1
|
Varassas SP, Amillis S, Pappas KM, Kouvelis VN. The Identification of the Mitochondrial DNA Polymerase γ (Mip1) of the Entomopathogenic Fungus Metarhizium brunneum. Microorganisms 2024; 12:1052. [PMID: 38930434 PMCID: PMC11205540 DOI: 10.3390/microorganisms12061052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Replication of the mitochondrial (mt) genome in filamentous fungi is under-studied, and knowledge is based mainly on data from yeasts and higher eukaryotes. In this study, the mitochondrial DNA polymerase γ (Mip1) of the entomopathogenic fungus Metarhizium brunneum is characterized and analyzed with disruption experiments and its in silico interactions with key proteins implicated in mt gene transcription, i.e., mt RNA polymerase Rpo41 and mt transcription factor Mtf1. Disruption of mip1 gene and its partial expression influences cell growth, morphology, germination and stress tolerance. A putative in silico model of Mip1-Rpo41-Mtf1, which is known to be needed for the initiation of replication, was proposed and helped to identify potential amino acid residues of Mip1 that interact with the Rpo41-Mtf1 complex. Moreover, the reduced expression of mip1 indicates that Mip1 is not required for efficient transcription but only for replication. Functional differences between the M. brunneum Mip1 and its counterparts from Saccharomyces cerevisiae and higher eukaryotes are discussed.
Collapse
Affiliation(s)
- Stylianos P. Varassas
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (S.P.V.); (K.M.P.)
| | - Sotiris Amillis
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Katherine M. Pappas
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (S.P.V.); (K.M.P.)
| | - Vassili N. Kouvelis
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (S.P.V.); (K.M.P.)
| |
Collapse
|
2
|
Gilea AI, Magistrati M, Notaroberto I, Tiso N, Dallabona C, Baruffini E. The Saccharomyces cerevisiae mitochondrial DNA polymerase and its contribution to the knowledge about human POLG-related disorders. IUBMB Life 2023; 75:983-1002. [PMID: 37470284 DOI: 10.1002/iub.2770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
Most eukaryotes possess a mitochondrial genome, called mtDNA. In animals and fungi, the replication of mtDNA is entrusted by the DNA polymerase γ, or Pol γ. The yeast Pol γ is composed only of a catalytic subunit encoded by MIP1. In humans, Pol γ is a heterotrimer composed of a catalytic subunit homolog to Mip1, encoded by POLG, and two accessory subunits. In the last 25 years, more than 300 pathological mutations in POLG have been identified as the cause of several mitochondrial diseases, called POLG-related disorders, which are characterized by multiple mtDNA deletions and/or depletion in affected tissues. In this review, at first, we summarize the biochemical properties of yeast Mip1, and how mutations, especially those introduced recently in the N-terminal and C-terminal regions of the enzyme, affect the in vitro activity of the enzyme and the in vivo phenotype connected to the mtDNA stability and to the mtDNA extended and point mutability. Then, we focus on the use of yeast harboring Mip1 mutations equivalent to the human ones to confirm their pathogenicity, identify the phenotypic defects caused by these mutations, and find both mechanisms and molecular compounds able to rescue the detrimental phenotype. A closing chapter will be dedicated to other polymerases found in yeast mitochondria, namely Pol ζ, Rev1 and Pol η, and to their genetic interactions with Mip1 necessary to maintain mtDNA stability and to avoid the accumulation of spontaneous or induced point mutations.
Collapse
Affiliation(s)
- Alexandru Ionut Gilea
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Martina Magistrati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Ilenia Notaroberto
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, Padova, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
3
|
Czernecki D, Nourisson A, Legrand P, Delarue M. Reclassification of family A DNA polymerases reveals novel functional subfamilies and distinctive structural features. Nucleic Acids Res 2023; 51:4488-4507. [PMID: 37070157 PMCID: PMC10201439 DOI: 10.1093/nar/gkad242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/07/2023] [Accepted: 03/24/2023] [Indexed: 04/19/2023] Open
Abstract
Family A DNA polymerases (PolAs) form an important and well-studied class of extant polymerases participating in DNA replication and repair. Nonetheless, despite the characterization of multiple subfamilies in independent, dedicated works, their comprehensive classification thus far is missing. We therefore re-examine all presently available PolA sequences, converting their pairwise similarities into positions in Euclidean space, separating them into 19 major clusters. While 11 of them correspond to known subfamilies, eight had not been characterized before. For every group, we compile their general characteristics, examine their phylogenetic relationships and perform conservation analysis in the essential sequence motifs. While most subfamilies are linked to a particular domain of life (including phages), one subfamily appears in Bacteria, Archaea and Eukaryota. We also show that two new bacterial subfamilies contain functional enzymes. We use AlphaFold2 to generate high-confidence prediction models for all clusters lacking an experimentally determined structure. We identify new, conserved features involving structural alterations, ordered insertions and an apparent structural incorporation of a uracil-DNA glycosylase (UDG) domain. Finally, genetic and structural analyses of a subset of T7-like phages indicate a splitting of the 3'-5' exo and pol domains into two separate genes, observed in PolAs for the first time.
Collapse
Affiliation(s)
- Dariusz Czernecki
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75015 Paris, France
- Sorbonne Université, Collège Doctoral, ED 515, 75005 Paris, France
| | - Antonin Nourisson
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75015 Paris, France
- Sorbonne Université, Collège Doctoral, ED 515, 75005 Paris, France
| | - Pierre Legrand
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75015 Paris, France
- Synchrotron SOLEIL, L’Orme des Merisiers, 91190 Saint-Aubin, France
| | - Marc Delarue
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75015 Paris, France
| |
Collapse
|
4
|
Structure of an open conformation of T7 DNA polymerase reveals novel structural features regulating primer-template stabilization at the polymerization active site. Biochem J 2021; 478:2665-2679. [PMID: 34160020 DOI: 10.1042/bcj20200922] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/25/2023]
Abstract
The crystal structure of full-length T7 DNA polymerase in complex with its processivity factor thioredoxin and double-stranded DNA in the polymerization active site exhibits two novel structural motifs in family-A DNA polymerases: an extended β-hairpin at the fingers subdomain, that interacts with the DNA template strand downstream the primer-terminus, and a helix-loop-helix motif (insertion1) located between residues 102 to 122 in the exonuclease domain. The extended β-hairpin is involved in nucleotide incorporation on substrates with 5'-overhangs longer than 2 nt, suggesting a role in stabilizing the template strand into the polymerization domain. Our biochemical data reveal that insertion1 of the exonuclease domain makes stabilizing interactions that facilitate proofreading by shuttling the primer strand into the exonuclease active site. Overall, our studies evidence conservation of the 3'-5' exonuclease domain fold between family-A DNA polymerases and highlight the modular architecture of T7 DNA polymerase. Our data suggest that the intercalating β-hairpin guides the template-strand into the polymerization active site after the T7 primase-helicase unwinds the DNA double helix ameliorating the formation of secondary structures and decreasing the appearance of indels.
Collapse
|
5
|
Peralta-Castro A, García-Medel PL, Baruch-Torres N, Trasviña-Arenas CH, Juarez-Quintero V, Morales-Vazquez CM, Brieba LG. Plant Organellar DNA Polymerases Evolved Multifunctionality through the Acquisition of Novel Amino Acid Insertions. Genes (Basel) 2020; 11:genes11111370. [PMID: 33228188 PMCID: PMC7699545 DOI: 10.3390/genes11111370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
The majority of DNA polymerases (DNAPs) are specialized enzymes with specific roles in DNA replication, translesion DNA synthesis (TLS), or DNA repair. The enzymatic characteristics to perform accurate DNA replication are in apparent contradiction with TLS or DNA repair abilities. For instance, replicative DNAPs incorporate nucleotides with high fidelity and processivity, whereas TLS DNAPs are low-fidelity polymerases with distributive nucleotide incorporation. Plant organelles (mitochondria and chloroplast) are replicated by family-A DNA polymerases that are both replicative and TLS DNAPs. Furthermore, plant organellar DNA polymerases from the plant model Arabidopsis thaliana (AtPOLIs) execute repair of double-stranded breaks by microhomology-mediated end-joining and perform Base Excision Repair (BER) using lyase and strand-displacement activities. AtPOLIs harbor three unique insertions in their polymerization domain that are associated with TLS, microhomology-mediated end-joining (MMEJ), strand-displacement, and lyase activities. We postulate that AtPOLIs are able to execute those different functions through the acquisition of these novel amino acid insertions, making them multifunctional enzymes able to participate in DNA replication and DNA repair.
Collapse
Affiliation(s)
- Antolín Peralta-Castro
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Paola L. García-Medel
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Noe Baruch-Torres
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Carlos H. Trasviña-Arenas
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Víctor Juarez-Quintero
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Carlos M. Morales-Vazquez
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Luis G. Brieba
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
- Correspondence: ; Tel.: +52-462-1663007
| |
Collapse
|
6
|
Hoyos-Gonzalez N, Trasviña-Arenas CH, Degiorgi A, Castro-Lara AY, Peralta-Castro A, Jimenez-Sandoval P, Diaz-Quezada C, Lodi T, Baruffini E, Brieba LG. Modeling of pathogenic variants of mitochondrial DNA polymerase: insight into the replication defects and implication for human disease. Biochim Biophys Acta Gen Subj 2020; 1864:129608. [PMID: 32234506 DOI: 10.1016/j.bbagen.2020.129608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 03/07/2020] [Accepted: 03/25/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Mutations in human gene encoding the mitochondrial DNA polymerase γ (HsPolγ) are associated with a broad range of mitochondrial diseases. Here we studied the impact on DNA replication by disease variants clustered around residue HsPolγ-K1191, a residue that in several family-A DNA polymerases interacts with the 3' end of the primer. METHODS Specifically, we examined the effect of HsPolγ carrying pathogenic variants in residues D1184, I1185, C1188, K1191, D1196, and a stop codon at residue T1199, using as a model the yeast mitochondrial DNA polymerase protein, Mip1p. RESULTS The introduction of pathogenic variants C1188R (yV945R), and of a stop codon at residue T1199 (yT956X) abolished both polymerization and exonucleolysis in vitro. HsPolγ substitutions in residues D1184 (yD941), I1185 (yI942), K1191 (yK948) and D1196 (yD953) shifted the balance between polymerization and exonucleolysis in favor of exonucleolysis. HsPolγ pathogenic variants at residue K1191 (yK948) and D1184 (yD941) were capable of nucleotide incorporation albeit with reduced processivity. Structural analysis of mitochondrial DNAPs showed that residue HsPolγ-N864 is placed in an optimal distance to interact with the 3' end of the primer and the phosphate backbone previous to the 3' end. Amino acid changes in residue HsPolγ-N864 to Ala, Ser or Asp result in enzymes that did not decrease their polymerization activity on short templates but exhibited a substantial decrease for processive DNA synthesis. CONCLUSION Our data suggest that in mitochondrial DNA polymerases multiple amino acids are involved in the primer-stand stabilization.
Collapse
Affiliation(s)
- Nallely Hoyos-Gonzalez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36821 Irapuato, Guanajuato, Mexico
| | - Carlos H Trasviña-Arenas
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36821 Irapuato, Guanajuato, Mexico
| | - Andrea Degiorgi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Atzimaba Y Castro-Lara
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36821 Irapuato, Guanajuato, Mexico
| | - Antolín Peralta-Castro
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36821 Irapuato, Guanajuato, Mexico
| | - Pedro Jimenez-Sandoval
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36821 Irapuato, Guanajuato, Mexico
| | - Corina Diaz-Quezada
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36821 Irapuato, Guanajuato, Mexico
| | - Tiziana Lodi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36821 Irapuato, Guanajuato, Mexico.
| |
Collapse
|
7
|
Singh A, Pandey M, Nandakumar D, Raney KD, Yin YW, Patel SS. Excessive excision of correct nucleotides during DNA synthesis explained by replication hurdles. EMBO J 2020; 39:e103367. [PMID: 32037587 PMCID: PMC7073461 DOI: 10.15252/embj.2019103367] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 11/25/2022] Open
Abstract
The proofreading exonuclease activity of replicative DNA polymerase excises misincorporated nucleotides during DNA synthesis, but these events are rare. Therefore, we were surprised to find that T7 replisome excised nearly 7% of correctly incorporated nucleotides during leading and lagging strand syntheses. Similar observations with two other DNA polymerases establish its generality. We show that excessive excision of correctly incorporated nucleotides is not due to events such as processive degradation of nascent DNA or spontaneous partitioning of primer‐end to the exonuclease site as a “cost of proofreading”. Instead, we show that replication hurdles, including secondary structures in template, slowed helicase, or uncoupled helicase–polymerase, increase DNA reannealing and polymerase backtracking, and generate frayed primer‐ends that are shuttled to the exonuclease site and excised efficiently. Our studies indicate that active‐site shuttling occurs at a high frequency, and we propose that it serves as a proofreading mechanism to protect primer‐ends from mutagenic extensions.
Collapse
Affiliation(s)
- Anupam Singh
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Manjula Pandey
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Divya Nandakumar
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, The University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Y Whitney Yin
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
8
|
Mi C, Zhang S, Huang W, Dai M, Chai Z, Yang W, Deng S, Ao L, Zhang H. Strand displacement DNA synthesis by DNA polymerase gp90 exo - of Pseudomonas aeruginosa phage 1. Biochimie 2020; 170:73-87. [PMID: 31911177 DOI: 10.1016/j.biochi.2019.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/31/2019] [Indexed: 12/27/2022]
Abstract
Strand displacement DNA synthesis is essential for DNA replication. Gp90, the sole DNA polymerase of Pseudomonas aeruginosa phage 1, can bypass multiply DNA lesions. However, whether it can perform strand displacement synthesis is still unknown. In this work, we found that gp90 exo- could perform strand displacement synthesis, albeit its activity and processivity were lower than those of primer extension. Gp90 exo- itself could not unwind Y-shaped or fork DNA. Tail and gap at DNA fork were necessary for efficient synthesis. High GC content obviously inhibited strand displacement synthesis. Consecutive GC sequence at the entrance of fork showed more inhibition effect on DNA synthesis than that in the downstream DNA fork. The fraction of productive polymerase and DNA complex (A values) was higher for fork than gap; while their average extension rates (kp values) were similar. However, both A and kp values were lower than those for the primer/template (P/T) substrate. The binding of gp90 exo- to fork was tighter than P/T or gap in the absence of dATP. In the presence of dATP to form ternary complex, the binding affinity of gp90 exo- to P/T or gap was increased compared with that in the binary complex. Abasic site, 8-oxoG, and O6-MeG inhibited and even blocked strand displacement synthesis. This work shows that gp90 exo- could perform strand displacement DNA synthesis at DNA fork, discovering the presence of new functions of PaP1 DNA polymerase in DNA replication and propagation of PaP1.
Collapse
Affiliation(s)
- Chenyang Mi
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuming Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenxin Huang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Mengyuan Dai
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Zili Chai
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - Wang Yang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - Shanshan Deng
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500, China
| | - Lin Ao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China.
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Sparks MA, Singh SP, Burgers PM, Galletto R. Complementary roles of Pif1 helicase and single stranded DNA binding proteins in stimulating DNA replication through G-quadruplexes. Nucleic Acids Res 2019; 47:8595-8605. [PMID: 31340040 PMCID: PMC7145523 DOI: 10.1093/nar/gkz608] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/28/2019] [Accepted: 07/18/2019] [Indexed: 01/16/2023] Open
Abstract
G-quadruplexes (G4s) are stable secondary structures that can lead to the stalling of replication forks and cause genomic instability. Pif1 is a 5′ to 3′ helicase, localized to both the mitochondria and nucleus that can unwind G4s in vitro and prevent fork stalling at G4 forming sequences in vivo. Using in vitro primer extension assays, we show that both G4s and stable hairpins form barriers to nuclear and mitochondrial DNA polymerases δ and γ, respectively. However, while single-stranded DNA binding proteins (SSBs) readily promote replication through hairpins, SSBs are only effective in promoting replication through weak G4s. Using a series of G4s with increasing stabilities, we reveal a threshold above which G4 through-replication is inhibited even with SSBs present, and Pif1 helicase is required. Because Pif1 moves along the template strand with a 5′-3′-directionality, head-on collisions between Pif1 and polymerase δ or γ result in the stimulation of their 3′-exonuclease activity. Both nuclear RPA and mitochondrial SSB play a protective role during DNA replication by preventing excessive DNA degradation caused by the helicase-polymerase conflict.
Collapse
Affiliation(s)
- Melanie A Sparks
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Saurabh P Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
10
|
Amino and carboxy-terminal extensions of yeast mitochondrial DNA polymerase assemble both the polymerization and exonuclease active sites. Mitochondrion 2019; 49:166-177. [PMID: 31445096 DOI: 10.1016/j.mito.2019.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/11/2019] [Accepted: 08/19/2019] [Indexed: 11/24/2022]
Abstract
Human and yeast mitochondrial DNA polymerases (DNAPs), POLG and Mip1, are related by evolution to bacteriophage DNAPs. However, mitochondrial DNAPs contain unique amino and carboxyl-terminal extensions that physically interact. Here we describe that N-terminal deletions in Mip1 polymerases abolish polymerization and decrease exonucleolytic degradation, whereas moderate C-terminal deletions reduce polymerization. Similarly, to the N-terminal deletions, an extended C-terminal deletion of 298 amino acids is deficient in nucleotide addition and exonucleolytic degradation of double and single-stranded DNA. The latter observation suggests that the physical interaction between the amino and carboxyl-terminal regions of Mip1 may be related to the spread of pathogenic POLG mutant along its primary sequence.
Collapse
|
11
|
Baruch-Torres N, Brieba LG. Plant organellar DNA polymerases are replicative and translesion DNA synthesis polymerases. Nucleic Acids Res 2017; 45:10751-10763. [PMID: 28977655 PMCID: PMC5737093 DOI: 10.1093/nar/gkx744] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/14/2017] [Indexed: 02/01/2023] Open
Abstract
Genomes acquire lesions that can block the replication fork and some lesions must be bypassed to allow survival. The nuclear genome of flowering plants encodes two family-A DNA polymerases (DNAPs), the result of a duplication event, that are the sole DNAPs in plant organelles. These DNAPs, dubbed Plant Organellar Polymerases (POPs), resemble the Klenow fragment of bacterial DNAP I and are not related to metazoan and fungal mitochondrial DNAPs. Herein we report that replicative POPs from the plant model Arabidopsis thaliana (AtPolI) efficiently bypass one the most insidious DNA lesions, an apurinic/apyrimidinic (AP) site. AtPolIs accomplish lesion bypass with high catalytic efficiency during nucleotide insertion and extension. Lesion bypass depends on two unique polymerization domain insertions evolutionarily unrelated to the insertions responsible for lesion bypass by DNAP θ, an analogous lesion bypass polymerase. AtPolIs exhibit an insertion fidelity that ranks between the fidelity of replicative and lesion bypass DNAPs, moderate 3′-5′ exonuclease activity and strong strand-displacement. AtPolIs are the first known example of a family-A DNAP evolved to function in both DNA replication and lesion bypass. The lesion bypass capabilities of POPs may be required to prevent replication fork collapse in plant organelles.
Collapse
Affiliation(s)
- Noe Baruch-Torres
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, 36821 Irapuato Guanajuato, México
| | - Luis G Brieba
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, 36821 Irapuato Guanajuato, México
| |
Collapse
|
12
|
Ribonucleotides incorporated by the yeast mitochondrial DNA polymerase are not repaired. Proc Natl Acad Sci U S A 2017; 114:12466-12471. [PMID: 29109257 DOI: 10.1073/pnas.1713085114] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Incorporation of ribonucleotides into DNA during genome replication is a significant source of genomic instability. The frequency of ribonucleotides in DNA is determined by deoxyribonucleoside triphosphate/ribonucleoside triphosphate (dNTP/rNTP) ratios, by the ability of DNA polymerases to discriminate against ribonucleotides, and by the capacity of repair mechanisms to remove incorporated ribonucleotides. To simultaneously compare how the nuclear and mitochondrial genomes incorporate and remove ribonucleotides, we challenged these processes by changing the balance of cellular dNTPs. Using a collection of yeast strains with altered dNTP pools, we discovered an inverse relationship between the concentration of individual dNTPs and the amount of the corresponding ribonucleotides incorporated in mitochondrial DNA, while in nuclear DNA the ribonucleotide pattern was only altered in the absence of ribonucleotide excision repair. Our analysis uncovers major differences in ribonucleotide repair between the two genomes and provides concrete evidence that yeast mitochondria lack mechanisms for removal of ribonucleotides incorporated by the mtDNA polymerase. Furthermore, as cytosolic dNTP pool imbalances were transmitted equally well into the nucleus and the mitochondria, our results support a view of the cytosolic and mitochondrial dNTP pools in frequent exchange.
Collapse
|
13
|
Sanchez-Sandoval E, Diaz-Quezada C, Velazquez G, Arroyo-Navarro LF, Almanza-Martinez N, Trasviña-Arenas CH, Brieba LG. Yeast mitochondrial RNA polymerase primes mitochondrial DNA polymerase at origins of replication and promoter sequences. Mitochondrion 2015; 24:22-31. [PMID: 26184436 DOI: 10.1016/j.mito.2015.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 11/15/2022]
Abstract
Three proteins phylogenetically grouped with proteins from the T7 replisome localize to yeast mitochondria: DNA polymerase γ (Mip1), mitochondrial RNA polymerase (Rpo41), and a single-stranded binding protein (Rim1). Human and T7 bacteriophage RNA polymerases synthesize primers for their corresponding DNA polymerases. In contrast, DNA replication in yeast mitochondria is explained by two models: a transcription-dependent model in which Rpo41 primes Mip1 and a model in which double stranded breaks create free 3' OHs that are extended by Mip1. Herein we found that Rpo41 transcribes RNAs that can be extended by Mip1 on single and double-stranded DNA. In contrast to human mitochondrial RNA polymerase, which primes DNA polymerase γ using transcripts from the light-strand and heavy-strand origins of replication, Rpo41 primes Mip1 at replication origins and promoter sequences in vitro. Our results suggest that in ori1, short transcripts serve as primers, whereas in ori5 an RNA transcript longer than 29 nucleotides is used as primer.
Collapse
Affiliation(s)
- Eugenia Sanchez-Sandoval
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500 Irapuato, Guanajuato, Mexico
| | - Corina Diaz-Quezada
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500 Irapuato, Guanajuato, Mexico
| | - Gilberto Velazquez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500 Irapuato, Guanajuato, Mexico
| | - Luis F Arroyo-Navarro
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500 Irapuato, Guanajuato, Mexico
| | - Norineli Almanza-Martinez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500 Irapuato, Guanajuato, Mexico
| | - Carlos H Trasviña-Arenas
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500 Irapuato, Guanajuato, Mexico
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500 Irapuato, Guanajuato, Mexico.
| |
Collapse
|
14
|
Skoneczna A, Kaniak A, Skoneczny M. Genetic instability in budding and fission yeast-sources and mechanisms. FEMS Microbiol Rev 2015; 39:917-67. [PMID: 26109598 PMCID: PMC4608483 DOI: 10.1093/femsre/fuv028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 12/17/2022] Open
Abstract
Cells are constantly confronted with endogenous and exogenous factors that affect their genomes. Eons of evolution have allowed the cellular mechanisms responsible for preserving the genome to adjust for achieving contradictory objectives: to maintain the genome unchanged and to acquire mutations that allow adaptation to environmental changes. One evolutionary mechanism that has been refined for survival is genetic variation. In this review, we describe the mechanisms responsible for two biological processes: genome maintenance and mutation tolerance involved in generations of genetic variations in mitotic cells of both Saccharomyces cerevisiae and Schizosaccharomyces pombe. These processes encompass mechanisms that ensure the fidelity of replication, DNA lesion sensing and DNA damage response pathways, as well as mechanisms that ensure precision in chromosome segregation during cell division. We discuss various factors that may influence genome stability, such as cellular ploidy, the phase of the cell cycle, transcriptional activity of a particular region of DNA, the proficiency of DNA quality control systems, the metabolic stage of the cell and its respiratory potential, and finally potential exposure to endogenous or environmental stress. The stability of budding and fission yeast genomes is influenced by two contradictory factors: (1) the need to be fully functional, which is ensured through the replication fidelity pathways of nuclear and mitochondrial genomes through sensing and repairing DNA damage, through precise chromosome segregation during cell division; and (2) the need to acquire changes for adaptation to environmental challenges.
Collapse
Affiliation(s)
- Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Aneta Kaniak
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Marek Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| |
Collapse
|
15
|
Yeast model analysis of novel polymerase gamma variants found in patients with autosomal recessive mitochondrial disease. Hum Genet 2015; 134:951-66. [PMID: 26077851 PMCID: PMC4529462 DOI: 10.1007/s00439-015-1578-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/03/2015] [Indexed: 12/18/2022]
Abstract
Replication of the mitochondrial genome depends on the single DNA polymerase (pol gamma). Mutations in the POLG gene, encoding the catalytic subunit of the human polymerase gamma, have been linked to a wide variety of mitochondrial disorders that show remarkable heterogeneity, with more than 200 sequence variants, often very rare, found in patients. The pathogenicity and dominance status of many such mutations remain, however, unclear. Remarkable structural and functional conservation of human POLG and its S. cerevisiae ortholog (Mip1p) led to the development of many successful yeast models, enabling to study the phenotype of putative pathogenic mutations. In a group of patients with suspicion of mitochondrial pathology, we identified five novel POLG sequence variants, four of which (p.Arg869Ter, p.Gln968Glu, p.Thr1053Argfs*6, and p.Val1106Ala), together with one previously known but uncharacterised variant (p.Arg309Cys), were amenable to modelling in yeast. Familial analysis indicated causal relationship of these variants with disease, consistent with autosomal recessive inheritance. To investigate the effect of these sequence changes on mtDNA replication, we obtained the corresponding yeast mip1 alleles (Arg265Cys, Arg672Ter, Arg770Glu, Thr809Ter, and Val863Ala, respectively) and tested their effect on mitochondrial genome stability and replication fidelity. For three of them (Arg265Cys, Arg672Ter, and Thr809Ter), we observed a strong, partially dominant phenotype of a complete loss of functional mtDNA, whereas the remaining two led to partial mtDNA depletion and significant increase in point mutation frequencies. These results show good correlation with the severity of symptoms observed in patients and allow to establish these variants as pathogenic mutations.
Collapse
|
16
|
Kaniak-Golik A, Skoneczna A. Mitochondria-nucleus network for genome stability. Free Radic Biol Med 2015; 82:73-104. [PMID: 25640729 DOI: 10.1016/j.freeradbiomed.2015.01.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/25/2014] [Accepted: 01/13/2015] [Indexed: 12/21/2022]
Abstract
The proper functioning of the cell depends on preserving the cellular genome. In yeast cells, a limited number of genes are located on mitochondrial DNA. Although the mechanisms underlying nuclear genome maintenance are well understood, much less is known about the mechanisms that ensure mitochondrial genome stability. Mitochondria influence the stability of the nuclear genome and vice versa. Little is known about the two-way communication and mutual influence of the nuclear and mitochondrial genomes. Although the mitochondrial genome replicates independent of the nuclear genome and is organized by a distinct set of mitochondrial nucleoid proteins, nearly all genome stability mechanisms responsible for maintaining the nuclear genome, such as mismatch repair, base excision repair, and double-strand break repair via homologous recombination or the nonhomologous end-joining pathway, also act to protect mitochondrial DNA. In addition to mitochondria-specific DNA polymerase γ, the polymerases α, η, ζ, and Rev1 have been found in this organelle. A nuclear genome instability phenotype results from a failure of various mitochondrial functions, such as an electron transport chain activity breakdown leading to a decrease in ATP production, a reduction in the mitochondrial membrane potential (ΔΨ), and a block in nucleotide and amino acid biosynthesis. The loss of ΔΨ inhibits the production of iron-sulfur prosthetic groups, which impairs the assembly of Fe-S proteins, including those that mediate DNA transactions; disturbs iron homeostasis; leads to oxidative stress; and perturbs wobble tRNA modification and ribosome assembly, thereby affecting translation and leading to proteotoxic stress. In this review, we present the current knowledge of the mechanisms that govern mitochondrial genome maintenance and demonstrate ways in which the impairment of mitochondrial function can affect nuclear genome stability.
Collapse
Affiliation(s)
- Aneta Kaniak-Golik
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland.
| |
Collapse
|
17
|
Koc KN, Stodola JL, Burgers PM, Galletto R. Regulation of yeast DNA polymerase δ-mediated strand displacement synthesis by 5'-flaps. Nucleic Acids Res 2015; 43:4179-90. [PMID: 25813050 PMCID: PMC4417170 DOI: 10.1093/nar/gkv260] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 12/22/2014] [Accepted: 03/16/2015] [Indexed: 11/13/2022] Open
Abstract
The strand displacement activity of DNA polymerase δ is strongly stimulated by its interaction with proliferating cell nuclear antigen (PCNA). However, inactivation of the 3'-5' exonuclease activity is sufficient to allow the polymerase to carry out strand displacement even in the absence of PCNA. We have examined in vitro the basic biochemical properties that allow Pol δ-exo(-) to carry out strand displacement synthesis and discovered that it is regulated by the 5'-flaps in the DNA strand to be displaced. Under conditions where Pol δ carries out strand displacement synthesis, the presence of long 5'-flaps or addition in trans of ssDNA suppress this activity. This suggests the presence of a secondary DNA binding site on the enzyme that is responsible for modulation of strand displacement activity. The inhibitory effect of a long 5'-flap can be suppressed by its interaction with single-stranded DNA binding proteins. However, this relief of flap-inhibition does not simply originate from binding of Replication Protein A to the flap and sequestering it. Interaction of Pol δ with PCNA eliminates flap-mediated inhibition of strand displacement synthesis by masking the secondary DNA site on the polymerase. These data suggest that in addition to enhancing the processivity of the polymerase PCNA is an allosteric modulator of other Pol δ activities.
Collapse
Affiliation(s)
- Katrina N Koc
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joseph L Stodola
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
18
|
Lodi T, Dallabona C, Nolli C, Goffrini P, Donnini C, Baruffini E. DNA polymerase γ and disease: what we have learned from yeast. Front Genet 2015; 6:106. [PMID: 25852747 PMCID: PMC4362329 DOI: 10.3389/fgene.2015.00106] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/02/2015] [Indexed: 11/16/2022] Open
Abstract
Mip1 is the Saccharomyces cerevisiae DNA polymerase γ (Pol γ), which is responsible for the replication of mitochondrial DNA (mtDNA). It belongs to the family A of the DNA polymerases and it is orthologs to human POLGA. In humans, mutations in POLG(1) cause many mitochondrial pathologies, such as progressive external ophthalmoplegia (PEO), Alpers' syndrome, and ataxia-neuropathy syndrome, all of which present instability of mtDNA, which results in impaired mitochondrial function in several tissues with variable degrees of severity. In this review, we summarize the genetic and biochemical knowledge published on yeast mitochondrial DNA polymerase from 1989, when the MIP1 gene was first cloned, up until now. The role of yeast is particularly emphasized in (i) validating the pathological mutations found in human POLG and modeled in MIP1, (ii) determining the molecular defects caused by these mutations and (iii) finding the correlation between mutations/polymorphisms in POLGA and mtDNA toxicity induced by specific drugs. We also describe recent findings regarding the discovery of molecules able to rescue the phenotypic defects caused by pathological mutations in Mip1, and the construction of a model system in which the human Pol γ holoenzyme is expressed in yeast and complements the loss of Mip1.
Collapse
Affiliation(s)
- Tiziana Lodi
- Department of Life Sciences, University of Parma Parma, Italy
| | | | - Cecilia Nolli
- Department of Life Sciences, University of Parma Parma, Italy
| | - Paola Goffrini
- Department of Life Sciences, University of Parma Parma, Italy
| | - Claudia Donnini
- Department of Life Sciences, University of Parma Parma, Italy
| | | |
Collapse
|
19
|
Qian Y, Kachroo AH, Yellman CM, Marcotte EM, Johnson KA. Yeast cells expressing the human mitochondrial DNA polymerase reveal correlations between polymerase fidelity and human disease progression. J Biol Chem 2014; 289:5970-85. [PMID: 24398692 DOI: 10.1074/jbc.m113.526418] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the human mitochondrial polymerase (polymerase-γ (Pol-γ)) are associated with various mitochondrial disorders, including mitochondrial DNA (mtDNA) depletion syndrome, Alpers syndrome, and progressive external opthamalplegia. To correlate biochemically quantifiable defects resulting from point mutations in Pol-γ with their physiological consequences, we created "humanized" yeast, replacing the yeast mtDNA polymerase (MIP1) with human Pol-γ. Despite differences in the replication and repair mechanism, we show that the human polymerase efficiently complements the yeast mip1 knockouts, suggesting common fundamental mechanisms of replication and conserved interactions between the human polymerase and other components of the replisome. We also examined the effects of four disease-related point mutations (S305R, H932Y, Y951N, and Y955C) and an exonuclease-deficient mutant (D198A/E200A). In haploid cells, each mutant results in rapid mtDNA depletion, increased mutation frequency, and mitochondrial dysfunction. Mutation frequencies measured in vivo equal those measured with purified enzyme in vitro. In heterozygous diploid cells, wild-type Pol-γ suppresses mutation-associated growth defects, but continuous growth eventually leads to aerobic respiration defects, reduced mtDNA content, and depolarized mitochondrial membranes. The severity of the Pol-γ mutant phenotype in heterozygous diploid humanized yeast correlates with the approximate age of disease onset and the severity of symptoms observed in humans.
Collapse
Affiliation(s)
- Yufeng Qian
- From the Institute for Cellular and Molecular Biology
| | | | | | | | | |
Collapse
|
20
|
Lasserre JP, Plissonneau J, Velours C, Bonneu M, Litvak S, Laquel P, Castroviejo M. Biochemical, cellular and molecular identification of DNA polymerase α in yeast mitochondria. Biochimie 2013; 95:759-71. [DOI: 10.1016/j.biochi.2012.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/07/2012] [Indexed: 11/15/2022]
|
21
|
Viikov K, Jasnovidova O, Tamm T, Sedman J. C-terminal extension of the yeast mitochondrial DNA polymerase determines the balance between synthesis and degradation. PLoS One 2012; 7:e33482. [PMID: 22432028 PMCID: PMC3303844 DOI: 10.1371/journal.pone.0033482] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 02/15/2012] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae mitochondrial DNA polymerase (Mip1) contains a C-terminal extension (CTE) of 279 amino acid residues. The CTE is required for mitochondrial DNA maintenance in yeast but is absent in higher eukaryotes. Here we use recombinant Mip1 C-terminal deletion mutants to investigate functional importance of the CTE. We show that partial removal of the CTE in Mip1Δ216 results in strong preference for exonucleolytic degradation rather than DNA polymerization. This disbalance in exonuclease and polymerase activities is prominent at suboptimal dNTP concentrations and in the absence of correctly pairing nucleotide. Mip1Δ216 also displays reduced ability to synthesize DNA through double-stranded regions. Full removal of the CTE in Mip1Δ279 results in complete loss of Mip1 polymerase activity, however the mutant retains its exonuclease activity. These results allow us to propose that CTE functions as a part of Mip1 polymerase domain that stabilizes the substrate primer end at the polymerase active site, and is therefore required for efficient mitochondrial DNA replication in vivo.
Collapse
Affiliation(s)
| | | | | | - Juhan Sedman
- Department of Biochemistry, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- * E-mail:
| |
Collapse
|
22
|
Foury F, Szczepanowska K. Antimutator alleles of yeast DNA polymerase gamma modulate the balance between DNA synthesis and excision. PLoS One 2011; 6:e27847. [PMID: 22114710 PMCID: PMC3218072 DOI: 10.1371/journal.pone.0027847] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/26/2011] [Indexed: 11/25/2022] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) are an important cause of disease and perhaps aging in human. DNA polymerase gamma (pol γ ), the unique replicase inside mitochondria, plays a key role in the fidelity of mtDNA replication through selection of the correct nucleotide and 3′-5′ exonuclease proofreading. For the first time, we have isolated and characterized antimutator alleles in the yeast pol γ (Mip1). These mip1 mutations, localised in the 3′-5′ exonuclease and polymerase domains, elicit a 2–15 fold decrease in the frequency of mtDNA point mutations in an msh1-1 strain which is partially deficient in mtDNA mismatch-repair. In vitro experiments show that in all mutants the balance between DNA synthesis and exonucleolysis is shifted towards excision when compared to wild-type, suggesting that in vivo more opportunity is given to the editing function for removing the replicative errors. This results in partial compensation for the mismatch-repair defects and a decrease in mtDNA point mutation rate. However, in all mutants but one the antimutator trait is lost in the wild-type MSH1 background. Accordingly, the polymerases of selected mutants show reduced oligonucleotide primed M13 ssDNA synthesis and to a lesser extent DNA binding affinity, suggesting that in mismatch-repair proficient cells efficient DNA synthesis is required to reach optimal accuracy. In contrast, the Mip1-A256T polymerase, which displays wild-type like DNA synthesis activity, increases mtDNA replication fidelity in both MSH1 and msh1-1 backgrounds. Altogether, our data show that accuracy of wild-type Mip1 is probably not optimal and can be improved by specific (often conservative) amino acid substitutions that define a pol γ area including a loop of the palm subdomain, two residues near the ExoII motif and an exonuclease helix-coil-helix module in close vicinity to the polymerase domain. These elements modulate in a subtle manner the balance between DNA polymerization and excision.
Collapse
Affiliation(s)
- Françoise Foury
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.
| | | |
Collapse
|