1
|
Kanamaru K, Izuhara K, Kimura M, Kobayashi T. Generation of mitochondrial reactive oxygen species through a histidine kinase, HysA in Aspergillus nidulans. J GEN APPL MICROBIOL 2022; 68:17-23. [PMID: 35387910 DOI: 10.2323/jgam.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kyoko Kanamaru
- Department of Biological Mechanisms and Function, Graduate School of Bioagricultural Science, Nagoya University.,present address: Graduate School of Bioscience and Biotechnology, Chubu University
| | - Kiyoshiro Izuhara
- Department of Biological Mechanisms and Function, Graduate School of Bioagricultural Science, Nagoya University
| | - Makoto Kimura
- Department of Biological Mechanisms and Function, Graduate School of Bioagricultural Science, Nagoya University
| | - Tetsuo Kobayashi
- Department of Biological Mechanisms and Function, Graduate School of Bioagricultural Science, Nagoya University
| |
Collapse
|
2
|
Escobar-Niño A, Morano Bermejo IM, Carrasco Reinado R, Fernandez-Acero FJ. Deciphering the Dynamics of Signaling Cascades and Virulence Factors of B. cinerea during Tomato Cell Wall Degradation. Microorganisms 2021; 9:microorganisms9091837. [PMID: 34576732 PMCID: PMC8466851 DOI: 10.3390/microorganisms9091837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022] Open
Abstract
The ascomycete Botrytis cinerea is one of the most relevant plant pathogenic fungi, affecting fruits, flowers, and greenhouse-grown crops. The infection strategy used by the fungus comprises a magnificent set of tools to penetrate and overcome plant defenses. In this context, the plant-pathogen communication through membrane receptors and signal transduction cascades is essential to trigger specific routes and the final success of the infection. In previous reports, proteomics approaches to B. cinerea signal transduction cascades changes in response to different carbon source and plant-based elicitors have been performed. Analyzing the secretome, membranome, phosphoproteome, and the phosphomembranome. Moreover, phenotypic changes in fungal biology was analyzed, specifically toxin production. To obtain the whole picture of the process and reveal the network from a system biology approach, this proteomic information has been merged with the phenotypic characterization, to be analyzed using several bioinformatics algorithms (GO, STRING, MCODE) in order to unravel key points in the signal transduction regulation crucial to overcome plant defenses, as well as new virulence/pathogenicity factors that could be used as therapeutic targets in the control of the gray mold rot disease. A total of 1721 and 663 exclusive or overexpressed proteins were identified under glucose (GLU) and deproteinized tomato cell walls (TCW), summarizing all of the protein identifications under phenotypic characterized stages. Under GO analysis, there are more biological process and molecular functions described in GLU, highlighting the increase in signaling related categories. These results agree with the high number of total identified proteins in GLU, probably indicating a more varied and active metabolism of the fungus. When analyzing only GO annotations related with signal transduction, it was revealed that there were proteins related to TOR signaling, the phosphorelay signal transduction system, and inositol lipid-mediated signaling, only under GLU conditions. On the contrary, calcium-mediated signaling GO annotation is only present between the proteins identified under TCW conditions. To establish a potential relationship between expressed proteins, cluster analyses showed 41 and 14 clusters under GLU and TCW conditions, confirming an increase in biological activity in GLU, where we identified a larger number of clusters related to transcription, translation, and cell division, between others. From these analyses, clusters related to signal transduction and clusters related to mycotoxin production were found, which correlated with the phenotypic characterization. The identification of the proteins encompassed in each condition and signal transduction cascade would provide the research community with new information about the B. cinerea infection process and potential candidates of pathogenicity/virulence factors, overcoming plant defenses, and new therapeutic targets.
Collapse
|
3
|
Zhou Y, Cheng L, Liao B, Shi Y, Niu Y, Zhu C, Ye X, Zhou X, Ren B. Candida albicans CHK1 gene from two-component system is essential for its pathogenicity in oral candidiasis. Appl Microbiol Biotechnol 2021; 105:2485-2496. [PMID: 33635358 DOI: 10.1007/s00253-021-11187-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/08/2021] [Accepted: 02/17/2021] [Indexed: 02/05/2023]
Abstract
The roles of Candida albicans CHK1, a key gene from two-component system, in oral mucosal infection are not clear. This study evaluated the key roles of CHK1 gene in vitro and in vivo. The expression of CHK1 and its regulated virulence factors were tested during the oral epithelial cell infection. The production of lactate dehydrogenase, ROS, and IL-1α combined with the confocal and scanning electron microscope observation was employed to identify the capability of CHK1 in damaging the epithelial cells. Both immunocompetent and immunodeficient mice oropharyngeal infection models were involved to confirm the roles of CHK1 gene in vivo. The expression of CHK1 gene was significantly increased during the oral epithelial cell infection. The chk1Δ/Δ mutant failed to damage the epithelial cells or induce IL-α and ROS production. Interestingly, chk1Δ/Δ can also form the similar hyphae with WT and complementary strains. Accordingly, chk1Δ/Δ did not affect the adhesion and invasion rates of C. albicans to oral epithelial cells. However, chk1Δ/Δ significantly decreased the expression levels of the virulence factors, including ALS2, SAP6, and YWP1. The chk1Δ/Δ also failed to cause oral candidiasis in both immunocompetent and immunodeficient mice indicating that CHK1 gene from the two-component system is essential for the pathogenicity of C. albicans. KEY POINTS: • CHK1gene is essential for C. albicans in oral candidiasis • C. albicans without CHK1 gene can form "non-pathogenic" hyphae. • CHK1 gene regulates the virulence of C. albicans.
Collapse
Affiliation(s)
- Yujie Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yangyang Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yulong Niu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chengguang Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xingchen Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Li L, Liao Z, Yang Y, Lv L, Cao Y, Zhu Z. Metabolomic profiling for the identification of potential biomarkers involved in a laboratory azole resistance in Candida albicans. PLoS One 2018; 13:e0192328. [PMID: 29394282 PMCID: PMC5796700 DOI: 10.1371/journal.pone.0192328] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 01/21/2018] [Indexed: 11/29/2022] Open
Abstract
Candida albicans, one of the most common fungal pathogens, is responsible for several yeast infections in human hosts, being resistant to classically used antifungal drugs, such as azole drugs. Multifactorial and multistep alterations are involved in the azole resistance in Candida albicans. In this study, a FCZ-resistant C. albicans strain was obtained by serial cultures of a FCZ-susceptible C. albicans strain in incrementally increasing concentrations of FCZ. We performed an integrated profile of different classes of molecules related to azole resistance in C. albicans by combining several mass-spectrometry based methodologies. The comparative metabolomic study was performed with the sensitive and resistant strains of C.albicans to identify metabolites altered during the development of resistance to fluconazole, while the intervention strains and non-intervention strains of C.albicans to identify metabolites altered involved in cross-resistant to azole drugs. Our analysis of the different metabolites identified molecules mainly involved in metabolic processes such as amino acid metabolism, tricarboxylic acid cycle and phospholipid metabolism. We also compared the phospholipid composition of each group, revealing that the relative content of phospholipids significantly changed during the development of resistance to azole drugs. According with these results, we hypothesized that the metabolism shift might contribute to azole drugs resistance in C.albicans from multifactorial alterations. Our result paves the way to understand processes underlying the resistance to azole drugs in C. albicans, providing the basis for developing new antifungal drugs.
Collapse
Affiliation(s)
- Ling Li
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - ZeBin Liao
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Yu Yang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Lei Lv
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - YingYing Cao
- School of Pharmacy, Second Military Medical University, Shanghai, China
- * E-mail: (ZYZ); (YYC)
| | - ZhenYu Zhu
- School of Pharmacy, Second Military Medical University, Shanghai, China
- * E-mail: (ZYZ); (YYC)
| |
Collapse
|
5
|
Basso V, Znaidi S, Lagage V, Cabral V, Schoenherr F, LeibundGut-Landmann S, d'Enfert C, Bachellier-Bassi S. The two-component response regulator Skn7 belongs to a network of transcription factors regulating morphogenesis in Candida albicans and independently limits morphogenesis-induced ROS accumulation. Mol Microbiol 2017; 106:157-182. [PMID: 28752552 DOI: 10.1111/mmi.13758] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2017] [Indexed: 01/01/2023]
Abstract
Skn7 is a conserved fungal heat shock factor-type transcriptional regulator. It participates in maintaining cell wall integrity and regulates the osmotic/oxidative stress response (OSR) in S. cerevisiae, where it is part of a two-component signal transduction system. Here, we comprehensively address the function of Skn7 in the human fungal pathogen Candida albicans. We provide evidence reinforcing functional divergence, with loss of the cell wall/osmotic stress-protective roles and acquisition of the ability to regulate morphogenesis on solid medium. Mapping of the Skn7 transcriptional circuitry, through combination of genome-wide expression and location technologies, pointed to a dual regulatory role encompassing OSR and filamentous growth. Genetic interaction analyses revealed close functional interactions between Skn7 and master regulators of morphogenesis, including Efg1, Cph1 and Ume6. Intracellular biochemical assays revealed that Skn7 is crucial for limiting the accumulation of reactive oxygen species (ROS) in filament-inducing conditions on solid medium. Interestingly, functional domain mapping using site-directed mutagenesis allowed decoupling of Skn7 function in morphogenesis from protection against intracellular ROS. Our work identifies Skn7 as an integral part of the transcriptional circuitry controlling C. albicans filamentous growth and illuminates how C. albicans relies on an evolutionarily-conserved regulator to protect itself from intracellular ROS during morphological development.
Collapse
Affiliation(s)
- Virginia Basso
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, 25 rue du Docteur Roux, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, rue du Dr. Roux, Paris, France
| | - Sadri Znaidi
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, 25 rue du Docteur Roux, Paris, France.,Institut Pasteur de Tunis, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, 13 Place Pasteur, Tunis-Belvédère, B.P. 74, 1002, Tunisia.,University of Tunis El Manar, Tunis 1036, Tunisia
| | - Valentine Lagage
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, 25 rue du Docteur Roux, Paris, France
| | - Vitor Cabral
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, 25 rue du Docteur Roux, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, rue du Dr. Roux, Paris, France
| | - Franziska Schoenherr
- Institute of Virology, Winterthurerstr. 266a, Zürich, Switzerland.,SUPSI, Laboratorio Microbiologia Applicata, via Mirasole 22a, Bellinzona, Switzerland
| | | | - Christophe d'Enfert
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, 25 rue du Docteur Roux, Paris, France
| | - Sophie Bachellier-Bassi
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, 25 rue du Docteur Roux, Paris, France
| |
Collapse
|
6
|
|
7
|
Abstract
Mitochondria are essential for cell growth and survival of most fungal pathogens. Energy (ATP) produced during oxidation/reduction reactions of the electron transport chain (ETC) Complexes I, III and IV (CI, CIII, CIV) fuel cell synthesis. The mitochondria of fungal pathogens are understudied even though more recent published data suggest critical functional assignments to fungal-specific proteins. Proteins of mammalian mitochondria are grouped into 16 functional categories. In this review, we focus upon 11 proteins from 5 of these categories in fungal pathogens, OXPHOS, protein import, stress response, carbon source metabolism, and fission/fusion morphology. As these proteins also are fungal-specific, we hypothesize that they may be exploited as targets in antifungal drug discovery. We also discuss published transcriptional profiling data of mitochondrial CI subunit protein mutants, in which we advance a novel concept those CI subunit proteins have both shared as well as specific responsibilities for providing ATP to cell processes.
Collapse
Affiliation(s)
- Dongmei Li
- a Department of Microbiology & Immunology , Georgetown University Medical Center , Washington , DC , USA
| | - Richard Calderone
- a Department of Microbiology & Immunology , Georgetown University Medical Center , Washington , DC , USA
| |
Collapse
|