1
|
Su T, Huang M, Liao J, Lin S, Yu P, Yang J, Cai Y, Zhu S, Xu L, Peng Z, Peng S, Chen S, Kuang M. Insufficient Radiofrequency Ablation Promotes Hepatocellular Carcinoma Metastasis Through N6-Methyladenosine mRNA Methylation-Dependent Mechanism. Hepatology 2021; 74:1339-1356. [PMID: 33638162 DOI: 10.1002/hep.31766] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 01/06/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS The dynamic N6-methyladenosine (m6 A) mRNA modification is essential for acute stress response and cancer progression. Sublethal heat stress from insufficient radiofrequency ablation (IRFA) has been confirmed to promote HCC progression; however, whether m6 A machinery is involved in IRFA-induced HCC recurrence remains open for study. APPROACH AND RESULTS Using an IRFA HCC orthotopic mouse model, we detected a higher level of m6 A reader YTH N6-methyladenosine RNA binding protein 1-3 (YTHDF1) in the sublethal-heat-exposed transitional zone close to the ablation center than that in the farther area. In addition, we validated the increased m6 A modification and elevated YTHDF1 protein level in sublethal-heat-treated HCC cell lines, HCC patient-derived xenograft (PDX) mouse model, and patients' HCC tissues. Functionally, gain-of-function/loss-of-function assays showed that YTHDF1 promotes HCC cell viability and metastasis. Knockdown of YTHDF1 drastically restrains the tumor metastasis evoked by sublethal heat treatment in tail vein injection lung metastasis and orthotopic HCC mouse models. Mechanistically, we found that sublethal heat treatment increases epidermal factor growth receptor (EGFR) m6 A modification in the vicinity of the 5' untranslated region and promotes its binding with YTHDF1, which enhances the translation of EGFR mRNA. The sublethal-heat-induced up-regulation of EGFR level was further confirmed in the IRFA HCC PDX mouse model and patients' tissues. Combination of YTHDF1 silencing and EGFR inhibition suppressed the malignancies of HCC cells synergically. CONCLUSIONS The m6 A-YTHDF1-EGFR axis promotes HCC progression after IRFA, supporting the rationale for targeting m6 A machinery combined with EGFR inhibitors to suppress HCC metastasis after RFA.
Collapse
Affiliation(s)
- Tianhong Su
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Manling Huang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junbin Liao
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuibin Lin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Yu
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianhua Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuhong Cai
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shenghua Zhu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lixia Xu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhenwei Peng
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sui Peng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuling Chen
- Division of Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Kuang
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Lesnik C, Cohen Y, Atir-Lande A, Schuldiner M, Arava Y. OM14 is a mitochondrial receptor for cytosolic ribosomes that supports co-translational import into mitochondria. Nat Commun 2014; 5:5711. [PMID: 25487825 PMCID: PMC4268710 DOI: 10.1038/ncomms6711] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 10/30/2014] [Indexed: 11/13/2022] Open
Abstract
It is well established that import of proteins into mitochondria can occur after their complete synthesis by cytosolic ribosomes. Recently, an additional model was revived, proposing that some proteins are imported co-translationally. This model entails association of ribosomes with the mitochondrial outer membrane, shown to be mediated through the ribosome-associated chaperone nascent chain-associated complex (NAC). However, the mitochondrial receptor of this complex is unknown. Here, we identify the Saccharomyces cerevisiae outer membrane protein OM14 as a receptor for NAC. OM14Δ mitochondria have significantly lower amounts of associated NAC and ribosomes, and ribosomes from NAC[Δ] cells have reduced levels of associated OM14. Importantly, mitochondrial import assays reveal a significant decrease in import efficiency into OM14Δ mitochondria, and OM14-dependent import necessitates NAC. Our results identify OM14 as the first mitochondrial receptor for ribosome-associated NAC and reveal its importance for import. These results provide a strong support for an additional, co-translational mode of import into mitochondria. Mitochondrial proteins can be imported post-translationally; however, a role for co-translational import has recently provoked renewed interest. Lesnik et al. identify OM14 as a mitochondrial ribosome receptor required for efficient co-translational import of mitochondrial proteins.
Collapse
Affiliation(s)
- Chen Lesnik
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yifat Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Avigail Atir-Lande
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yoav Arava
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
4
|
Michaud M, Maréchal-Drouard L, Duchêne AM. RNA trafficking in plant cells: targeting of cytosolic mRNAs to the mitochondrial surface. PLANT MOLECULAR BIOLOGY 2010; 73:697-704. [PMID: 20506035 DOI: 10.1007/s11103-010-9650-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 05/07/2010] [Indexed: 05/06/2023]
Abstract
Subcellular localization of mRNA is a widespread and efficient way for targeting proteins to specific regions of a cell. Messenger RNA sorting appears as a key mechanism for posttranscriptional gene regulation, and its involvement in organelle biogenesis has been described in different organisms. Here we demonstrate that mRNA targeting to the surface of mitochondria occurs in higher plants. Cytosolic mRNAs corresponding to mitochondrial proteins, but also to some particular cytosolic proteins, were found associated to mitochondria, offering new perspectives for mitochondria biogenesis in plant cells.
Collapse
Affiliation(s)
- Morgane Michaud
- Institut de Biologie Moléculaire des Plantes, UPR 2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | | | |
Collapse
|