sajjad D, Cloutier M, Lapen DR, Craiovan E, Sykes EME, Kumar A, Khan IUH. Acinetobacter calcoaceticus-baumannii complex prevalence, spatial-temporal distribution, and contamination sources in Canadian aquatic environments. Microbiol Spectr 2024; 12:e0150924. [PMID: 39240108 PMCID: PMC11449026 DOI: 10.1128/spectrum.01509-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024] Open
Abstract
Acinetobacter calcoaceticus-baumannii (ACB) complex has been identified as a group of emerging opportunistic pathogens that cause nosocomial infections. The current study investigates the prevalence, distribution, and diversity of pathogenic ACB complex in various aquatic systems with different uses. Of the total 157 agricultural, raw drinking water intake, recreational beach, and wastewater treatment plant (WWTP) effluent samples, acinetobacters were isolated, quantified, and confirmed by genus- and ACB complex-specific PCR assays. Of all agricultural surface water samples, A. calcoaceticus (65%) was more frequently detected than A. pittii (14%), A. nosocomialis (9%), and A. baumannii (3%). In WWTP effluent samples, A. baumannii was more prevalent in de-chlorinated (60%) samples compared to both A. pittii and A. nosocomialis (40%). Interestingly, A. nosocomialis (43%), A. calcoaceticus (29%), and A. baumannii (14%) were detected in raw drinking water intake samples, whereas A. pittii (50%) and A. nosocomialis (25%) were detected in beach samples. Although no sampling location-specific differences were recorded, significant (P < 0.05) seasonal differences were observed when agricultural surface water samples collected in spring were compared with the summer and fall. Whereas effluent chlorination significantly impacted the degree of prevalence of Acinetobacter in WWTP effluent samples, overall, the prevalence of ACB complex in all sampling locations and seasons indicates that these water sources, containing human-associated ACB complex, may pose potential health risks as community-acquired opportunistic infections.IMPORTANCEAcinetobacter calcoaceticus-baumannii (ACB) complex is a group of organisms known to cause problematic nosocomial opportunistic infections. A member of the species complex, A. baumannii, is becoming a global threat to infection treatment as strains are increasingly develop resistance to antibiotics. The prevalence and distribution of potentially pathogenic Acinetobacter calcoaceticus-baumannii complex species remain poorly understood, and there is a need to better understand the occurrence of A. baumannii in non-nosocomial environments. Our research details the spatial-temporal distribution of ACB complex species in a regional watershed and highlights the presence of ACB complex in wastewater effluent that is discharged into a river. These findings deepen our understanding of this group of species in non-nosocomial environments and encourage the development of monitoring programs for these species in regional waters.
Collapse
Affiliation(s)
- Thomas Benoit
- Ottawa Research and
Development Centre, Agriculture and Agri-Food
Canada, Ontario,
Canada
- Department of
Chemistry and Biomolecular Sciences, University of
Ottawa, Ontario,
Canada
| | - Dania Sajjad
- Ottawa Research and
Development Centre, Agriculture and Agri-Food
Canada, Ontario,
Canada
- Department of
Chemistry and Biomolecular Sciences, University of
Ottawa, Ontario,
Canada
| | - Michel Cloutier
- Ottawa Research and
Development Centre, Agriculture and Agri-Food
Canada, Ontario,
Canada
| | - David R. Lapen
- Ottawa Research and
Development Centre, Agriculture and Agri-Food
Canada, Ontario,
Canada
| | - Emilia Craiovan
- Ottawa Research and
Development Centre, Agriculture and Agri-Food
Canada, Ontario,
Canada
| | - Ellen M. E. Sykes
- Department of
Microbiology, University of Manitoba,
Winnipeg, Manitoba,
Canada
| | - Ayush Kumar
- Department of
Microbiology, University of Manitoba,
Winnipeg, Manitoba,
Canada
| | - Izhar U. H. Khan
- Ottawa Research and
Development Centre, Agriculture and Agri-Food
Canada, Ontario,
Canada
| |
Collapse
|
2
|
Inkster T, Caldwell I, Aird H, Willis C, Lai S, Mallon J. Development and evaluation of test methods for the detection and enumeration of opportunistic waterborne pathogens from the hospital environment. J Hosp Infect 2024; 149:98-103. [PMID: 38685413 DOI: 10.1016/j.jhin.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/01/2024] [Accepted: 04/14/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Many Gram-negative bacteria other than Pseudomonas aeruginosa have been implicated in waterborne outbreaks, but standardized laboratory detection methods for these organisms have not been established. AIM This study aimed to establish laboratory testing methodologies for six waterborne pathogens: Acinetobacter spp., Burkholderia spp., Cupriavidus spp., Delftia acidovorans, Elizabethkingia spp. and Stenotrophomonas maltophilia. METHODS Water samples were spiked by UK Health Security Agency laboratories and sent to the Glasgow Royal Infirmary laboratory for analysis. Water samples were spiked with either a pure culture of target organism or the target organism in water containing normal background flora, to ensure that the methodology could identify organisms from a mixed culture. Volumes of 100 mL were filtered under negative pressure on to culture media and incubated at 30 °C and 37 °C. The incubation time was 7 days, with plates read on days 2, 5 and 7. Further identification of colonies was undertaken using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). FINDINGS Optimal recovery of organisms was obtained by culturing water samples on tryptic soy agar, chocolate bacitracin agar and pseudomonas selective agar. The optimal temperature for isolation was 30 °C. The optimal incubation time was 5 days, and MALDI-TOF MS identified all test species reliably. CONCLUSION The methodology described was able to detect the six tested waterborne pathogens reliably, and can be utilized by laboratories involved in testing water samples during outbreak investigations.
Collapse
Affiliation(s)
- T Inkster
- Antimicrobial Resistance and Healthcare Associated Infection, Glasgow, UK.
| | - I Caldwell
- Department of Microbiology, Glasgow Royal Infirmary, Glasgow, UK
| | - H Aird
- Food Water and Environmental Microbiology Laboratory York, UK Health Security Agency, York, UK
| | - C Willis
- Food Water and Environmental Microbiology Laboratory Porton, UK Health Security Agency, Salisbury, UK
| | - S Lai
- Food Water and Environmental Microbiology Services, Colindale, UK Health Security Agency London, UK
| | - J Mallon
- Department of Microbiology, Glasgow Royal Infirmary, Glasgow, UK
| |
Collapse
|
3
|
Sheikh AA, Schneiderman D, Sykes EME, Kumar A, Chen W, Lapen DR, Khan IUH. Three novel multiplex PCR assays for rapid detection of virulence, antimicrobial resistance, and toxin genes in Acinetobacter calcoaceticus-baumannii complex species. Lett Appl Microbiol 2024; 77:ovae027. [PMID: 38460955 DOI: 10.1093/lambio/ovae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/11/2024]
Abstract
The Acinetobacter calcoaceticus-baumannii (ACB) complex is an often-overlooked group of nosocomial pathogens with a significant environmental presence. Rapid molecular screening methods for virulence, antimicrobial resistance, and toxin (VAT) genes are required to investigate the potential pathogenicity of environmental isolates. This study aimed to develop and apply novel ACB complex-specific multiplex PCR (mPCR) primers and protocols for the rapid detection of eight VAT genes. We optimized three single-tube mPCR assays using reference DNA from ACB complex and other Acinetobacter species. These assays were then applied to detect VAT genes in cultured ACB complex isolates recovered from clinical and environmental sources. Widespread detection of VAT genes in environmental isolates confirmed the validity, functionality, and applicability of these novel assays. Overall, the three newly developed ACB complex species-specific mPCR assays are rapid and simple tools that can be adopted in diagnostic and clinical lab settings. The detection of VAT genes in environmental isolates suggests that environmental niches could serve as a reservoir for potentially pathogenic ACB complex and warrants further investigation. The newly developed mPCR assays are specific, sensitive, and efficient, making them well-suited for high-throughput screening in epidemiological studies and evaluating the potential pathogenicity of ACB complex recovered from various sources.
Collapse
Affiliation(s)
- Alexander A Sheikh
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, K1A 0C6, ON, Canada
| | - Danielle Schneiderman
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, K1A 0C6, ON, Canada
| | - Ellen M E Sykes
- Department of Microbiology, University of Manitoba, Winnipeg, R3T 2N2, MB, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, R3T 2N2, MB, Canada
| | - Wen Chen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, K1A 0C6, ON, Canada
| | - David R Lapen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, K1A 0C6, ON, Canada
| | - Izhar U H Khan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, K1A 0C6, ON, Canada
| |
Collapse
|
4
|
Sillankorva S, Hyman P. Isolation of Bacteriophages for Clinically Relevant Bacteria. Methods Mol Biol 2024; 2734:3-12. [PMID: 38066359 DOI: 10.1007/978-1-0716-3523-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The isolation of bacteriophages targeting most clinically relevant bacteria is reasonably straightforward as long as its targeted host does not have complex chemical, physical, and environmental requirements. Often, sewage, soil, feces, and different body fluids are used for bacteriophage isolation procedures, and following enrichment, it is common to obtain more than a single phage in a sample. This chapter describes a simple method for the enrichment and isolation of bacteriophages from liquid and solid samples that can be adapted for different clinically important aerobic bacteria.
Collapse
Affiliation(s)
- Sanna Sillankorva
- INL - International Iberian Nanotechnology Laboratory, Braga, Portugal.
| | - Paul Hyman
- Department of Biology & Toxicology, Ashland University, Ashland, OH, USA
| |
Collapse
|
5
|
Milligan EG, Calarco J, Davis BC, Keenum IM, Liguori K, Pruden A, Harwood VJ. A Systematic Review of Culture-Based Methods for Monitoring Antibiotic-Resistant Acinetobacter, Aeromonas, and Pseudomonas as Environmentally Relevant Pathogens in Wastewater and Surface Water. Curr Environ Health Rep 2023:10.1007/s40572-023-00393-9. [PMID: 36821031 DOI: 10.1007/s40572-023-00393-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 02/24/2023]
Abstract
PURPOSE OF REVIEW Mounting evidence indicates that habitats such as wastewater and environmental waters are pathways for the spread of antibiotic-resistant bacteria (ARB) and mobile antibiotic resistance genes (ARGs). We identified antibiotic-resistant members of the genera Acinetobacter, Aeromonas, and Pseudomonas as key opportunistic pathogens that grow or persist in built (e.g., wastewater) or natural aquatic environments. Effective methods for monitoring these ARB in the environment are needed to understand their influence on dissemination of ARB and ARGs, but standard methods have not been developed. This systematic review considers peer-reviewed papers where the ARB above were cultured from wastewater or surface water, focusing on the accuracy of current methodologies. RECENT FINDINGS Recent studies suggest that many clinically important ARGs were originally acquired from environmental microorganisms. Acinetobacter, Aeromonas, and Pseudomonas species are of interest because their ability to persist and grow in the environment provides opportunities to engage in horizontal gene transfer with other environmental bacteria. Pathogenic strains of these organisms resistant to multiple, clinically relevant drug classes have been identified as an urgent threat. However, culture methods for these bacteria were generally developed for clinical samples and are not well-vetted for environmental samples. The search criteria yielded 60 peer-reviewed articles over the past 20 years, which reported a wide variety of methods for isolation, confirmation, and antibiotic resistance assays. Based on a systematic comparison of the reported methods, we suggest a path forward for standardizing methodologies for monitoring antibiotic resistant strains of these bacteria in water environments.
Collapse
Affiliation(s)
- Erin G Milligan
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.,Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Jeanette Calarco
- Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Benjamin C Davis
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ishi M Keenum
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Krista Liguori
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA. .,Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
6
|
Havenga B, Reyneke B, Ndlovu T, Khan W. Genotypic and phenotypic comparison of clinical and environmental Acinetobacter baumannii strains. Microb Pathog 2022; 172:105749. [PMID: 36087691 DOI: 10.1016/j.micpath.2022.105749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022]
Abstract
The genotypic and phenotypic characteristics and antibiotic resistance (antibiogram) profiles of clinical (n = 13) and environmental (n = 7) Acinetobacter baumannii isolates were compared. Based on the Repetitive Extragenic Palindromic Sequence-based PCR (REP-PCR) analysis, the clinical and environmental A. baumannii isolates shared low genetic relatedness (∼60%). Multilocus sequence typing (MLST, Oxford scheme) indicated that the clinical A. baumannii were assigned to three sequence types (ST231, ST945 and ST848), while the environmental A. baumannii (excluding AB 14) were categorised into the novel ST2520. The majority of the clinical (excluding AB 5, CAB 11, CAC 37) and environmental (excluding AB 14 and AB 16) A. baumannii strains were then capable of phase variation with both the translucent (71.4%; 15/21) and opaque (95.2%; 20/21) colony phenotypes detected. The clinical isolates however, exhibited significantly (p < 0.05) higher biofilm formation capabilities (OD570: 2.094 ± 0.497). Moreover, the clinical isolates exhibited significantly (p < 0.05) higher resistance to first line antibiotics, with 92.3% (12/13) characterised as extensively drug resistant (XDR), whereas environmental A. baumannii exhibited increased antibiotic susceptibility with only 57.1% (4/7) characterised as multidrug resistant (MDR). The environmental isolate AB 14 was however, characterised as XDR. In addition, only five clinical A. baumannii isolates exhibited colistin resistance (38.5%; 5/13). The current study highlighted the differences in the genotypic, phenotypic, and antibiotic resistance profiles of clinical and environmental A. baumannii. Moreover, the environmental strains were assigned to the novel ST2520, which substantiates the existence of this opportunistic pathogen in extra-hospital reservoirs.
Collapse
Affiliation(s)
- Benjamin Havenga
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Brandon Reyneke
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Thando Ndlovu
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag UB, 0022, Gaborone, Botswana
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa.
| |
Collapse
|
7
|
Khan IUH, Murdock A, Mahmud M, Cloutier M, Benoit T, Bashar S, Patidar R, Mi R, Daneshfar B, Farenhorst A, Kumar A. Quantitative Assessment of First Nations Drinking Water Distribution Systems for Detection and Prevalence of Thermophilic Campylobacter Species. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10466. [PMID: 36078183 PMCID: PMC9518054 DOI: 10.3390/ijerph191710466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Water is considered a major route for transmitting human-associated pathogens. Although microbial water quality indicators are used to test for the presence of waterborne pathogens in drinking water, the two are poorly correlated. The current study investigates the prevalence of thermophilic DNA markers specific for Campylobacter spp. (C. jejuni and C. coli) in source water and throughout the water distribution systems of two First Nations communities in Manitoba, Canada. A total of 220 water samples were collected from various points of the drinking water distribution system (DWDS) between 2016 and 2018. Target Campylobacter spp. were always (100%) detected in a home with a fiberglass (CF) cistern, as well as the community standpipe (SP). The target bacteria were also frequently detected in treated water at the Water Treatment Plant (WTP) (78%), homes with polyethylene (CP) (60%) and concrete (CC) (58%) cisterns, homes with piped (P) water (43%) and water truck (T) samples (20%), with a maximum concentration of 1.9 × 103 cells 100 mL-1 (C. jejuni) and 5.6 × 105 cells 100 mL-1 (C. coli). Similarly, target bacteria were detected in 68% of the source water samples with a maximum concentration of 4.9 × 103 cells 100 mL-1 (C. jejuni) and 8.4 × 105 cells 100 mL-1 (C. coli). Neither target Campylobacter spp. was significantly associated with free and total chlorine concentrations in water. The study results indicate that there is an immediate need to monitor Campylobacter spp. in small communities of Canada and, particularly, to improve the DWDS in First Nations communities to minimize the risk of Campylobacter infection from drinking water sources. Further research is warranted in improving/developing processes and technologies to eliminate microbial contaminants from water.
Collapse
Affiliation(s)
- Izhar U. H. Khan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Anita Murdock
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Maria Mahmud
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Michel Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Thomas Benoit
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Sabrin Bashar
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Rakesh Patidar
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ruidong Mi
- Department of Soil Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Bahram Daneshfar
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Annemieke Farenhorst
- Department of Soil Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
8
|
An Ohio State Scenic River Shows Elevated Antibiotic Resistance Genes, Including Acinetobacter Tetracycline and Macrolide Resistance, Downstream of Wastewater Treatment Plant Effluent. Microbiol Spectr 2021; 9:e0094121. [PMID: 34468194 PMCID: PMC8557926 DOI: 10.1128/spectrum.00941-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The entry of antibiotic resistance genes (ARGs) into aquatic systems has been documented for large municipal wastewater treatment plants (WWTPs), but there is less study of the impact of smaller plants that are situated on small rural rivers. We sampled water metagenomes for ARGs and taxa composition from the Kokosing River, a small rural river in Knox County, Ohio, which has been designated an Ohio State Scenic River for retention of natural character. Samples were obtained 1.0 km upstream, 120 m downstream, and 6.4 km downstream from the effluent release of the Mount Vernon WWTP. ARGs were identified in metagenomes using ShortBRED markers from the comprehensive antibiotic resistance database (CARD) screened against UniPROT. Through all seasons, the metagenome just downstream of the WWTP effluent showed a substantial elevation of at least 15 different ARGs, including 6 ARGs commonly associated with Acinetobacter baumannii, such as msrE, mphE (macrolide resistance), and tet(39) (tetracycline resistance). The ARGs most prevalent near the effluent pipe persisted 6.4 km downriver. Using metagenomic phylogenetic analysis (MetaPhlAn2) clade-specific marker genes, the taxa distribution near the effluent showed elevation of reads annotated as Acinetobacter species as well as gut-associated taxa, Bacteroides and Firmicutes. The ARG levels and taxa prevalence showed little dependence on seasonal chlorination of the effluent. Nitrogen and phosphorus were elevated near the effluent pipe but had no consistent correlation with ARG levels. We show that in a rural river microbiome, year-round wastewater effluent substantially elevates ARGs, including those associated with multidrug-resistant A. baumannii. IMPORTANCE Antibiotic resistance is a growing problem worldwide, with frequent transmission between pathogens and environmental organisms. Rural rivers can support high levels of recreational use by people unaware of inputs from treated wastewater, while wastewater treatment plants (WWTPs) can generate a small but significant portion of flow volume into a river surrounded by forest and agriculture. There is little information on the rural impacts of WWTP effluent on the delivery and transport of antibiotic resistance genes. In our study, the river water proximal to wastewater effluent shows evidence for the influx of multidrug-resistant Acinetobacter baumannii, an opportunistic pathogen of concern for hospitals but also widespread in natural environments. Our work highlights the importance of wastewater effluent in management of environmental antibiotic resistance, even in high quality, rural river systems.
Collapse
|