1
|
Amin N, Haque R, Rahman MZ, Rahman MZ, Mahmud ZH, Hasan R, Islam MT, Sarker P, Sarker S, Adnan SD, Akter N, Johnston D, Rahman M, Liu P, Wang Y, Shirin T, Rahman M, Bhattacharya P. Dependency of sanitation infrastructure on the discharge of faecal coliform and SARS-CoV-2 viral RNA in wastewater from COVID and non-COVID hospitals in Dhaka, Bangladesh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161424. [PMID: 36623655 PMCID: PMC9822545 DOI: 10.1016/j.scitotenv.2023.161424] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 05/25/2023]
Abstract
The detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA in wastewater can be used as an indicator of the presence of SARS-CoV-2 infection in specific catchment areas. We conducted a hospital-based study to explore wastewater management in healthcare facilities and analyzed SARS-CoV-2 RNA in the hospital wastewater in Dhaka city during the Coronavirus disease (COVID-19) outbreak between September 2020-January 2021. We selected three COVID-hospitals, two non-COVID-hospitals, and one non-COVID-hospital with COVID wards, conducted spot-checks of the sanitation systems (i.e., toilets, drainage, and septic-tank), and collected 90 untreated wastewater effluent samples (68 from COVID and 22 from non-COVID hospitals). E. coli was detected using a membrane filtration technique and reported as colony forming unit (CFU). SARS-CoV-2 RNA was detected using the iTaq Universal Probes One-Step kit for RT-qPCR amplification of the SARS-CoV-2 ORF1ab and N gene targets and quantified for SARS-CoV-2 genome equivalent copies (GEC) per mL of sample. None of the six hospitals had a primary wastewater treatment facility; two COVID hospitals had functional septic tanks, and the rest of the hospitals had either broken onsite systems or no containment of wastewater. Overall, 100 % of wastewater samples were positive with a high concentration of E. coli (mean = 7.0 log10 CFU/100 mL). Overall, 67 % (60/90) samples were positive for SARS-CoV-2. The highest SARS-CoV-2 concentrations (median: 141 GEC/mL; range: 13-18,214) were detected in wastewater from COVID-hospitals, and in non-COVID-hospitals, the median SARS-CoV-2 concentration was 108 GEC/mL (range: 30-1829). Our results indicate that high concentrations of E. coli and SARS-CoV-2 were discharged through the hospital wastewater (both COVID and non-COVID) without treatment into the ambient water bodies. Although there is no evidence for transmission of SARS-CoV-2 via wastewater, this study highlights the significant risk posed by wastewater from health care facilities in Dhaka for the many other diseases that are spread via faecal oral route. Hospitals in low-income settings could function as sentinel sites to monitor outbreaks through wastewater-based epidemiological surveillance systems. Hospitals should aim to adopt the appropriate wastewater treatment technologies to reduce the discharge of pathogens into the environment and mitigate environmental exposures.
Collapse
Affiliation(s)
- Nuhu Amin
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh; Institute for Sustainable Futures, University of Technology Sydney, 235 Jones St, Ultimo, NSW, 2007, Australia.
| | - Rehnuma Haque
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh; School of Medicine, Stanford University, Stanford, CA, USA
| | - Md Ziaur Rahman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammed Ziaur Rahman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Zahid Hayat Mahmud
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Rezaul Hasan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Tahmidul Islam
- COVID-19 Research@KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE 114 28 Stockholm, Sweden; WaterAid, Bangladesh
| | - Protim Sarker
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Supriya Sarker
- Directorate General of Health Services (DGHS), Bangladesh
| | | | - Nargis Akter
- Water, Sanitation & Hygiene (WASH) section, UNICEF, Bangladesh
| | - Dara Johnston
- Water, Sanitation & Hygiene (WASH) section, UNICEF, Bangladesh
| | - Mahbubur Rahman
- Institute of Epidemiology, Disease Control and Research (IEDCR), Bangladesh
| | - Pengbo Liu
- Center for Global Safe Water, Sanitation, and Hygiene, Emory University, Atlanta, GA, USA
| | - Yuke Wang
- Center for Global Safe Water, Sanitation, and Hygiene, Emory University, Atlanta, GA, USA
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Bangladesh
| | - Mahbubur Rahman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Prosun Bhattacharya
- COVID-19 Research@KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE 114 28 Stockholm, Sweden
| |
Collapse
|
2
|
Fradette MS, Culley AI, Charette SJ. Detection of Cryptosporidium spp. and Giardia spp. in Environmental Water Samples: A Journey into the Past and New Perspectives. Microorganisms 2022; 10:microorganisms10061175. [PMID: 35744692 PMCID: PMC9228427 DOI: 10.3390/microorganisms10061175] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 01/27/2023] Open
Abstract
Among the major issues linked with producing safe water for consumption is the presence of the parasitic protozoa Cryptosporidium spp. and Giardia spp. Since they are both responsible for gastrointestinal illnesses that can be waterborne, their monitoring is crucial, especially in water sources feeding treatment plants. Although their discovery was made in the early 1900s and even before, it was only in 1999 that the U.S. Environmental Protection Agency (EPA) published a standardized protocol for the detection of these parasites, modified and named today the U.S. EPA 1623.1 Method. It involves the flow-through filtration of a large volume of the water of interest, the elution of the biological material retained on the filter, the purification of the (oo)cysts, and the detection by immunofluorescence of the target parasites. Since the 1990s, several molecular-biology-based techniques were also developed to detect Cryptosporidium and Giardia cells from environmental or clinical samples. The application of U.S. EPA 1623.1 as well as numerous biomolecular methods are reviewed in this article, and their advantages and disadvantages are discussed guiding the readers, such as graduate students, researchers, drinking water managers, epidemiologists, and public health specialists, through the ever-expanding number of techniques available in the literature for the detection of Cryptosporidium spp. and Giardia spp. in water.
Collapse
Affiliation(s)
- Marie-Stéphanie Fradette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.I.C.); (S.J.C.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et Génie, Université Laval, Québec City, QC G1V 0A6, Canada
- Centre de Recherche en Aménagement et Développement du Territoire (CRAD), Université Laval, Québec City, QC G1V 0A6, Canada
- Correspondence:
| | - Alexander I. Culley
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.I.C.); (S.J.C.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et Génie, Université Laval, Québec City, QC G1V 0A6, Canada
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Steve J. Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.I.C.); (S.J.C.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et Génie, Université Laval, Québec City, QC G1V 0A6, Canada
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, QC G1V 0A6, Canada
| |
Collapse
|