1
|
Le HT, Yu J, Ahn HS, Kim MJ, Chae IG, Cho HN, Kim J, Park HK, Kwon HN, Chae HJ, Kang BH, Seo JK, Kim K, Back SH. eIF2α Phosphorylation-ATF4 Axis-Mediated Transcriptional Reprogramming Mitigates Mitochondrial Impairment During ER Stress. Mol Cells 2025:100176. [PMID: 39756584 DOI: 10.1016/j.mocell.2024.100176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025] Open
Abstract
Eukaryotic translation initiation factor 2α (eIF2α) phosphorylation, which regulates all three unfolded protein response pathways, helps maintain cellular homeostasis and overcome endoplasmic reticulum (ER) stress through transcriptional and translational reprogramming. However, transcriptional regulation of mitochondrial homeostasis by eIF2α phosphorylation during ER stress is not fully understood. Here, we report that the eIF2α phosphorylation-activating transcription factor 4 (ATF4) axis is required for expression of multiple transcription factors (TFs) including nuclear factor erythroid 2-related factor 2 (Nrf2) and their target genes responsible for mitochondrial homeostasis during ER stress. eIF2α phosphorylation-deficient (A/A) cells displayed dysregulated mitochondrial dynamics and mitochondrial DNA replication, decreased expression of oxidative phosphorylation complex proteins, and impaired mitochondrial functions during ER stress. ATF4 overexpression suppressed impairment of mitochondrial homeostasis in A/A cells during ER stress by promoting expression of downstream TFs and their target genes. Our findings underscore the importance of the eIF2α phosphorylation-ATF4 axis for maintaining mitochondrial homeostasis through transcriptional reprogramming during ER stress.
Collapse
Affiliation(s)
- Hien Thi Le
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea.
| | - Jiyoung Yu
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea.
| | - Hee Sung Ahn
- AMC Sciences, Asan Medical Center, Seoul 05505, Korea.
| | - Mi-Jeong Kim
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea.
| | - In Gyeong Chae
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea.
| | - Hyun-Nam Cho
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea.
| | - Juhee Kim
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea.
| | - Hye-Kyung Park
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Hyuk Nam Kwon
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea.
| | - Han-Jung Chae
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Korea.
| | - Byoung Heon Kang
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Jeong Kon Seo
- Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Kyunggon Kim
- Department of Digital Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Sung Hoon Back
- Basic-Clinical Convergence Research Center, School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea.
| |
Collapse
|
2
|
Chen F, Xue Y, Zhang W, Zhou H, Zhou Z, Chen T, YinWang E, Li H, Ye Z, Gao J, Wang S. The role of mitochondria in tumor metastasis and advances in mitochondria-targeted cancer therapy. Cancer Metastasis Rev 2024; 43:1419-1443. [PMID: 39307891 PMCID: PMC11554835 DOI: 10.1007/s10555-024-10211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/08/2024] [Indexed: 11/05/2024]
Abstract
Mitochondria are central actors in diverse physiological phenomena ranging from energy metabolism to stress signaling and immune modulation. Accumulating scientific evidence points to the critical involvement of specific mitochondrial-associated events, including mitochondrial quality control, intercellular mitochondrial transfer, and mitochondrial genetics, in potentiating the metastatic cascade of neoplastic cells. Furthermore, numerous recent studies have consistently emphasized the highly significant role mitochondria play in coordinating the regulation of tumor-infiltrating immune cells and immunotherapeutic interventions. This review provides a comprehensive and rigorous scholarly investigation of this subject matter, exploring the intricate mechanisms by which mitochondria contribute to tumor metastasis and examining the progress of mitochondria-targeted cancer therapies.
Collapse
Affiliation(s)
- Fanglu Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenkan Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hao Zhou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhiyi Zhou
- The First People's Hospital of Yuhang District, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Eloy YinWang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Grady CI, Walsh LM, Heiss JD. Mitoepigenetics and gliomas: epigenetic alterations to mitochondrial DNA and nuclear DNA alter mtDNA expression and contribute to glioma pathogenicity. Front Neurol 2023; 14:1154753. [PMID: 37332990 PMCID: PMC10270738 DOI: 10.3389/fneur.2023.1154753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023] Open
Abstract
Epigenetic mechanisms allow cells to fine-tune gene expression in response to environmental stimuli. For decades, it has been known that mitochondria have genetic material. Still, only recently have studies shown that epigenetic factors regulate mitochondrial DNA (mtDNA) gene expression. Mitochondria regulate cellular proliferation, apoptosis, and energy metabolism, all critical areas of dysfunction in gliomas. Methylation of mtDNA, alterations in mtDNA packaging via mitochondrial transcription factor A (TFAM), and regulation of mtDNA transcription via the micro-RNAs (mir 23-b) and long noncoding RNAs [RNA mitochondrial RNA processing (RMRP)] have all been identified as contributing to glioma pathogenicity. Developing new interventions interfering with these pathways may improve glioma therapy.
Collapse
Affiliation(s)
- Clare I. Grady
- Neurosurgery, MedStar Georgetown University Hospital, Washington, DC, United States
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, United States
| | - Lisa M. Walsh
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, United States
| | - John D. Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Soltész B, Pös O, Wlachovska Z, Budis J, Hekel R, Strieskova L, Liptak JB, Krampl W, Styk J, Németh N, Keserű JS, Jenei A, Buglyó G, Klekner Á, Nagy B, Szemes T. Mitochondrial DNA copy number changes, heteroplasmy, and mutations in plasma-derived exosomes and brain tissue of glioblastoma patients. Mol Cell Probes 2022; 66:101875. [PMID: 36379303 DOI: 10.1016/j.mcp.2022.101875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Glioblastoma is the most common malignant tumor of the central nervous system (CNS) in adults. Glioblastoma cells show increased glucose consumption associated with poor prognosis. Since mitochondria play a crucial role in energy metabolism, mutations and copy number changes of mitochondrial DNA may serve as biomarkers. As the brain is difficult to access, analysis of mitochondria directly from the brain tissue represents a challenge. Exosome analysis is an alternative (still poorly explored) approach to investigate molecular changes in CNS tumors. We analyzed brain tissue DNA and plasma-derived exosomal DNA (exoDNA) of 44 glioblastoma patients and 40 control individuals. Quantitative real-time PCR was performed to determine mtDNA copy numbers and the Kruskal-Wallis and Mann-Whitney U test were used for statistical analysis of data. Subsequently, sequencing libraries were prepared and sequenced on the MiSeq platform to identify mtDNA point mutations. Tissue mtDNA copy number was different among controls and patients in multiple comparisons. A similar tendency was detected in exosomes. Based on NGS analysis, several mtDNA point mutations showed slightly different frequencies between cases and controls, but the clinical relevance of these observations is difficult to assess and likely less than that of overall mtDNA copy number changes. Allele frequencies of variants were used to determine the level of heteroplasmy (found to be higher in exo-mtDNA of control individuals). Despite the suggested potential, the use of such biomarkers for the screening and/or diagnosis of glioblastomas is still limited, thus further studies are needed.
Collapse
Affiliation(s)
- Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Ondrej Pös
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; Comenius University Science Park, Bratislava, Slovakia; Geneton Ltd., Bratislava, Slovakia
| | - Zuzana Wlachovska
- Comenius University Science Park, Bratislava, Slovakia; Institute of Informatics, Information Systems and Software Engineering, Faculty of Informatics and Information Technologies, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Jaroslav Budis
- Comenius University Science Park, Bratislava, Slovakia; Geneton Ltd., Bratislava, Slovakia; Slovak Centre of Scientific and Technical Information, Bratislava, Slovakia
| | - Rastislav Hekel
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; Comenius University Science Park, Bratislava, Slovakia; Geneton Ltd., Bratislava, Slovakia
| | | | - Jana Bozenka Liptak
- Institute of Informatics, Information Systems and Software Engineering, Faculty of Informatics and Information Technologies, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Werner Krampl
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; Comenius University Science Park, Bratislava, Slovakia; Geneton Ltd., Bratislava, Slovakia
| | - Jakub Styk
- Comenius University Science Park, Bratislava, Slovakia; Geneton Ltd., Bratislava, Slovakia; Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Nikolett Németh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Sz Keserű
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adrienn Jenei
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Álmos Klekner
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Comenius University Science Park, Bratislava, Slovakia
| | - Tomas Szemes
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; Comenius University Science Park, Bratislava, Slovakia; Geneton Ltd., Bratislava, Slovakia
| |
Collapse
|
5
|
Wen M, Zhang Y, Wang S, Li Q, Peng L, Li Q, Hu X, Zhao Y, Qin Q, Tao M, Zhang C, Luo K, Zhao R, Wang S, Hu F, Liu Q, Wang Y, Tang C, Liu S. Exogenous paternal mitochondria rescue hybrid incompatibility and the destiny of exogenous mitochondria. REPRODUCTION AND BREEDING 2022. [DOI: 10.1016/j.repbre.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
6
|
Peng B, Lou H, Chen C, Wang L, Li H, Lu T, Na R, Xu R, Xin T, Yao L, Xu H, Wang K, Liu X, Zhang L. Mitochondrial Homeostasis–Related lncRNAs are Potential Biomarkers for Predicting Prognosis and Immune Response in Lung Adenocarcinoma. Front Genet 2022; 13:870302. [PMID: 35769997 PMCID: PMC9234294 DOI: 10.3389/fgene.2022.870302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
The prognosis of the most common histological subtype of lung cancer, lung adenocarcinoma (LUAD), is relatively poor. Mitochondrial homeostasis depends to a great extent on the coordination between mitophagy and mitochondrial biogenesis, the deregulation of which causes various human diseases, including cancer. There is accumulating evidence that long noncoding RNAs (lncRNAs) are critical in predicting the prognosis and immune response in carcinoma. Therefore, it is critical to discern lncRNAs related to mitochondrial homeostasis in LUAD patients. In this study, we identified mitochondrial homeostasis–related lncRNAs (MHRlncRNAs) by coexpression analysis. In order to construct a prognostic signature composed of three MHRlncRNAs, univariate and multivariate Cox regression analyses were performed. Kaplan–Meier analysis, stratification analysis, principal component analysis (PCA), receiver operating characteristic (ROC) curve, gene set enrichment analysis (GSEA), and nomogram were applied to evaluate and optimize the risk model. Subsequently, we identified the mitochondrial homeostasis–related lncRNA signature (MHLncSig) as an independent predictive factor of prognosis. Based on the LUAD subtypes regrouped by this risk model, we further investigated the underlying tumor microenvironment, tumor mutation burden, and immune landscape behind different risk groups. Likewise, individualized immunotherapeutic strategies and candidate compounds were screened to aim at different risk subtypes of LUAD patients. Finally, we validated the expression trends of lncRNAs included in the risk model using quantitative real-time polymerase chain reaction (qRT-PCR) assays. The established MHLncSig may be a promising tool for predicting the prognosis and guiding individualized treatment in LUAD.
Collapse
Affiliation(s)
- Bo Peng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Lou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chen Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lei Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Huawei Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tong Lu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruisi Na
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ran Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tong Xin
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lingqi Yao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Henghui Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Kaiyu Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- *Correspondence: Xin Liu, ; Linyou Zhang,
| | - Linyou Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xin Liu, ; Linyou Zhang,
| |
Collapse
|
7
|
Wu Q, Tsai HI, Zhu H, Wang D. The Entanglement between Mitochondrial DNA and Tumor Metastasis. Cancers (Basel) 2022; 14:cancers14081862. [PMID: 35454769 PMCID: PMC9028275 DOI: 10.3390/cancers14081862] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Mitochondrial dysfunction is one of the main features of cancer cells. As genetic material in mitochondria, mitochondrial DNA (mtDNA) variations and dysregulation of mitochondria-encoded genes have been shown to correlate with survival outcomes in cancer patients. Cancer metastasis is often a major cause of treatment failure, which is a multi-step cascade process. With the development of gene sequencing and in vivo modeling technology, the role of mtDNA in cancer metastasis has been continuously explored. Our review systematically provides a summary of the multiple roles of mtDNA in cancer metastasis and presents the broad prospects for mtDNA in cancer prediction and therapy. Abstract Mitochondrial DNA, the genetic material in mitochondria, encodes essential oxidative phosphorylation proteins and plays an important role in mitochondrial respiration and energy transfer. With the development of genome sequencing and the emergence of novel in vivo modeling techniques, the role of mtDNA in cancer biology is gaining more attention. Abnormalities of mtDNA result in not only mitochondrial dysfunction of the the cancer cells and malignant behaviors, but regulation of the tumor microenvironment, which becomes more aggressive. Here, we review the recent progress in the regulation of cancer metastasis using mtDNA and the underlying mechanisms, which may identify opportunities for finding novel cancer prediction and therapeutic targets.
Collapse
Affiliation(s)
- Qiwei Wu
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Hsiang-i Tsai
- Laboratory of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Haitao Zhu
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
- Laboratory of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
- Correspondence: (H.Z.); (D.W.); Tel.: +86-138-6139-0259 (D.W.)
| | - Dongqing Wang
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
- Correspondence: (H.Z.); (D.W.); Tel.: +86-138-6139-0259 (D.W.)
| |
Collapse
|
8
|
Guo Y, Tsai HI, Zhang L, Zhu H. Mitochondrial DNA on Tumor-Associated Macrophages Polarization and Immunity. Cancers (Basel) 2022; 14:1452. [PMID: 35326602 PMCID: PMC8946090 DOI: 10.3390/cancers14061452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 12/04/2022] Open
Abstract
As the richest immune cells in most tumor microenvironments (TMEs), tumor-associated macrophages (TAMs) play an important role in tumor development and treatment sensitivity. The phenotypes and functions of TAMs vary according to their sources and tumor progression. Different TAM phenotypes display distinct behaviors in terms of tumor immunity and are regulated by intracellular and exogenous molecules. Additionally, dysfunctional and oxidatively stressed mitochondrial-derived mitochondrial DNA (mtDNA) plays an important role in remodeling the phenotypes and functions of TAMs. This article reviews the interactions between mtDNA and TAMs in the TME and further discusses the influence of their performance on tumor genesis and development.
Collapse
Affiliation(s)
- Yaxin Guo
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Hsiang-i Tsai
- Laboratory of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Lirong Zhang
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Haitao Zhu
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
- Laboratory of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| |
Collapse
|
9
|
Sourty B, Dardaud LM, Bris C, Desquiret-Dumas V, Boisselier B, Basset L, Figarella-Branger D, Morel A, Sanson M, Procaccio V, Rousseau A. Mitochondrial DNA copy number as a prognostic marker is age-dependent in adult glioblastoma. Neurooncol Adv 2022; 4:vdab191. [PMID: 35118384 PMCID: PMC8807107 DOI: 10.1093/noajnl/vdab191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common and aggressive form of glioma. GBM frequently displays chromosome (chr) 7 gain, chr 10 loss and/or EGFR amplification (chr7+/chr10-/EGFRamp). Overall survival (OS) is 15 months after treatment. In young adults, IDH1/2 mutations are associated with longer survival. In children, histone H3 mutations portend a dismal prognosis. Novel reliable prognostic markers are needed in GBM. We assessed the prognostic value of mitochondrial DNA (mtDNA) copy number in adult GBM. METHODS mtDNA copy number was assessed using real-time quantitative PCR in 232 primary GBM. Methylation of POLG and TFAM genes, involved in mtDNA replication, was assessed by bisulfite-pyrosequencing in 44 and 51 cases, respectively. RESULTS Median age at diagnosis was 56.6 years-old and median OS, 13.3 months. 153/232 GBM (66 %) displayed chr7+/chr10-/EGFRamp, 23 (9.9 %) IDH1/2 mutation, 3 (1.3 %) H3 mutation and 53 (22.8 %) no key genetic alterations. GBM were divided into two groups, "Low" (n = 116) and "High" (n = 116), according to the median mtDNA/nuclear DNA ratio (237.7). There was no significant difference in OS between the two groups. By dividing the whole cohort according to the median age at diagnosis, OS was longer in the "High" vs "Low" subgroup (27.3 vs 15 months, P = .0203) in young adult GBM (n = 117) and longer in the "Low" vs "High" subgroup (14.5 vs 10.2 months, P = .0116) in older adult GBM (n = 115). POLG was highly methylated, whereas TFAM remained unmethylated. CONCLUSION mtDNA copy number may be a novel prognostic biomarker in GBM, its impact depending on age.
Collapse
Affiliation(s)
- Baptiste Sourty
- Department of Pathology, University Hospital of Angers, Angers, France
| | | | - Céline Bris
- Department of Genetics, University Hospital of Angers and Angers University, INSERM1083, CNRS6015, MITOVASC, Angers, France
| | - Valérie Desquiret-Dumas
- Department of Genetics, University Hospital of Angers and Angers University, INSERM1083, CNRS6015, MITOVASC, Angers, France
| | - Blandine Boisselier
- Department of Pathology, University Hospital of Angers, Angers, France
- Center for Research in Cancerology and Immunology Nantes/Angers, INSERM, University of Nantes, University of Angers, Angers, France
| | - Laëtitia Basset
- Department of Pathology, University Hospital of Angers, Angers, France
- Center for Research in Cancerology and Immunology Nantes/Angers, INSERM, University of Nantes, University of Angers, Angers, France
| | - Dominique Figarella-Branger
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Alain Morel
- Institut de Cancérologie de l'Ouest - Paul Papin, Angers, France
| | - Marc Sanson
- Sorbonne University UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, F-75013, Groupe Hospitalier Pitié-Salpêtrière, Neurology Department 2, Paris, France
| | - Vincent Procaccio
- Department of Genetics, University Hospital of Angers and Angers University, INSERM1083, CNRS6015, MITOVASC, Angers, France
| | - Audrey Rousseau
- Department of Pathology, University Hospital of Angers, Angers, France
- Center for Research in Cancerology and Immunology Nantes/Angers, INSERM, University of Nantes, University of Angers, Angers, France
| |
Collapse
|
10
|
Jovanovic VM, Sarfert M, Reyna-Blanco CS, Indrischek H, Valdivia DI, Shelest E, Nowick K. Positive Selection in Gene Regulatory Factors Suggests Adaptive Pleiotropic Changes During Human Evolution. Front Genet 2021; 12:662239. [PMID: 34079582 PMCID: PMC8166252 DOI: 10.3389/fgene.2021.662239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/19/2021] [Indexed: 01/09/2023] Open
Abstract
Gene regulatory factors (GRFs), such as transcription factors, co-factors and histone-modifying enzymes, play many important roles in modifying gene expression in biological processes. They have also been proposed to underlie speciation and adaptation. To investigate potential contributions of GRFs to primate evolution, we analyzed GRF genes in 27 publicly available primate genomes. Genes coding for zinc finger (ZNF) proteins, especially ZNFs with a Krüppel-associated box (KRAB) domain were the most abundant TFs in all genomes. Gene numbers per TF family differed between all species. To detect signs of positive selection in GRF genes we investigated more than 3,000 human GRFs with their more than 70,000 orthologs in 26 non-human primates. We implemented two independent tests for positive selection, the branch-site-model of the PAML suite and aBSREL of the HyPhy suite, focusing on the human and great ape branch. Our workflow included rigorous procedures to reduce the number of false positives: excluding distantly similar orthologs, manual corrections of alignments, and considering only genes and sites detected by both tests for positive selection. Furthermore, we verified the candidate sites for selection by investigating their variation within human and non-human great ape population data. In order to approximately assign a date to positively selected sites in the human lineage, we analyzed archaic human genomes. Our work revealed with high confidence five GRFs that have been positively selected on the human lineage and one GRF that has been positively selected on the great ape lineage. These GRFs are scattered on different chromosomes and have been previously linked to diverse functions. For some of them a role in speciation and/or adaptation can be proposed based on the expression pattern or association with human diseases, but it seems that they all contributed independently to human evolution. Four of the positively selected GRFs are KRAB-ZNF proteins, that induce changes in target genes co-expression and/or through arms race with transposable elements. Since each positively selected GRF contains several sites with evidence for positive selection, we suggest that these GRFs participated pleiotropically to phenotypic adaptations in humans.
Collapse
Affiliation(s)
- Vladimir M Jovanovic
- Human Biology and Primate Evolution, Freie Universität Berlin, Berlin, Germany.,Bioinformatics Solution Center, Freie Universität Berlin, Berlin, Germany
| | - Melanie Sarfert
- Human Biology and Primate Evolution, Freie Universität Berlin, Berlin, Germany
| | - Carlos S Reyna-Blanco
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Henrike Indrischek
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany
| | - Dulce I Valdivia
- Evolutionary Genomics Laboratory and Genome Topology and Regulation Laboratory, Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-Irapuato), Irapuato, Mexico
| | - Ekaterina Shelest
- Centre for Enzyme Innovation, University of Portsmouth, Portsmouth, United Kingdom
| | - Katja Nowick
- Human Biology and Primate Evolution, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
11
|
Shen H, Yu M, Tsoli M, Chang C, Joshi S, Liu J, Ryall S, Chornenkyy Y, Siddaway R, Hawkins C, Ziegler DS. Targeting reduced mitochondrial DNA quantity as a therapeutic approach in pediatric high-grade gliomas. Neuro Oncol 2021; 22:139-151. [PMID: 31398252 PMCID: PMC6954438 DOI: 10.1093/neuonc/noz140] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/05/2019] [Indexed: 01/14/2023] Open
Abstract
Background Despite increased understanding of the genetic events underlying pediatric high-grade gliomas (pHGGs), therapeutic progress is static, with poor understanding of nongenomic drivers. We therefore investigated the role of alterations in mitochondrial function and developed an effective combination therapy against pHGGs. Methods Mitochondrial DNA (mtDNA) copy number was measured in a cohort of 60 pHGGs. The implication of mtDNA alteration in pHGG tumorigenesis was studied and followed by an efficacy investigation using patient-derived cultures and orthotopic xenografts. Results Average mtDNA content was significantly lower in tumors versus normal brains. Decreasing mtDNA copy number in normal human astrocytes led to a markedly increased tumorigenicity in vivo. Depletion of mtDNA in pHGG cells promoted cell migration and invasion and therapeutic resistance. Shifting glucose metabolism from glycolysis to mitochondrial oxidation with the adenosine monophosphate–activated protein kinase activator AICAR (5-aminoimidazole-4-carboxamide ribonucleotide) or the pyruvate dehydrogenase kinase inhibitor dichloroacetate (DCA) significantly inhibited pHGG viability. Using DCA to shift glucose metabolism to mitochondrial oxidation and then metformin to simultaneously target mitochondrial function disrupted energy homeostasis of tumor cells, increasing DNA damage and apoptosis. The triple combination with radiation therapy, DCA and metformin led to a more potent therapeutic effect in vitro and in vivo. Conclusions Our results suggest metabolic alterations as an onco-requisite factor of pHGG tumorigenesis. Targeting reduced mtDNA quantity represents a promising therapeutic strategy for pHGG.
Collapse
Affiliation(s)
- Han Shen
- Children’s Cancer Institute, University of New South Wales, Sydney, New South Wales, Australia
- Current affiliations: Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Man Yu
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Maria Tsoli
- Children’s Cancer Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Cecilia Chang
- Children’s Cancer Institute, University of New South Wales, Sydney, New South Wales, Australia
- Current affiliations: Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Swapna Joshi
- Children’s Cancer Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Jie Liu
- Children’s Cancer Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Scott Ryall
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Yevgen Chornenkyy
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Robert Siddaway
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Division of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Corresponding Authors: Prof Cynthia Hawkins, Division of Pathology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada (); A/Prof David Ziegler, Kids Cancer Centre, Sydney Children’s Hospital, High St, Randwick, NSW, 2031, Australia ()
| | - David S Ziegler
- Children’s Cancer Institute, University of New South Wales, Sydney, New South Wales, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, New South Wales, Australia
- Corresponding Authors: Prof Cynthia Hawkins, Division of Pathology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada (); A/Prof David Ziegler, Kids Cancer Centre, Sydney Children’s Hospital, High St, Randwick, NSW, 2031, Australia ()
| |
Collapse
|
12
|
Sravya P, Nimbalkar VP, Kanuri NN, Sugur H, Verma BK, Kundu P, Rao S, Uday Krishna AS, Somanna S, Kondaiah P, Arivazhagan A, Santosh V. Low mitochondrial DNA copy number is associated with poor prognosis and treatment resistance in glioblastoma. Mitochondrion 2020; 55:154-163. [PMID: 33045388 DOI: 10.1016/j.mito.2020.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/27/2020] [Accepted: 10/05/2020] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Mitochondrial DNA (mtDNA) content in several solid tumors was found to be lower than in their normal counterparts. However, there is paucity of literature on the clinical significance of mtDNA content in glioblastoma and its effect on treatment response. Hence, we studied the prognostic significance of mtDNA content in glioblastoma tumor tissue and the effect of mtDNA depletion in glioblastoma cells on response to treatment. MATERIALS AND METHODS 130 newly diagnosed glioblastomas, 32 paired newly diagnosed and recurrent glioblastomas and 35 non-neoplastic brain tissues were utilized for the study. mtDNA content in the patient tumor tissue was assessed and compared with known biomarkers and patient survival. mtDNA was chemically depleted in malignant glioma cell lines, U87, LN229. The biology and treatment response of parent and depleted cells were compared. RESULTS Lower range of mtDNA copy number in glioblastoma was associated with poor overall survival (p = 0.01), progression free survival (p = 0.04) and also with wild type IDH (p = 0.02). In recurrent glioblastoma, mtDNA copy number was higher than newly diagnosed glioblastoma in the patients who received RT (p = 0.01). mtDNA depleted U87 and LN229 cells showed higher survival fraction post radiation exposure when compared to parent lines. The IC50 of TMZ was also higher for mtDNA depleted U87 and LN229 cells. The depleted cells formed more neurospheres than their parent counterparts, thus showing increased stemness of mtDNA depleted cells. CONCLUSION Low mtDNA copy number in glioblastoma is associated with poor patient survival and treatment resistance in cell lines possibly by impacting stemness of the glioblastoma cells.
Collapse
Affiliation(s)
- Palavalasa Sravya
- Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Vidya Prasad Nimbalkar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Nandaki Nag Kanuri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Harsha Sugur
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Brijesh Kumar Verma
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Paramita Kundu
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Shilpa Rao
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - A S Uday Krishna
- Department of Radiation Oncology, KIDWAI Memorial Institute of Oncology, Bengaluru, India
| | - Sampath Somanna
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Paturu Kondaiah
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Arimappamagan Arivazhagan
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bengaluru, India.
| | - Vani Santosh
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India.
| |
Collapse
|
13
|
Vozáriková V, Kunová N, Bauer JA, Frankovský J, Kotrasová V, Procházková K, Džugasová V, Kutejová E, Pevala V, Nosek J, Tomáška Ľ. Mitochondrial HMG-Box Containing Proteins: From Biochemical Properties to the Roles in Human Diseases. Biomolecules 2020; 10:biom10081193. [PMID: 32824374 PMCID: PMC7463775 DOI: 10.3390/biom10081193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial DNA (mtDNA) molecules are packaged into compact nucleo-protein structures called mitochondrial nucleoids (mt-nucleoids). Their compaction is mediated in part by high-mobility group (HMG)-box containing proteins (mtHMG proteins), whose additional roles include the protection of mtDNA against damage, the regulation of gene expression and the segregation of mtDNA into daughter organelles. The molecular mechanisms underlying these functions have been identified through extensive biochemical, genetic, and structural studies, particularly on yeast (Abf2) and mammalian mitochondrial transcription factor A (TFAM) mtHMG proteins. The aim of this paper is to provide a comprehensive overview of the biochemical properties of mtHMG proteins, the structural basis of their interaction with DNA, their roles in various mtDNA transactions, and the evolutionary trajectories leading to their rapid diversification. We also describe how defects in the maintenance of mtDNA in cells with dysfunctional mtHMG proteins lead to different pathologies at the cellular and organismal level.
Collapse
Affiliation(s)
- Veronika Vozáriková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Nina Kunová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Jacob A. Bauer
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Ján Frankovský
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Veronika Kotrasová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Katarína Procházková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Vladimíra Džugasová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Eva Kutejová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Vladimír Pevala
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina CH-1, 842 15 Bratislava, Slovakia;
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
- Correspondence: ; Tel.: +421-2-90149-433
| |
Collapse
|
14
|
Zhou X, Li R, Chen R, Liu J. Altered Mitochondrial Dynamics, Biogenesis, and Functions in the Paclitaxel-Resistant Lung Adenocarcinoma Cell Line A549/Taxol. Med Sci Monit 2020; 26:e918216. [PMID: 32129321 PMCID: PMC7071736 DOI: 10.12659/msm.918216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chemoresistance is a primary hindrance for current cancer treatments. The influence of abnormal mitochondria in chemotherapy resistance is not well known. To explore the correlation between mitochondria and acquired chemoresistance, this work studied alterations in mitochondrial dynamics, biogenesis, and functions for paclitaxel-resistant cancer cell line A549/Taxol and its parental line A549. MATERIAL AND METHODS Mitochondrial morphology was observed by transmission electron microscopy and confocal microscopy. We measured the mitochondrial mass and mitochondrial membrane potential using fluorescent dyes. The glucose metabolic profile and ATP (adenosine triphosphate) content were determined by bioluminescent cell assays. Seahorse bio-energy analyzer XF24 was used to detect the mitochondrial respiratory function. The expressions of mitochondrial dynamics and biogenesis related genes were quantified using real-time polymerase chain reaction. RESULTS We observed fusion morphology of the mitochondrial network in A549/Taxol cells, with upregulation of fusion genes (Mfn1 and Mfn2) and downregulation of fission gene Fis1. In A549/Taxol cells, mitochondrial mass showed a significant decrease, while the mitochondrial biogenesis pathway was strongly activated. Despite the decreased mitochondrial membrane potential, the capability for mitochondrial respiration was not impaired in A549/Taxol cells. CONCLUSIONS Our study revealed a series changes of mitochondrial characteristics in paclitaxel-resistant cells. Mfn1 and Mfn2 and PGC-1alpha increased, while Fis1 expression and mitochondrial oxidative phosphorylation decreased in A549/Taxol cell lines. These changes to mitochondrial fusion, fission, and biological function contributed to the occurrence of paclitaxel resistance in tumor cells which induced paclitaxel resistance.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (mainland)
| | - Rui Li
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (mainland)
| | - Ruohua Chen
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (mainland)
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (mainland)
| |
Collapse
|
15
|
Liu X, Shen S, Wu P, Li F, Liu X, Wang C, Gong Q, Wu J, Yao X, Zhang H, Shi Y. Structural insights into dimethylation of 12S rRNA by TFB1M: indispensable role in translation of mitochondrial genes and mitochondrial function. Nucleic Acids Res 2019; 47:7648-7665. [PMID: 31251801 PMCID: PMC6698656 DOI: 10.1093/nar/gkz505] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/16/2019] [Accepted: 06/12/2019] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are essential molecular machinery for the maintenance of cellular energy supply by the oxidative phosphorylation system (OXPHOS). Mitochondrial transcription factor B1 (TFB1M) is a dimethyltransferase that maintains mitochondrial homeostasis by catalyzing dimethylation of two adjacent adenines located in helix45 (h45) of 12S rRNA. This m62A modification is indispensable for the assembly and maturation of human mitochondrial ribosomes. However, both the mechanism of TFB1M catalysis and the precise function of TFB1M in mitochondrial homeostasis are unknown. Here we report the crystal structures of a ternary complex of human (hs) TFB1M–h45–S-adenosyl-methionine and a binary complex hsTFB1M–h45. The structures revealed a distinct mode of hsTFB1M interaction with its rRNA substrate and with the initial enzymatic state involved in m62A modification. The suppression of hsTFB1M protein level or the overexpression of inactive hsTFB1M mutants resulted in decreased ATP production and reduced expression of components of the mitochondrial OXPHOS without affecting transcription of the corresponding genes and their localization to the mitochondria. Therefore, hsTFB1M regulated the translation of mitochondrial genes rather than their transcription via m62A modification in h45.
Collapse
Affiliation(s)
- Xiaodan Liu
- School of Life Sciences, University of Science & Technology of China, Hefei 230027, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science & Technology of China, Hefei 230027, China
| | - Shengqi Shen
- School of Life Sciences, University of Science & Technology of China, Hefei 230027, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science & Technology of China, Hefei 230027, China
| | - Pengzhi Wu
- School of Life Sciences, University of Science & Technology of China, Hefei 230027, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science & Technology of China, Hefei 230027, China
| | - Fudong Li
- School of Life Sciences, University of Science & Technology of China, Hefei 230027, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science & Technology of China, Hefei 230027, China
| | - Xing Liu
- School of Life Sciences, University of Science & Technology of China, Hefei 230027, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science & Technology of China, Hefei 230027, China
| | - Chongyuan Wang
- School of Life Sciences, University of Science & Technology of China, Hefei 230027, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science & Technology of China, Hefei 230027, China
| | - Qingguo Gong
- School of Life Sciences, University of Science & Technology of China, Hefei 230027, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science & Technology of China, Hefei 230027, China
| | - Jihui Wu
- School of Life Sciences, University of Science & Technology of China, Hefei 230027, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science & Technology of China, Hefei 230027, China
| | - Xuebiao Yao
- School of Life Sciences, University of Science & Technology of China, Hefei 230027, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science & Technology of China, Hefei 230027, China
| | - Huafeng Zhang
- School of Life Sciences, University of Science & Technology of China, Hefei 230027, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science & Technology of China, Hefei 230027, China
| | - Yunyu Shi
- School of Life Sciences, University of Science & Technology of China, Hefei 230027, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science & Technology of China, Hefei 230027, China
| |
Collapse
|
16
|
Wu S, Fahmy N, Alachkar H. The mitochondrial transcription machinery genes are upregulated in acute myeloid leukemia and associated with poor clinical outcome. Metabol Open 2019; 2:100009. [PMID: 32812906 PMCID: PMC7424792 DOI: 10.1016/j.metop.2019.100009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/12/2019] [Accepted: 04/25/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is characterized by rapid growth of abnormal blasts that overcrowd normal hematopoiesis. Defective mitochondrial biogenesis has been implicated in AML, which we believe is partly due to the deregulation of the mitochondrial transcription machinery (MTM) genes influencing the expression of mitochondrial genes. Here, we aim to characterize MTM gene upregulation in AML. METHODS Molecular and clinical patient data were retrieved from several public AML datasets. Kaplan-Meier survival curves were used to compare overall survival between patients, while Mann-Whitney U's non-parametric and Fisher's exact test were used for comparing continuous and categorical variables, respectively. RESULTS The MTM genes TFB1M, TFB2M, TFAM, and POLRMT were upregulated in patients with AML compared with healthy donors. Upregulation of one or more of these genes was associated with higher percentage of peripheral blood blasts (P = 0.002), normal cytogenetic status (P = 0.027) and NPM1 mutations (P = 0.009). Additionally, patients with high expression of MTM genes (Z ≥ 1) had shorter median overall survival compared with low MTM gene expression (Z < 1) (months: 11.8 vs 24.1, P = 0.027; multivariate survival analysis Cox Proportional Hazards model, HR: 1.82 (1.22-2.70); p-value: 0.003). CONCLUSION The mitochondrial transcriptional machinery is upregulated and associated with worse clinical outcome in patients with AML and may present a viable therapeutic target.
Collapse
Affiliation(s)
- Sharon Wu
- USC School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Nicole Fahmy
- USC School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Houda Alachkar
- USC School of Pharmacy, University of Southern California, Los Angeles, CA, USA
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
17
|
Franco DG, Moretti IF, Marie SKN. Mitochondria Transcription Factor A: A Putative Target for the Effect of Melatonin on U87MG Malignant Glioma Cell Line. Molecules 2018; 23:molecules23051129. [PMID: 29747444 PMCID: PMC6099566 DOI: 10.3390/molecules23051129] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/30/2022] Open
Abstract
The disruption of mitochondrial activity has been associated with cancer development because it contributes to regulating apoptosis and is the main source of reactive oxygen species (ROS) production. Mitochondrial transcription factor A (TFAM) is a protein that maintains mitochondrial DNA (mtDNA) integrity, and alterations in its expression are associated with mitochondrial damage and cancer development. In addition, studies have shown that mitochondria are a known target of melatonin, the pineal gland hormone that plays an important anti-tumorigenic role. Thus, we hypothesized that melatonin decreases the expression of TFAM (RNA and protein) in the human glioblastoma cell line U87MG, which disrupts mtDNA expression and results in cell death due to increased ROS production and mitochondrial damage. Our results confirm the hypothesis, and also show that melatonin reduced the expression of other mitochondrial transcription factors mRNA (TFB1M and TFB2M) and interfered with mtDNA transcription. Moreover, melatonin delayed cell cycle progression and potentiated the reduction of cell survival due to treatment with the chemotherapeutic agent temozolomide. In conclusion, elucidating the effect of melatonin on TFAM expression should help to understand the signaling pathways involved in glioblastoma progression, and melatonin could be potentially applied in the treatment of this type of brain tumor.
Collapse
Affiliation(s)
- Daiane G Franco
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP 01246903, Brazil.
| | - Isabele F Moretti
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP 01246903, Brazil.
| | - Suely K N Marie
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP 01246903, Brazil.
| |
Collapse
|
18
|
Wen S, Gao J, Zhang L, Zhou H, Fang D, Feng S. p53 increase mitochondrial copy number via up-regulation of mitochondrial transcription factor A in colorectal cancer. Oncotarget 2018; 7:75981-75995. [PMID: 27732955 PMCID: PMC5342792 DOI: 10.18632/oncotarget.12514] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/27/2016] [Indexed: 02/05/2023] Open
Abstract
In colorectal cancer, no study has been carried out discovering the relationship among p53, mitochondrial transcription factor A (TFAM) expression and change of mitochondrial DNA (mtDNA) copy number. In our study, co-expression of p53 and TFAM was observed in colon adenocarcinoma tissues, paracancerous tissues and 9 colorectal cancer cell lines. Then, a significant linear correlation was established between either p53 or TFAM expression and advanced TNM stage, positive lymph nodes and low 5-year survival rate in patients with colon adenocarcinoma. Additionally, advanced TNM stage, large tumor burden, presence of distant metastasis, and high TFAM expression were significantly related to poor overall 5-years survival. Moreover, alteration of p53 expression could change TFAM expression but TFAM could not influence p53 expression, and p53 could enhance TFAM expression via binding to TFAM promoter. While, both of p53 and TFAM expression could incrase mtDNA copy number in vitro. In conclusions, p53 might incrase mtDNA copy number through its regulation on TFAM expression via TFAMpromoter.
Collapse
Affiliation(s)
- Shilei Wen
- Department of Human Anatomy, School of Preclinical and Forensic Medicine, West China Medicine College, Sichuan University, Chengdu 610041, China
| | - Jinhang Gao
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linhao Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongying Zhou
- Department of Human Anatomy, School of Preclinical and Forensic Medicine, West China Medicine College, Sichuan University, Chengdu 610041, China
| | - Dingzhi Fang
- Department of Biochemistry and Molecular Biology, School of Preclinical and Forensic Medicine, West China Medicine College, Sichuan University, Chengdu 610041, China
| | - Shi Feng
- Department of Human Anatomy, School of Preclinical and Forensic Medicine, West China Medicine College, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Abstract
Mitochondrial dysfunction underlines a multitude of pathologies; however, studies are scarce that rescue the mitochondria for cellular resuscitation. Exploration into the protective role of mitochondrial transcription factor A (TFAM) and its mitochondrial functions respective to cardiomyocyte death are in need of further investigation. TFAM is a gene regulator that acts to mitigate calcium mishandling and ROS production by wrapping around mitochondrial DNA (mtDNA) complexes. TFAM's regulatory functions over serca2a, NFAT, and Lon protease contribute to cardiomyocyte stability. Calcium- and ROS-dependent proteases, calpains, and matrix metalloproteinases (MMPs) are abundantly found upregulated in the failing heart. TFAM's regulatory role over ROS production and calcium mishandling leads to further investigation into the cardioprotective role of exogenous TFAM. In an effort to restabilize physiological and contractile activity of cardiomyocytes in HF models, we propose that TFAM-packed exosomes (TFAM-PE) will act therapeutically by mitigating mitochondrial dysfunction. Notably, this is the first mention of exosomal delivery of transcription factors in the literature. Here we elucidate the role of TFAM in mitochondrial rescue and focus on its therapeutic potential.
Collapse
Affiliation(s)
- George H Kunkel
- Department of Physiology and Biophysics, Health Sciences Centre, 1216, School of Medicine, University of Louisville, 500, South Preston Street, Louisville, KY, 40202, USA
| | - Pankaj Chaturvedi
- Department of Physiology and Biophysics, Health Sciences Centre, 1216, School of Medicine, University of Louisville, 500, South Preston Street, Louisville, KY, 40202, USA.
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, Health Sciences Centre, 1216, School of Medicine, University of Louisville, 500, South Preston Street, Louisville, KY, 40202, USA
| |
Collapse
|
20
|
Qiao L, Ru G, Mao Z, Wang C, Nie Z, Li Q, Huang-Yang Y, Zhu L, Liang X, Yu J, Jiang P. Mitochondrial DNA depletion, mitochondrial mutations and high TFAM expression in hepatocellular carcinoma. Oncotarget 2017; 8:84373-84383. [PMID: 29137431 PMCID: PMC5663603 DOI: 10.18632/oncotarget.21033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/17/2017] [Indexed: 12/16/2022] Open
Abstract
We investigated the role of mitochondrial genetic alterations in hepatocellular carcinoma by directly comparing the mitochondrial genomes of 86 matched pairs of HCC and non-tumor liver samples. Substitutions in 637 mtDNA sites were detected, comprising 89.80% transitions and 6.60% transversions. Forty-six somatic variants, including 15 novel mutations, were identified in 40.70% of tumor tissues. Of those, 21 were located in the non-coding region and 25 in the protein-coding region. Twenty-two somatic nonsynonymous changes were identified as putative pathogenic variants, including 4 truncating mutations produced by three frameshifts (MT-ATP6 8628 insC; MT-ND5 13475 T-del, and MT-CYB 14984 insA) and 1 nonsense mutation in MT-CO3 9253 G>A. Among the somatic variants, only m.13676 A>G (MT-ND5), found in only 1 tumor, was heteroplasmic. Both inherited and somatic variants were predominately located in the D-loop region and the MT-ND5 gene. Tumor/non-tumor paired analysis showed that 69% of HCC samples contained significantly reduced mtDNA, compared with 49.0% of non-tumor counterparts. In 81.40% of HCC samples, mitochondrial transcription factor A (TFAM) was enriched in tumor cells but not in adjacent non-tumor cells. Neither mtDNA depletion nor TFAM overexpression correlated with the degree of cell differentiation, though TFAM expression correlated with tumor size.
Collapse
Affiliation(s)
- Lihua Qiao
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guoqing Ru
- Department of Pathology, The Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Zhuochao Mao
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Surgical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chenghui Wang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhipeng Nie
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiang Li
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yiyi Huang-Yang
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ling Zhu
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaoyang Liang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jialing Yu
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,School of Public Health, Zhejiang University, Hangzhou, China
| | - Pingping Jiang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Long X, Wang X, Chen Y, Guo X, Zhou F, Fan Y, Ge N, Guo M, Zhang Z, Dong G. Polymorphisms in POLG were associated with the prognosis and mtDNA content in hepatocellular carcinoma patients. Bull Cancer 2017; 104:500-507. [PMID: 28457473 DOI: 10.1016/j.bulcan.2017.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND POLG is a gene that codes for the catalytic subunit of the mitochondrial DNA polymerase, which is involved in the replication of mitochondrial DNA. Genetic variants in mitochondrial DNA polymerase-γ (POLG) have been associated with several malignancies. However, as an important metabolic tissue, association between genetic polymorphisms of POLG and the prognosis and mitochondrial DNA (mtDNA) content in hepatocellular carcinoma (HCC) remains unknown. Here we investigated the association between in POLG with the prognosis and mitochondrial DNA (mtDNA) content in hepatocellular carcinoma (HCC). METHODS Three nucleotide polymorphisms (SNPs) of rs1061316, rs2247233 and rs758130 in POLG were examined in 416 patients from two cohorts undergoing transcatheter arterial chemoembolization treatment. Leukocyte mtDNA content from 216 patients in cohort 2 was measured using a real-time PCR-based method. The association of SNPs with prognosis and of mtDNA content of patients was analyzed. RESULTS The rs758130 in POLG gene was significantly associated with the prognosis of patients in a dose-dependent manner. Moreover, GG genotype in rs1061316 showed significantly high mtDNA content, an indicator of better prognosis. CONCLUSIONS Our study for the first time demonstrates that rs1061316 and rs758130 in POLG is associated with the prognosis and leukocyte mtDNA content in HCC patients.
Collapse
Affiliation(s)
- Xiaoyu Long
- Fourth Military Medical University, Experimental Teaching Center of Basic Medicine, State Key Laboratory of Cancer Biology, Xi'an, China
| | - Xiaoyan Wang
- Fourth Military Medical University, Experimental Teaching Center of Basic Medicine, State Key Laboratory of Cancer Biology, Xi'an, China; Shaanxi Cancer Hospital, Department of Breast Cancer Center, Xi'an, China
| | - Yibing Chen
- Fourth Military Medical University, Experimental Teaching Center of Basic Medicine, State Key Laboratory of Cancer Biology, Xi'an, China
| | - Xu Guo
- Fourth Military Medical University, Experimental Teaching Center of Basic Medicine, State Key Laboratory of Cancer Biology, Xi'an, China
| | - Feng Zhou
- Fourth Military Medical University, Tangdu Hospital, Department of General Surgery, Xi'an, China; Xuzhou Medical University, Huaihai Hospital, Department of General Surgery, Xuzhou, Jiangsu, China
| | - Yongguo Fan
- Fourth Military Medical University, Tangdu Hospital, Department of General Surgery, Xi'an, China
| | - Naijian Ge
- Second Military Medical University, Eastern Hepatobiliary Surgery Hospital, Department of Radioactive Intervention, Shanghai, China
| | - Mei Guo
- PLA 451 Hospital, Xi'an, China
| | - Zhaohui Zhang
- Xuzhou Medical University, Huaihai Hospital, Department of General Surgery, Xuzhou, Jiangsu, China.
| | - Guanglong Dong
- The General Hospital of PLA, Department of General Surgery, Beijing, China.
| |
Collapse
|
22
|
Srinivasan S, Guha M, Kashina A, Avadhani NG. Mitochondrial dysfunction and mitochondrial dynamics-The cancer connection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:602-614. [PMID: 28104365 DOI: 10.1016/j.bbabio.2017.01.004] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction is a hallmark of many diseases. The retrograde signaling initiated by dysfunctional mitochondria can bring about global changes in gene expression that alters cell morphology and function. Typically, this is attributed to disruption of important mitochondrial functions, such as ATP production, integration of metabolism, calcium homeostasis and regulation of apoptosis. Recent studies showed that in addition to these factors, mitochondrial dynamics might play an important role in stress signaling. Normal mitochondria are highly dynamic organelles whose size, shape and network are controlled by cell physiology. Defective mitochondrial dynamics play important roles in human diseases. Mitochondrial DNA defects and defective mitochondrial function have been reported in many cancers. Recent studies show that increased mitochondrial fission is a pro-tumorigenic phenotype. In this paper, we have explored the current understanding of the role of mitochondrial dynamics in pathologies. We present new data on mitochondrial dynamics and dysfunction to illustrate a causal link between mitochondrial DNA defects, excessive fission, mitochondrial retrograde signaling and cancer progression. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.
Collapse
Affiliation(s)
- Satish Srinivasan
- The Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, #189E, Philadelphia, PA 19104, United States
| | - Manti Guha
- The Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, #189E, Philadelphia, PA 19104, United States
| | - Anna Kashina
- The Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, #189E, Philadelphia, PA 19104, United States
| | - Narayan G Avadhani
- The Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, #189E, Philadelphia, PA 19104, United States.
| |
Collapse
|
23
|
Nashine S, Chwa M, Kazemian M, Thaker K, Lu S, Nesburn A, Kuppermann BD, Kenney MC. Differential Expression of Complement Markers in Normal and AMD Transmitochondrial Cybrids. PLoS One 2016; 11:e0159828. [PMID: 27486856 PMCID: PMC4972370 DOI: 10.1371/journal.pone.0159828] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 07/09/2016] [Indexed: 12/19/2022] Open
Abstract
Purpose Variations in mitochondrial DNA (mtDNA) and abnormalities in the complement pathways have been implicated in the pathogenesis of age-related macular degeneration (AMD). This study was designed to determine the effects of mtDNA from AMD subjects on the complement pathway. Methods Transmitochondrial cybrids were prepared by fusing platelets from AMD and age-matched Normal subjects with Rho0 (lacking mtDNA) human ARPE-19 cells. Quantitative PCR and Western blotting were performed to examine gene and protein expression profiles, respectively, of complement markers in these cybrids. Bioenergetic profiles of Normal and AMD cybrids were examined using the Seahorse XF24 flux analyzer. Results Significant decreases in the gene and protein expression of complement inhibitors, along with significantly higher levels of complement activators, were found in AMD cybrids compared to Older-Normal cybrids. Seahorse flux data demonstrated that the bioenergetic profiles for Older-Normal and Older-AMD cybrid samples were similar to each other but were lower compared to Young-Normal cybrid samples. Conclusion In summary, since all cybrids had identical nuclei and differed only in mtDNA content, the observed changes in components of complement pathways can be attributed to mtDNA variations in the AMD subjects, suggesting that mitochondrial genome and retrograde signaling play critical roles in this disease. Furthermore, the similar bioenergetic profiles of AMD and Older-Normal cybrids indicate that the signaling between mitochondria and nuclei are probably not via a respiratory pathway.
Collapse
Affiliation(s)
- Sonali Nashine
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, United States of America
| | - Marilyn Chwa
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, United States of America
| | - Mina Kazemian
- College of Osteopathic Medicine, Touro University Nevada, Nevada, United States of America
| | - Kunal Thaker
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, United States of America
| | - Stephanie Lu
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, United States of America
- VA Medical Center Long Beach Hospital, Long Beach, California, United States of America
| | - Anthony Nesburn
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, United States of America
- Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Baruch D. Kuppermann
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, United States of America
| | - M. Cristina Kenney
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, United States of America
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Jiang HL, Sun HF, Gao SP, Li LD, Huang S, Hu X, Liu S, Wu J, Shao ZM, Jin W. SSBP1 Suppresses TGFβ-Driven Epithelial-to-Mesenchymal Transition and Metastasis in Triple-Negative Breast Cancer by Regulating Mitochondrial Retrograde Signaling. Cancer Res 2015; 76:952-64. [PMID: 26676758 DOI: 10.1158/0008-5472.can-15-1630] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/19/2015] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive tumor subtype lacking effective prognostic indicators or therapeutic targets. Mitochondrial function is dysregulated frequently in cancer cells to allow for adaptation to a harsh tumor microenvironment. Targeting mitochondrial biogenesis and bioenergetics is, therefore, an attractive therapeutic strategy. In this study, we performed quantitative proteomic analyses in human parental and metastatic breast cancer cell lines to identify mitochondrial proteins involved in TNBC metastasis. We found that single-strand DNA-binding protein 1 (SSBP1) was downregulated in highly metastatic breast cancer cells. Moreover, SSBP1 downregulation promoted TNBC cell metastasis in vitro and in vivo. Mechanistically, SSBP1 loss decreased mitochondrial DNA copy number, thereby potentiating calcineurin-mediated mitochondrial retrograde signaling that induced c-Rel/p50 nuclear localization, activated TGFβ promoter activity, and TGFβ-driven epithelial-to-mesenchymal transition. Low SSBP1 expression correlated with tumor progression and poor prognosis in patients. Collectively, our findings identified SSBP1 as a novel metastasis suppressor and elucidated the mechanisms by which dysregulated mitochondrial signaling contributes to metastatic potential, providing potential new prognostic indicators for patients with TNBC.
Collapse
Affiliation(s)
- Hong-Lin Jiang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - He-Fen Sun
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shui-Ping Gao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liang-Dong Li
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sheng Huang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Hu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sheng Liu
- Department of Breast Surgery and Pharmacology Laboratory of Traditional Chinese Medicine, Long Hua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiong Wu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Jin
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Masotti A, Celluzzi A, Petrini S, Bertini E, Zanni G, Compagnucci C. Aged iPSCs display an uncommon mitochondrial appearance and fail to undergo in vitro neurogenesis. Aging (Albany NY) 2015; 6:1094-108. [PMID: 25567319 PMCID: PMC4298368 DOI: 10.18632/aging.100708] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Reprogramming of human fibroblasts into induced pluripotent stem cells (iPSCs) leads to mitochondrial rejuvenation, making iPSCs a candidate model to study the mitochondrial biology during stemness and differentiation. At present, it is generally accepted that iPSCs can be maintained and propagated indefinitely in culture, but no specific studies have addressed this issue. In our study, we investigated features related to the 'biological age' of iPSCs, culturing and analyzing iPSCs kept for prolonged periods in vitro. We have demonstrated that aged iPSCs present an increased number of mitochondria per cell with an altered mitochondrial membrane potential and fail to properly undergo in vitro neurogenesis. In aged iPSCs we have also found an altered expression of genes relevant to mitochondria biogenesis. Overall, our results shed light on the mitochondrial biology of young and aged iPSCs and explore how an altered mitochondrial status may influence neuronal differentiation. Our work suggests to deepen the understanding of the iPSCs biology before considering their use in clinical applications.
Collapse
|
26
|
How do changes in the mtDNA and mitochondrial dysfunction influence cancer and cancer therapy? Challenges, opportunities and models. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 764:16-30. [DOI: 10.1016/j.mrrev.2015.01.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 12/28/2022]
|
27
|
Identification of plasma biomarker candidates in glioblastoma using an antibody-array-based proteomic approach. Radiol Oncol 2014; 48:257-66. [PMID: 25177240 PMCID: PMC4110082 DOI: 10.2478/raon-2014-0014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/10/2014] [Indexed: 12/30/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is a brain tumour with a very high patient mortality rate, with a median survival of 47 weeks. This might be improved by the identification of novel diagnostic, prognostic and predictive therapy-response biomarkers, preferentially through the monitoring of the patient blood. The aim of this study was to define the impact of GBM in terms of alterations of the plasma protein levels in these patients. Materials and methods. We used a commercially available antibody array that includes 656 antibodies to analyse blood plasma samples from 17 healthy volunteers in comparison with 17 blood plasma samples from patients with GBM. Results We identified 11 plasma proteins that are statistically most strongly associated with the presence of GBM. These proteins belong to three functional signalling pathways: T-cell signalling and immune responses; cell adhesion and migration; and cell-cycle control and apoptosis. Thus, we can consider this identified set of proteins as potential diagnostic biomarker candidates for GBM. In addition, a set of 16 plasma proteins were significantly associated with the overall survival of these patients with GBM. Guanine nucleotide binding protein alpha (GNAO1) was associated with both GBM presence and survival of patients with GBM. Conclusions Antibody array analysis represents a useful tool for the screening of plasma samples for potential cancer biomarker candidates in small-scale exploratory experiments; however, clinical validation of these candidates requires their further evaluation in a larger study on an independent cohort of patients.
Collapse
|
28
|
Guha M, Srinivasan S, Ruthel G, Kashina AK, Carstens RP, Mendoza A, Khanna C, Van Winkle T, Avadhani NG. Mitochondrial retrograde signaling induces epithelial-mesenchymal transition and generates breast cancer stem cells. Oncogene 2013; 33:5238-50. [PMID: 24186204 DOI: 10.1038/onc.2013.467] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/23/2013] [Accepted: 09/13/2013] [Indexed: 12/14/2022]
Abstract
Metastatic breast tumors undergo epithelial-to-mesenchymal transition (EMT), which renders them resistant to therapies targeted to the primary cancers. The mechanistic link between mtDNA (mitochondrial DNA) reduction, often seen in breast cancer patients, and EMT is unknown. We demonstrate that reducing mtDNA content in human mammary epithelial cells (hMECs) activates Calcineurin (Cn)-dependent mitochondrial retrograde signaling pathway, which induces EMT-like reprogramming to fibroblastic morphology, loss of cell polarity, contact inhibition and acquired migratory and invasive phenotype. Notably, mtDNA reduction generates breast cancer stem cells. In addition to retrograde signaling markers, there is an induction of mesenchymal genes but loss of epithelial markers in these cells. The changes are reversed by either restoring the mtDNA content or knockdown of CnAα mRNA, indicating the causal role of retrograde signaling in EMT. Our results point to a new therapeutic strategy for metastatic breast cancers targeted to the mitochondrial retrograde signaling pathway for abrogating EMT and attenuating cancer stem cells, which evade conventional therapies. We report a novel regulatory mechanism by which low mtDNA content generates EMT and cancer stem cells in hMECs.
Collapse
Affiliation(s)
- M Guha
- Department of Animal Biology and Marie Lowe Center for Comparative Oncology, School of Veterinary Medicine, Philadelphia, PA, USA
| | - S Srinivasan
- Department of Animal Biology and Marie Lowe Center for Comparative Oncology, School of Veterinary Medicine, Philadelphia, PA, USA
| | - G Ruthel
- Penn Vet Imaging Core, School of Veterinary Medicine, Philadelphia, PA, USA
| | - A K Kashina
- Department of Animal Biology and Marie Lowe Center for Comparative Oncology, School of Veterinary Medicine, Philadelphia, PA, USA
| | - R P Carstens
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A Mendoza
- Tumor and Metastasis Biology Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - C Khanna
- Tumor and Metastasis Biology Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - T Van Winkle
- Department of Pathobiology, School of Veterinary Medicine, Philadelphia, PA, USA
| | - N G Avadhani
- Department of Animal Biology and Marie Lowe Center for Comparative Oncology, School of Veterinary Medicine, Philadelphia, PA, USA
| |
Collapse
|
29
|
Mitochondrial signaling: forwards, backwards, and in between. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:351613. [PMID: 23819011 PMCID: PMC3681274 DOI: 10.1155/2013/351613] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/04/2013] [Indexed: 12/13/2022]
Abstract
Mitochondria are semiautonomous organelles that are a defining characteristic of almost all eukaryotic cells. They are vital for energy production, but increasing evidence shows that they play important roles in a wide range of cellular signaling and homeostasis. Our understanding of nuclear control of mitochondrial function has expanded over the past half century with the discovery of multiple transcription factors and cofactors governing mitochondrial biogenesis. More recently, nuclear changes in response to mitochondrial messaging have led to characterization of retrograde mitochondrial signaling, in which mitochondria have the ability to alter nuclear gene expression. Mitochondria are also integral to other components of stress response or quality control including ROS signaling, unfolded protein response, mitochondrial autophagy, and biogenesis. These avenues of mitochondrial signaling are discussed in this review.
Collapse
|
30
|
Ramão A, Gimenez M, Laure HJ, Izumi C, Vida RCDS, Oba-Shinjo S, Marie SKN, Rosa JC. Changes in the expression of proteins associated with aerobic glycolysis and cell migration are involved in tumorigenic ability of two glioma cell lines. Proteome Sci 2012; 10:53. [PMID: 22943417 PMCID: PMC3547712 DOI: 10.1186/1477-5956-10-53] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 08/09/2012] [Indexed: 12/21/2022] Open
Abstract
Background The most frequent and malignant brain cancer is glioblastoma multiforme (GBM). In gliomas, tumor progression and poor prognosis are associated with the tumorigenic ability of the cells. U87MG cells (wild-type p53) are known to be tumorigenic in nude mice, but T98G cells (mutant p53) are not tumorigenic. We investigated the proteomic profiling of these two cell lines in order to gain new insights into the mechanisms that may be involved in tumorigenesis. Results We found 24 differentially expressed proteins between T98G and U87MG cells. Gene Ontology supports the notion that over-representation of differentially expressed proteins is involved in glycolysis, cell migration and stress oxidative response. Among those associated with the glycolysis pathway, TPIS and LDHB are up-regulated in U87MG cells. Measurement of glucose consumption and lactate production suggests that glycolysis is more effective in U87MG cells. On the other hand, G6PD expression was 3-fold higher in T98G cells and this may indicate a shift to the pentose-phosphate pathway. Moreover, GRP78 expression was also three-fold higher in T98G than in U87MG cells. Under thapsigargin treatment both cell lines showed increased GRP78 expression and the effect of this agent was inversely correlated to cell migration. Quantitative RT-PCR and immunohistochemistry of GRP78 in patient samples indicated a higher level of expression of GRP78 in grade IV tumors compared to grade I and non-neoplastic tissues, respectively. Conclusions Taken together, these results suggest an important role of proteins involved in key functions such as glycolysis and cell migration that may explain the difference in tumorigenic ability between these two glioma cell lines and that may be extrapolated to the differential aggressiveness of glioma tumors.
Collapse
Affiliation(s)
- Anelisa Ramão
- Protein Chemistry Center and Department of Molecular and Cell Biology and Pathogenic Bioagents - School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Tewari S, Santos JM, Kowluru RA. Damaged mitochondrial DNA replication system and the development of diabetic retinopathy. Antioxid Redox Signal 2012; 17:492-504. [PMID: 22229649 PMCID: PMC3365359 DOI: 10.1089/ars.2011.4333] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIM In the pathogenesis of diabetic retinopathy, retinal mitochondria are damaged, superoxide levels are elevated, and mitochondrial DNA (mtDNA) biogenesis is impaired. mtDNA has a noncoding region, displacement loop (D-loop), which has essential transcription and replication elements, and this region is highly vulnerable to oxidative damage. The aim of this study is to investigate the effect of diabetes on the D-loop damage and the mtDNA replication machinery. RESULTS Using retina from wild-type (WT) and mitochondrial superoxide dismutase transgenic (Tg) mice, we have investigated the effect of diabetes on retinal D-loop damage and on the replication system. The results were confirmed in the isolated retinal endothelial cells in which the DNA polymerase gamma 1 (POLG1) function was genetically manipulated. Diabetes damaged retinal mtDNA, and the damage was more at the D-loop region compared with the cytochrome B region. Gene transcripts and mitochondrial accumulation of POLG1, POLG2, and mtDNA helicase, the enzymes that form replisome to bind/unwind and extend mtDNA, were also decreased in WT-diabetic mice compared with WT-normal mice. Tg-diabetic mice were protected from diabetes-induced damage to the D-loop region. Overexpression of POLG1 prevented high glucose-induced D-loop damage. This was accompanied by a decrease in mitochondrial superoxide levels. INNOVATION AND CONCLUSIONS Integrity of the retinal D-loop region and the mtDNA replication play important roles in the mtDNA damage experienced by the retina in diabetes, and these are under the control of superoxide. Thus, the regulation of mtDNA replication/repair machinery has the potential to prevent mitochondrial dysfunction and the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Shikha Tewari
- Kresge Eye Institute, Wayne State University, Detroit, MI 48201, USA
| | | | | |
Collapse
|
32
|
Popanda O, Seibold P, Nikolov I, Oakes CC, Burwinkel B, Hausmann S, Flesch-Janys D, Plass C, Chang-Claude J, Schmezer P. Germline variants of base excision repair genes and breast cancer: A polymorphism in DNA polymerase gamma modifies gene expression and breast cancer risk. Int J Cancer 2012; 132:55-62. [PMID: 22684821 DOI: 10.1002/ijc.27665] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 05/21/2012] [Indexed: 12/20/2022]
Abstract
Base excision repair (BER) removes DNA damage induced by endogenous reactive oxygen species or ionizing radiation, important breast cancer risk factors. Genetic variation associated with impaired BER might thus increase breast cancer risk. Therefore, we assessed risk associations of 123 common single nucleotide polymorphisms (SNPs) in 19 BER genes in 1,639 postmenopausal breast cancer cases and 1,967 controls from the German population-based case-control study MARIE. SNPs were tagging SNPs representing genetic variation across the gene together with potentially functional SNPs. Risk associations were assessed using conditional logistic regression, adjusted for potential breast cancer risk factors. Significant associations between polymorphisms and breast cancer risk were found for one SNP in PARP2 and three SNPs in the mitochondrial DNA polymerase gamma, POLG. A SNP in the promoter region of POLG (rs2856268, A>G) showed a protective effect for homozygous GG carriers (odds ratio 0.81, 95% confidence intervals 0.65-1.00). Joint analysis of an enlarged sample set and haplotype analysis supported the results for POLG. Quantification of POLG mRNA expression in lymphocytes of 148 breast cancer patients revealed higher mRNA levels for rs2856268 GG carriers (p value = 0.038). A luciferase promoter assay showed significant differences between constructs harboring the respective alleles. Taken together, our results suggest that genetic variation in the POLG promoter region affects DNA polymerase gamma levels in mitochondria. This could contribute to the reported increase in mitochondrial mutation frequency resulting in dysfunction and altered breast cancer risk. Risk effects and the functional impact of the POLG promoter variant require further confirmation.
Collapse
Affiliation(s)
- Odilia Popanda
- Division of Epigenomics and Cancer Risk Factors, C010, German Cancer Research Center, DKFZ, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Induction of the permeability transition pore in cells depleted of mitochondrial DNA. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1860-6. [PMID: 22402226 DOI: 10.1016/j.bbabio.2012.02.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/16/2012] [Accepted: 02/21/2012] [Indexed: 02/08/2023]
Abstract
Respiratory complexes are believed to play a role in the function of the mitochondrial permeability transition pore (PTP), whose dysregulation affects the process of cell death and is involved in a variety of diseases, including cancer and degenerative disorders. We investigated here the PTP in cells devoid of mitochondrial DNA (ρ(0) cells), which lack respiration and constitute a model for the analysis of mitochondrial involvement in several pathological conditions. We observed that mitochondria of ρ(0) cells maintain a membrane potential and that this is readily dissipated after displacement of hexokinase (HK) II from the mitochondrial surface by treatment with either the drug clotrimazole or with a cell-permeant HK II peptide, or by placing ρ(0) cells in a medium without serum and glucose. The PTP inhibitor cyclosporin A (CsA) could decrease the mitochondrial depolarization induced by either HK II displacement or by nutrient depletion. We also found that a fraction of the kinases ERK1/2 and GSK3α/β is located in the mitochondrial matrix of ρ(0) cells, and that glucose and serum deprivation caused concomitant ERK1/2 inhibition and GSK3α/β activation with the ensuing phosphorylation of cyclophilin D, the mitochondrial target of CsA. GSK3α/β inhibition with indirubin-3'-oxime decreased PTP-induced cell death in ρ(0) cells following nutrient ablation. These findings indicate that ρ(0) cells are equipped with a functioning PTP, whose regulatory mechanisms are similar to those observed in cancer cells, and suggest that escape from PTP opening is a survival factor in this model of mitochondrial diseases. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
|
34
|
The awakening of an advanced malignant cancer: an insult to the mitochondrial genome. Biochim Biophys Acta Gen Subj 2011; 1820:652-62. [PMID: 21920409 DOI: 10.1016/j.bbagen.2011.08.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 08/26/2011] [Accepted: 08/29/2011] [Indexed: 02/08/2023]
Abstract
BACKGROUND In only months-to-years a primary cancer can progress to an advanced phenotype that is metastatic and resistant to clinical treatments. As early as the 1900s, it was discovered that the progression of a cancer to the advanced phenotype is often associated with a shift in the metabolic profile of the disease from a state of respiration to anaerobic fermentation - a phenomenon denoted as the Warburg Effect. SCOPE OF REVIEW Reports in the literature strongly suggest that the Warburg Effect is generated as a response to a loss in the integrity of the sequence and/or copy number of the mitochondrial genome content within a cancer. MAJOR CONCLUSIONS Multiple studies regarding the progression of cancer indicate that mutation, and/or, a flux in the copy number, of the mitochondrial genome content can support the early development of a cancer, until; the mutational load and/or the reduction-to-depletion of the copy number of the mitochondrial genome content induces the progression of the disease to an advanced phenotype. GENERAL SIGNIFICANCE Collectively, evidence has revealed that the human cell has incorporated the mitochondrial genome content into a cellular mechanism that, when pathologically actuated, can de(un)differentiate a cancer from the parental tissue of origin into an autonomous disease that disrupts the hierarchical structure-and-function of the human body. This article is part of a Special Issue entitled: Biochemistry of Mitochondria.
Collapse
|
35
|
Abstract
Cellular energy metabolism is one of the main processes affected during the transition from normal to cancer cells, and it is a crucial determinant of cell proliferation or cell death. As a support for rapid proliferation, cancer cells choose to use glycolysis even in the presence of oxygen (Warburg effect) to fuel macromolecules for the synthesis of nucleotides, fatty acids, and amino acids for the accelerated mitosis, rather than fuel the tricarboxylic acid cycle and oxidative phosphorylation. Mitochondria biogenesis is also reprogrammed in cancer cells, and the destiny of those cells is determined by the balance between energy and macromolecule supplies, and the efficiency of buffering of the cumulative radical oxygen species. In glioblastoma, the most frequent and malignant adult brain tumor, a metabolic shift toward aerobic glycolysis is observed, with regulation by well known genes as integrants of oncogenic pathways such as phosphoinositide 3-kinase/protein kinase, MYC, and hypoxia regulated gene as hypoxia induced factor 1. The expression profile of a set of genes coding for glycolysis and the tricarboxylic acid cycle in glioblastoma cases confirms this metabolic switch. An understanding of how the main metabolic pathways are modified by cancer cells and the interactions between oncogenes and tumor suppressor genes with these pathways may enlighten new strategies in cancer therapy. In the present review, the main metabolic pathways are compared in normal and cancer cells, and key regulations by the main oncogenes and tumor suppressor genes are discussed. Potential therapeutic targets of the cancer energetic metabolism are enumerated, highlighting the astrocytomas, the most common brain cancer.
Collapse
|