1
|
Hashimi H, Gahura O, Pánek T. Bringing together but staying apart: decisive differences in animal and fungal mitochondrial inner membrane fusion. Biol Rev Camb Philos Soc 2024. [PMID: 39557625 DOI: 10.1111/brv.13168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Mitochondria are dynamic and plastic, undergoing continuous fission and fusion and rearrangement of their bioenergetic sub-compartments called cristae. These fascinating processes are best understood in animal and fungal models, which are taxonomically grouped together in the expansive Opisthokonta supergroup. In opisthokonts, crista remodelling and inner membrane fusion are linked by dynamin-related proteins (DRPs). Animal Opa1 (optical atrophy 1) and fungal Mgm1 (mitochondrial genome maintenance 1) are tacitly considered orthologs because their similar mitochondria-shaping roles are mediated by seemingly shared biochemical properties, and due to their presence in the two major opisthokontan subdivisions, Holozoa and Holomycota, respectively. However, molecular phylogenetics challenges this notion, suggesting that Opa1 and Mgm1 likely had separate, albeit convergent, evolutionary paths. Herein, we illuminate disparities in proteolytic processing, structure, and interaction network that may have bestowed on Opa1 and Mgm1 distinct mechanisms of membrane remodelling. A key disparity is that, unlike Mgm1, Opa1 directly recruits the mitochondrial phospholipid cardiolipin to remodel membranes. The differences outlined herein between the two DRPs could have broader impacts on mitochondrial morphogenesis. Outer and inner membrane fusion are autonomous in animals, which may have freed Opa1 to repurpose its intrinsic activity to remodel cristae, thereby regulating the formation of respiratory chain supercomplexes. More significantly, Opa1-mediated crista remodelling has emerged as an integral part of cytochrome c-regulated apoptosis in vertebrates, and perhaps in the cenancestor of animals. By contrast, outer and inner membrane fusion are coupled in budding yeast. Consequently, Mgm1 membrane-fusion activity is inextricable from its role in the biogenesis of fungal lamellar cristae. These disparate mitochondrial DRPs ultimately may have contributed to the different modes of multicellularity that have evolved within Opisthokonta.
Collapse
Affiliation(s)
- Hassan Hashimi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice, 370 05, Czechia
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 370 05, Czechia
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice, 370 05, Czechia
| | - Tomáš Pánek
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czechia
| |
Collapse
|
2
|
Di Nottia M, Rizza T, Baruffini E, Nesti C, Torraco A, Diodato D, Martinelli D, Dal Canto F, Gilea AI, Zoccola M, Siri B, Dionisi-Vici C, Bertini E, Santorelli FM, Goffrini P, Carrozzo R. Severe mitochondrial encephalomyopathy caused by de novo variants in OPA1 gene. Front Genet 2024; 15:1437959. [PMID: 39233737 PMCID: PMC11372846 DOI: 10.3389/fgene.2024.1437959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Background Mitochondria adjust their shape in response to the different energetic and metabolic requirements of the cell, through extremely dynamic fusion and fission events. Several highly conserved dynamin-like GTPases are involved in these processes and, among those, the OPA1 protein is a key player in the fusion of inner mitochondrial membranes. Hundreds of monoallelic or biallelic pathogenic gene variants have been described in OPA1, all associated with a plethora of clinical phenotypes without a straightforward genotype-phenotype correlation. Methods Here we report two patients harboring novel de novo variants in OPA1. DNA of two patients was analyzed using NGS technology and the pathogenicity has been evaluated through biochemical and morphological studies in patient's derived fibroblasts and in yeast model. Results The two patients here reported manifest with neurological signs resembling Leigh syndrome, thus further expanding the clinical spectrum associated with variants in OPA1. In cultured skin fibroblasts we observed a reduced amount of mitochondrial DNA (mtDNA) and altered mitochondrial network characterized by more fragmented mitochondria. Modeling in yeast allowed to define the deleterious mechanism and the pathogenicity of the identified gene mutations. Conclusion We have described two novel-single OPA1 mutations in two patients characterized by early-onset neurological signs, never documented, thus expanding the clinical spectrum of this complex syndrome. Moreover, both yeast model and patients derived fibroblasts showed mitochondrial defects, including decreased mtDNA maintenance, correlating with patients' clinical phenotypes.
Collapse
Affiliation(s)
- Michela Di Nottia
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Neuromuscular Disorders Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Teresa Rizza
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Claudia Nesti
- Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Alessandra Torraco
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Daria Diodato
- Neuromuscular Disorders Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Diego Martinelli
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Alexandru Ionut Gilea
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Martina Zoccola
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Neuromuscular Disorders Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Barbara Siri
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Enrico Bertini
- Neuromuscular Disorders Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Paola Goffrini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Rosalba Carrozzo
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
3
|
Magistrati M, Gilea AI, Gerra MC, Baruffini E, Dallabona C. Drug Drop Test: How to Quickly Identify Potential Therapeutic Compounds for Mitochondrial Diseases Using Yeast Saccharomyces cerevisiae. Int J Mol Sci 2023; 24:10696. [PMID: 37445873 DOI: 10.3390/ijms241310696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Mitochondrial diseases (MDs) refer to a group of clinically and genetically heterogeneous pathologies characterized by defective mitochondrial function and energy production. Unfortunately, there is no effective treatment for most MDs, and current therapeutic management is limited to relieving symptoms. The yeast Saccharomyces cerevisiae has been efficiently used as a model organism to study mitochondria-related disorders thanks to its easy manipulation and well-known mitochondrial biogenesis and metabolism. It has been successfully exploited both to validate alleged pathogenic variants identified in patients and to discover potential beneficial molecules for their treatment. The so-called "drug drop test", a phenotype-based high-throughput screening, especially if coupled with a drug repurposing approach, allows the identification of molecules with high translational potential in a cost-effective and time-saving manner. In addition to drug identification, S. cerevisiae can be used to point out the drug's target or pathway. To date, drug drop tests have been successfully carried out for a variety of disease models, leading to very promising results. The most relevant aspect is that studies on more complex model organisms confirmed the effectiveness of the drugs, strengthening the results obtained in yeast and demonstrating the usefulness of this screening as a novel approach to revealing new therapeutic molecules for MDs.
Collapse
Affiliation(s)
- Martina Magistrati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Alexandru Ionut Gilea
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Maria Carla Gerra
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
4
|
Abstract
Mitochondrial optic neuropathies have a leading role in the field of mitochondrial medicine ever since 1988, when the first mutation in mitochondrial DNA was associated with Leber's hereditary optic neuropathy (LHON). Autosomal dominant optic atrophy (DOA) was subsequently associated in 2000 with mutations in the nuclear DNA affecting the OPA1 gene. LHON and DOA are both characterized by selective neurodegeneration of retinal ganglion cells (RGCs) triggered by mitochondrial dysfunction. This is centered on respiratory complex I impairment in LHON and defective mitochondrial dynamics in OPA1-related DOA, leading to distinct clinical phenotypes. LHON is a subacute, rapid, severe loss of central vision involving both eyes within weeks or months, with age of onset between 15 and 35 years old. DOA is a more slowly progressive optic neuropathy, usually apparent in early childhood. LHON is characterized by marked incomplete penetrance and a clear male predilection. The introduction of next-generation sequencing has greatly expanded the genetic causes for other rare forms of mitochondrial optic neuropathies, including recessive and X-linked, further emphasizing the exquisite sensitivity of RGCs to compromised mitochondrial function. All forms of mitochondrial optic neuropathies, including LHON and DOA, can manifest either as pure optic atrophy or as a more severe multisystemic syndrome. Mitochondrial optic neuropathies are currently at the forefront of a number of therapeutic programs, including gene therapy, with idebenone being the only approved drug for a mitochondrial disorder.
Collapse
Affiliation(s)
- Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy.
| | - Chiara La Morgia
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
5
|
Saccharomyces cerevisiae as a Tool for Studying Mutations in Nuclear Genes Involved in Diseases Caused by Mitochondrial DNA Instability. Genes (Basel) 2021; 12:genes12121866. [PMID: 34946817 PMCID: PMC8701800 DOI: 10.3390/genes12121866] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial DNA (mtDNA) maintenance is critical for oxidative phosphorylation (OXPHOS) since some subunits of the respiratory chain complexes are mitochondrially encoded. Pathological mutations in nuclear genes involved in the mtDNA metabolism may result in a quantitative decrease in mtDNA levels, referred to as mtDNA depletion, or in qualitative defects in mtDNA, especially in multiple deletions. Since, in the last decade, most of the novel mutations have been identified through whole-exome sequencing, it is crucial to confirm the pathogenicity by functional analysis in the appropriate model systems. Among these, the yeast Saccharomyces cerevisiae has proved to be a good model for studying mutations associated with mtDNA instability. This review focuses on the use of yeast for evaluating the pathogenicity of mutations in six genes, MPV17/SYM1, MRM2/MRM2, OPA1/MGM1, POLG/MIP1, RRM2B/RNR2, and SLC25A4/AAC2, all associated with mtDNA depletion or multiple deletions. We highlight the techniques used to construct a specific model and to measure the mtDNA instability as well as the main results obtained. We then report the contribution that yeast has given in understanding the pathogenic mechanisms of the mutant variants, in finding the genetic suppressors of the mitochondrial defects and in the discovery of molecules able to improve the mtDNA stability.
Collapse
|
6
|
Del Dotto V, Carelli V. Dominant Optic Atrophy (DOA): Modeling the Kaleidoscopic Roles of OPA1 in Mitochondrial Homeostasis. Front Neurol 2021; 12:681326. [PMID: 34177786 PMCID: PMC8220150 DOI: 10.3389/fneur.2021.681326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023] Open
Abstract
In the year 2000, the discovery of OPA1 mutations as causative for dominant optic atrophy (DOA) was pivotal to rapidly expand the field of mitochondrial dynamics and describe the complex machinery governing this pathway, with a multitude of other genes and encoded proteins involved in neurodegenerative disorders of the optic nerve. OPA1 turned out to be a much more complex protein than initially envisaged, connecting multiple pathways beyond its strict role in mitochondrial fusion, such as sensing of OXPHOS needs and mitochondrial DNA maintenance. As a consequence, an increasing need to investigate OPA1 functions at multiple levels has imposed the development of multiple tools and models that are here reviewed. Translational mitochondrial medicine, with the ultimate objective of translating basic science necessary to understand pathogenic mechanisms into therapeutic strategies, requires disease modeling at multiple levels: from the simplest, like in yeast, to cell models, including the increasing use of reprogrammed stem cells (iPSCs) from patients, to animal models. In the present review, we thoroughly examine and provide the state of the art of all these approaches.
Collapse
Affiliation(s)
- Valentina Del Dotto
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| |
Collapse
|
7
|
Cappuccio G, Ceccatelli Berti C, Baruffini E, Sullivan J, Shashi V, Jewett T, Stamper T, Maitz S, Canonico F, Revah-Politi A, Kupchik GS, Anyane-Yeboa K, Aggarwal V, Benneche A, Bratland E, Berland S, D'Arco F, Alves CA, Vanderver A, Longo D, Bertini E, Torella A, Nigro V, D'Amico A, van der Knaap MS, Goffrini P, Brunetti-Pierri N. Bi-allelic KARS1 pathogenic variants affecting functions of cytosolic and mitochondrial isoforms are associated with a progressive and multisystem disease. Hum Mutat 2021; 42:745-761. [PMID: 33942428 PMCID: PMC8251883 DOI: 10.1002/humu.24210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/10/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
KARS1 encodes a lysyl‐transfer RNA synthetase (LysRS) that links lysine to its cognate transfer RNA. Two different KARS1 isoforms exert functional effects in cytosol and mitochondria. Bi‐allelic pathogenic variants in KARS1 have been associated to sensorineural hearing and visual loss, neuropathy, seizures, and leukodystrophy. We report the clinical, biochemical, and neuroradiological features of nine individuals with KARS1‐related disorder carrying 12 different variants with nine of them being novel. The consequences of these variants on the cytosol and/or mitochondrial LysRS were functionally validated in yeast mutants. Most cases presented with severe neurological features including congenital and progressive microcephaly, seizures, developmental delay/intellectual disability, and cerebral atrophy. Oculo‐motor dysfunction and immuno‐hematological problems were present in six and three cases, respectively. A yeast growth defect of variable severity was detected for most variants on both cytosolic and mitochondrial isoforms. The detrimental effects of two variants on yeast growth were partially rescued by lysine supplementation. Congenital progressive microcephaly, oculo‐motor dysfunction, and immuno‐hematological problems are emerging phenotypes in KARS1‐related disorder. The data in yeast emphasize the role of both mitochondrial and cytosolic isoforms in the pathogenesis of KARS1‐related disorder and supports the therapeutic potential of lysine supplementation at least in a subset of patients.
Collapse
Affiliation(s)
- Gerarda Cappuccio
- Department of Translational Medicine, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Camilla Ceccatelli Berti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Jennifer Sullivan
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Tamison Jewett
- Department of Pediatrics, Section on Medical Genetics, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Tara Stamper
- Department of Pediatrics, Section on Medical Genetics, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Silvia Maitz
- Clinical Pediatric Genetics Unit, Pediatrics Clinics, MBBM Foundation, Hospital San Gerardo, Monza, Italy
| | - Francesco Canonico
- Department of Neuroradiology, San Gerardo Hospital, ASST di Monza, Università degli Studi di Milano Bicocca, Monza, Italy
| | - Anya Revah-Politi
- Department of Pathology and Cell Biology, Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Gabriel S Kupchik
- Division of Medical Genetics, Maimonides Children's Hospital of Brooklyn at Maimonides Medical Center, Downstate Medical Center, State University of New York, New York, New York, USA
| | - Kwame Anyane-Yeboa
- Department of Pediatrics, Institute for Genomic Medicine Columbia University Medical Center, New York, New York, USA
| | - Vimla Aggarwal
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Andreas Benneche
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Eirik Bratland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Felice D'Arco
- Department of Paediatric Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Cesar A Alves
- Division of Neuroradiology, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Adeline Vanderver
- Division of Neurology, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniela Longo
- Department of Diagnostic Imaging, Pediatric Hospital Bambino Gesù, Rome, Italy
| | - Enrico Bertini
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Annalaura Torella
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy.,Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy.,Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Alessandra D'Amico
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers and Amsterdam Neuroscience, Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
| | - Paola Goffrini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| |
Collapse
|
8
|
Ceccatelli Berti C, di Punzio G, Dallabona C, Baruffini E, Goffrini P, Lodi T, Donnini C. The Power of Yeast in Modelling Human Nuclear Mutations Associated with Mitochondrial Diseases. Genes (Basel) 2021; 12:300. [PMID: 33672627 PMCID: PMC7924180 DOI: 10.3390/genes12020300] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
The increasing application of next generation sequencing approaches to the analysis of human exome and whole genome data has enabled the identification of novel variants and new genes involved in mitochondrial diseases. The ability of surviving in the absence of oxidative phosphorylation (OXPHOS) and mitochondrial genome makes the yeast Saccharomyces cerevisiae an excellent model system for investigating the role of these new variants in mitochondrial-related conditions and dissecting the molecular mechanisms associated with these diseases. The aim of this review was to highlight the main advantages offered by this model for the study of mitochondrial diseases, from the validation and characterisation of novel mutations to the dissection of the role played by genes in mitochondrial functionality and the discovery of potential therapeutic molecules. The review also provides a summary of the main contributions to the understanding of mitochondrial diseases emerged from the study of this simple eukaryotic organism.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claudia Donnini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (C.C.B.); (G.d.P.); (C.D.); (E.B.); (P.G.); (T.L.)
| |
Collapse
|
9
|
Aleo SJ, Del Dotto V, Fogazza M, Maresca A, Lodi T, Goffrini P, Ghelli A, Rugolo M, Carelli V, Baruffini E, Zanna C. Drug repositioning as a therapeutic strategy for neurodegenerations associated with OPA1 mutations. Hum Mol Genet 2020; 29:3631-3645. [PMID: 33231680 PMCID: PMC7823107 DOI: 10.1093/hmg/ddaa244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/19/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
OPA1 mutations are the major cause of dominant optic atrophy (DOA) and the syndromic form DOA plus, pathologies for which there is no established cure. We used a ‘drug repurposing’ approach to identify FDA-approved molecules able to rescue the mitochondrial dysfunctions induced by OPA1 mutations. We screened two different chemical libraries by using two yeast strains carrying the mgm1I322M and the chim3P646L mutations, identifying 26 drugs able to rescue their oxidative growth phenotype. Six of them, able to reduce the mitochondrial DNA instability in yeast, have been then tested in Opa1 deleted mouse embryonic fibroblasts expressing the human OPA1 isoform 1 bearing the R445H and D603H mutations. Some of these molecules were able to ameliorate the energetic functions and/or the mitochondrial network morphology, depending on the type of OPA1 mutation. The final validation has been performed in patients’ fibroblasts, allowing to select the most effective molecules. Our current results are instrumental to rapidly translating the findings of this drug repurposing approach into clinical trial for DOA and other neurodegenerations caused by OPA1 mutations.
Collapse
Affiliation(s)
- Serena J Aleo
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna 40126, Italy
| | - Valentina Del Dotto
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna 40139, Italy
| | - Mario Fogazza
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna 40126, Italy
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy
| | - Tiziana Lodi
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Paola Goffrini
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Anna Ghelli
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna 40126, Italy
| | - Michela Rugolo
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna 40126, Italy
| | - Valerio Carelli
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna 40139, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Claudia Zanna
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna 40126, Italy
| |
Collapse
|
10
|
Rzepnikowska W, Kaminska J, Kabzińska D, Binięda K, Kochański A. A Yeast-Based Model for Hereditary Motor and Sensory Neuropathies: A Simple System for Complex, Heterogeneous Diseases. Int J Mol Sci 2020; 21:ijms21124277. [PMID: 32560077 PMCID: PMC7352270 DOI: 10.3390/ijms21124277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Charcot–Marie–Tooth (CMT) disease encompasses a group of rare disorders that are characterized by similar clinical manifestations and a high genetic heterogeneity. Such excessive diversity presents many problems. Firstly, it makes a proper genetic diagnosis much more difficult and, even when using the most advanced tools, does not guarantee that the cause of the disease will be revealed. Secondly, the molecular mechanisms underlying the observed symptoms are extremely diverse and are probably different for most of the disease subtypes. Finally, there is no possibility of finding one efficient cure for all, or even the majority of CMT diseases. Every subtype of CMT needs an individual approach backed up by its own research field. Thus, it is little surprise that our knowledge of CMT disease as a whole is selective and therapeutic approaches are limited. There is an urgent need to develop new CMT models to fill the gaps. In this review, we discuss the advantages and disadvantages of yeast as a model system in which to study CMT diseases. We show how this single-cell organism may be used to discriminate between pathogenic variants, to uncover the mechanism of pathogenesis, and to discover new therapies for CMT disease.
Collapse
Affiliation(s)
- Weronika Rzepnikowska
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.R.); (D.K.); (K.B.)
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Dagmara Kabzińska
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.R.); (D.K.); (K.B.)
| | - Katarzyna Binięda
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.R.); (D.K.); (K.B.)
| | - Andrzej Kochański
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.R.); (D.K.); (K.B.)
- Correspondence:
| |
Collapse
|
11
|
Deshwal S, Fiedler KU, Langer T. Mitochondrial Proteases: Multifaceted Regulators of Mitochondrial Plasticity. Annu Rev Biochem 2020; 89:501-528. [PMID: 32075415 DOI: 10.1146/annurev-biochem-062917-012739] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondria are essential metabolic hubs that dynamically adapt to physiological demands. More than 40 proteases residing in different compartments of mitochondria, termed mitoproteases, preserve mitochondrial proteostasis and are emerging as central regulators of mitochondrial plasticity. These multifaceted enzymes limit the accumulation of short-lived, regulatory proteins within mitochondria, modulate the activity of mitochondrial proteins by protein processing, and mediate the degradation of damaged proteins. Various signaling cascades coordinate the activity of mitoproteases to preserve mitochondrial homeostasis and ensure cell survival. Loss of mitoproteases severely impairs the functional integrity of mitochondria, is associated with aging, and causes pleiotropic diseases. Understanding the dual function of mitoproteases as regulatory and quality control enzymes will help unravel the role of mitochondrial plasticity in aging and disease.
Collapse
Affiliation(s)
- Soni Deshwal
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany;
| | - Kai Uwe Fiedler
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany;
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
12
|
Verrigni D, Di Nottia M, Ardissone A, Baruffini E, Nasca A, Legati A, Bellacchio E, Fagiolari G, Martinelli D, Fusco L, Battaglia D, Trani G, Versienti G, Marchet S, Torraco A, Rizza T, Verardo M, D'Amico A, Diodato D, Moroni I, Lamperti C, Petrini S, Moggio M, Goffrini P, Ghezzi D, Carrozzo R, Bertini E. Clinical-genetic features and peculiar muscle histopathology in infantile DNM1L-related mitochondrial epileptic encephalopathy. Hum Mutat 2019; 40:601-618. [PMID: 30801875 DOI: 10.1002/humu.23729] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 11/09/2022]
Abstract
Mitochondria are highly dynamic organelles, undergoing continuous fission and fusion. The DNM1L (dynamin-1 like) gene encodes for the DRP1 protein, an evolutionary conserved member of the dynamin family, responsible for fission of mitochondria, and having a role in the division of peroxisomes, as well. DRP1 impairment is implicated in several neurological disorders and associated with either de novo dominant or compound heterozygous mutations. In five patients presenting with severe epileptic encephalopathy, we identified five de novo dominant DNM1L variants, the pathogenicity of which was validated in a yeast model. Fluorescence microscopy revealed abnormally elongated mitochondria and aberrant peroxisomes in mutant fibroblasts, indicating impaired fission of these organelles. Moreover, a very peculiar finding in our cohort of patients was the presence, in muscle biopsy, of core like areas with oxidative enzyme alterations, suggesting an abnormal distribution of mitochondria in the muscle tissue.
Collapse
Affiliation(s)
- Daniela Verrigni
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michela Di Nottia
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anna Ardissone
- Department of Clinical Neurosciences, Child Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Molecular and Translational Medicine DIMET, University of Milan-Bicocca, Milan, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Alessia Nasca
- Department of Molecular Neurogenetics, Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Andrea Legati
- Department of Molecular Neurogenetics, Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Emanuele Bellacchio
- Genetics and Rare Diseases, Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Gigliola Fagiolari
- Dino Ferrari Centre, Unit of Neuromuscular and Rare Disorders, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università of Milano, Milan, Italy
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lucia Fusco
- Neurophysiology Unit, Department of Neuroscience, Bambino Gesu' Children's Hospital, Rome, Italy
| | - Domenica Battaglia
- Department of Child Neurology and Psychiatry, Catholic University, Rome, Italy
| | - Giulia Trani
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Gianmarco Versienti
- Department of Molecular Neurogenetics, Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Marchet
- Department of Molecular Neurogenetics, Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandra Torraco
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Teresa Rizza
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Margherita Verardo
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Adele D'Amico
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Daria Diodato
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Isabella Moroni
- Department of Clinical Neurosciences, Child Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Costanza Lamperti
- Department of Molecular Neurogenetics, Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Petrini
- Scientific Direction, Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maurizio Moggio
- Dino Ferrari Centre, Unit of Neuromuscular and Rare Disorders, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università of Milano, Milan, Italy
| | - Paola Goffrini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Daniele Ghezzi
- Department of Molecular Neurogenetics, Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Rosalba Carrozzo
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Enrico Bertini
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
13
|
Del Dotto V, Fogazza M, Musiani F, Maresca A, Aleo SJ, Caporali L, La Morgia C, Nolli C, Lodi T, Goffrini P, Chan D, Carelli V, Rugolo M, Baruffini E, Zanna C. Deciphering OPA1 mutations pathogenicity by combined analysis of human, mouse and yeast cell models. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3496-3514. [PMID: 30293569 DOI: 10.1016/j.bbadis.2018.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 07/24/2018] [Accepted: 08/01/2018] [Indexed: 11/19/2022]
Abstract
OPA1 is the major gene responsible for Dominant Optic Atrophy (DOA) and the syndromic form DOA "plus". Over 370 OPA1 mutations have been identified so far, although their pathogenicity is not always clear. We have analyzed one novel and a set of known OPA1 mutations to investigate their impact on protein functions in primary skin fibroblasts and in two "ad hoc" generated cell systems: the MGM1/OPA1 chimera yeast model and the Opa1-/- MEFs model expressing the mutated human OPA1 isoform 1. The yeast model allowed us to confirm the deleterious effects of these mutations and to gain information on their dominance/recessivity. The MEFs model enhanced the phenotypic alteration caused by mutations, nicely correlating with the clinical severity observed in patients, and suggested that the DOA "plus" phenotype could be induced by the combinatorial effect of mitochondrial network fragmentation with variable degrees of mtDNA depletion. Overall, the two models proved to be valuable tools to functionally assess and define the deleterious mechanism and the pathogenicity of novel OPA1 mutations, and useful to testing new therapeutic interventions.
Collapse
Affiliation(s)
- Valentina Del Dotto
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40139 Bologna, Italy
| | - Mario Fogazza
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Francesco Musiani
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Alessandra Maresca
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, 40139 Bologna, Italy
| | - Serena J Aleo
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Leonardo Caporali
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, 40139 Bologna, Italy
| | - Chiara La Morgia
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40139 Bologna, Italy; IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, 40139 Bologna, Italy
| | - Cecilia Nolli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Tiziana Lodi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Paola Goffrini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - David Chan
- Division of Biology and Biological Engineering, California Institute of Technology (CALTECH), Pasadena, CA 91125, USA
| | - Valerio Carelli
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40139 Bologna, Italy; IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, 40139 Bologna, Italy
| | - Michela Rugolo
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Claudia Zanna
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
14
|
Vazquez Fonseca L, Doimo M, Calderan C, Desbats MA, Acosta MJ, Cerqua C, Cassina M, Ashraf S, Hildebrandt F, Sartori G, Navas P, Trevisson E, Salviati L. Mutations in COQ8B (ADCK4) found in patients with steroid-resistant nephrotic syndrome alter COQ8B function. Hum Mutat 2017; 39:406-414. [PMID: 29194833 PMCID: PMC5838795 DOI: 10.1002/humu.23376] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 11/20/2017] [Accepted: 11/26/2017] [Indexed: 01/08/2023]
Abstract
Mutations in COQ8B cause steroid-resistant nephrotic syndrome with variable neurological involvement. In yeast, COQ8 encodes a protein required for coenzyme Q (CoQ) biosynthesis, whose precise role is not clear. Humans harbor two paralog genes: COQ8A and COQ8B (previously termed ADCK3 and ADCK4). We have found that COQ8B is a mitochondrial matrix protein peripherally associated with the inner membrane. COQ8B can complement a ΔCOQ8 yeast strain when its mitochondrial targeting sequence (MTS) is replaced by a yeast MTS. This model was employed to validate COQ8B mutations, and to establish genotype-phenotype correlations. All mutations affected respiratory growth, but there was no correlation between mutation type and the severity of the phenotype. In fact, contrary to the case of COQ2, where residual CoQ biosynthesis correlates with clinical severity, patients harboring hypomorphic COQ8B alleles did not display a different phenotype compared with those with null mutations. These data also suggest that the system is redundant, and that other proteins (probably COQ8A) may partially compensate for the absence of COQ8B. Finally, a COQ8B polymorphism, present in 50% of the European population (NM_024876.3:c.521A > G, p.His174Arg), affects stability of the protein and could represent a risk factor for secondary CoQ deficiencies or for other complex traits.
Collapse
Affiliation(s)
- Luis Vazquez Fonseca
- Clinical Genetics Unit, Department of Women and Children's Health, IRP Città della Speranza, University of Padova, Padova, Italy
| | - Mara Doimo
- Clinical Genetics Unit, Department of Women and Children's Health, IRP Città della Speranza, University of Padova, Padova, Italy.,Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Cristina Calderan
- Clinical Genetics Unit, Department of Women and Children's Health, IRP Città della Speranza, University of Padova, Padova, Italy
| | - Maria Andrea Desbats
- Clinical Genetics Unit, Department of Women and Children's Health, IRP Città della Speranza, University of Padova, Padova, Italy
| | - Manuel J Acosta
- Clinical Genetics Unit, Department of Women and Children's Health, IRP Città della Speranza, University of Padova, Padova, Italy
| | - Cristina Cerqua
- Clinical Genetics Unit, Department of Women and Children's Health, IRP Città della Speranza, University of Padova, Padova, Italy
| | - Matteo Cassina
- Clinical Genetics Unit, Department of Women and Children's Health, IRP Città della Speranza, University of Padova, Padova, Italy
| | - Shazia Ashraf
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Geppo Sartori
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Placido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER Instituto de Salud Carlos III, Seville, Spain
| | - Eva Trevisson
- Clinical Genetics Unit, Department of Women and Children's Health, IRP Città della Speranza, University of Padova, Padova, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women and Children's Health, IRP Città della Speranza, University of Padova, Padova, Italy
| |
Collapse
|
15
|
Kane MS, Alban J, Desquiret‐Dumas V, Gueguen N, Ishak L, Ferre M, Amati‐Bonneau P, Procaccio V, Bonneau D, Lenaers G, Reynier P, Chevrollier A. Autophagy controls the pathogenicity of OPA1 mutations in dominant optic atrophy. J Cell Mol Med 2017; 21:2284-2297. [PMID: 28378518 PMCID: PMC5618673 DOI: 10.1111/jcmm.13149] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/02/2017] [Indexed: 12/31/2022] Open
Abstract
Optic Atrophy 1 (OPA1) gene mutations cause diseases ranging from isolated dominant optic atrophy (DOA) to various multisystemic disorders. OPA1, a large GTPase belonging to the dynamin family, is involved in mitochondrial network dynamics. The majority of OPA1 mutations encodes truncated forms of the protein and causes DOA through haploinsufficiency, whereas missense OPA1 mutations are predicted to cause disease through deleterious dominant-negative mechanisms. We used 3D imaging and biochemical analysis to explore autophagy and mitophagy in fibroblasts from seven patients harbouring OPA1 mutations. We report new genotype-phenotype correlations between various types of OPA1 mutation and mitophagy. Fibroblasts bearing dominant-negative OPA1 mutations showed increased autophagy and mitophagy in response to uncoupled oxidative phosphorylation. In contrast, OPA1 haploinsufficiency was correlated with a substantial reduction in mitochondrial turnover and autophagy, unless subjected to experimental mitochondrial injury. Our results indicate distinct alterations of mitochondrial physiology and turnover in cells with OPA1 mutations, suggesting that the level and profile of OPA1 may regulate the rate of mitophagy.
Collapse
Affiliation(s)
- Mariame Selma Kane
- PREMMi/Mitochondrial Medicine Research CentreInstitut MITOVASCCNRS UMR 6015INSERM U1083Université d'Angers, CHU d'AngersAngersFrance
| | - Jennifer Alban
- PREMMi/Mitochondrial Medicine Research CentreInstitut MITOVASCCNRS UMR 6015INSERM U1083Université d'Angers, CHU d'AngersAngersFrance
| | - Valérie Desquiret‐Dumas
- PREMMi/Mitochondrial Medicine Research CentreInstitut MITOVASCCNRS UMR 6015INSERM U1083Université d'Angers, CHU d'AngersAngersFrance
- Département de Biochimie et GénétiqueCentre Hospitalier UniversitaireAngersFrance
| | - Naïg Gueguen
- PREMMi/Mitochondrial Medicine Research CentreInstitut MITOVASCCNRS UMR 6015INSERM U1083Université d'Angers, CHU d'AngersAngersFrance
- Département de Biochimie et GénétiqueCentre Hospitalier UniversitaireAngersFrance
| | - Layal Ishak
- RGM4645 Université Blaise PascalAubièreFrance
| | - Marc Ferre
- PREMMi/Mitochondrial Medicine Research CentreInstitut MITOVASCCNRS UMR 6015INSERM U1083Université d'Angers, CHU d'AngersAngersFrance
| | - Patrizia Amati‐Bonneau
- PREMMi/Mitochondrial Medicine Research CentreInstitut MITOVASCCNRS UMR 6015INSERM U1083Université d'Angers, CHU d'AngersAngersFrance
- Département de Biochimie et GénétiqueCentre Hospitalier UniversitaireAngersFrance
| | - Vincent Procaccio
- PREMMi/Mitochondrial Medicine Research CentreInstitut MITOVASCCNRS UMR 6015INSERM U1083Université d'Angers, CHU d'AngersAngersFrance
- Département de Biochimie et GénétiqueCentre Hospitalier UniversitaireAngersFrance
| | - Dominique Bonneau
- PREMMi/Mitochondrial Medicine Research CentreInstitut MITOVASCCNRS UMR 6015INSERM U1083Université d'Angers, CHU d'AngersAngersFrance
- Département de Biochimie et GénétiqueCentre Hospitalier UniversitaireAngersFrance
| | - Guy Lenaers
- PREMMi/Mitochondrial Medicine Research CentreInstitut MITOVASCCNRS UMR 6015INSERM U1083Université d'Angers, CHU d'AngersAngersFrance
| | - Pascal Reynier
- PREMMi/Mitochondrial Medicine Research CentreInstitut MITOVASCCNRS UMR 6015INSERM U1083Université d'Angers, CHU d'AngersAngersFrance
- Département de Biochimie et GénétiqueCentre Hospitalier UniversitaireAngersFrance
| | - Arnaud Chevrollier
- PREMMi/Mitochondrial Medicine Research CentreInstitut MITOVASCCNRS UMR 6015INSERM U1083Université d'Angers, CHU d'AngersAngersFrance
| |
Collapse
|
16
|
Not only dominant, not only optic atrophy: expanding the clinical spectrum associated with OPA1 mutations. Orphanet J Rare Dis 2017; 12:89. [PMID: 28494813 PMCID: PMC5427524 DOI: 10.1186/s13023-017-0641-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022] Open
Abstract
Background Heterozygous mutations in OPA1 are a common cause of autosomal dominant optic atrophy, sometimes associated with extra-ocular manifestations. Few cases harboring compound heterozygous OPA1 mutations have been described manifesting complex neurodegenerative disorders in addition to optic atrophy. Results We report here three patients: one boy showing an early-onset mitochondrial disorder with hypotonia, ataxia and neuropathy that was severely progressive, leading to early death because of multiorgan failure; two unrelated sporadic girls manifesting a spastic ataxic syndrome associated with peripheral neuropathy and, only in one, optic atrophy. Using a targeted resequencing of 132 genes associated with mitochondrial disorders, in two probands we found compound heterozygous mutations in OPA1: in the first a 5 nucleotide deletion, causing a frameshift and insertion of a premature stop codon (p.Ser64Asnfs*7), and a missense change (p.Ile437Met), which has recently been reported to have clinical impact; in the second, a novel missense change (p.Val988Phe) co-occurred with the p.Ile437Met substitution. In the third patient a homozygous mutation, c.1180G > A (p.Ala394Thr) in OPA1 was detected by a trio-based whole exome sequencing approach. One of the patients presented also variants in mitochondrial DNA that may have contributed to the peculiar phenotype. The deleterious effect of the identified missense changes was experimentally validated in yeast model. OPA1 level was reduced in available patients’ biological samples, and a clearly fragmented mitochondrial network was observed in patients’ fibroblasts. Conclusions This report provides evidence that bi-allelic OPA1 mutations may lead to complex and severe multi-system recessive mitochondrial disorders, where optic atrophy might not represent the main feature. Electronic supplementary material The online version of this article (doi:10.1186/s13023-017-0641-1) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Nasca A, Legati A, Baruffini E, Nolli C, Moroni I, Ardissone A, Goffrini P, Ghezzi D. Biallelic Mutations in DNM1L are Associated with a Slowly Progressive Infantile Encephalopathy. Hum Mutat 2016; 37:898-903. [PMID: 27328748 PMCID: PMC5108486 DOI: 10.1002/humu.23033] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/07/2016] [Indexed: 11/25/2022]
Abstract
Mitochondria are highly dynamic organelles, undergoing continuous fission and fusion, and mitochondrial dynamics is important for several cellular functions. DNM1L is the most important mediator of mitochondrial fission, with a role also in peroxisome division. Few reports of patients with genetic defects in DNM1L have been published, most of them describing de novo dominant mutations. We identified compound heterozygous DNM1L variants in two brothers presenting with an infantile slowly progressive neurological impairment. One variant was a frame‐shift mutation, the other was a missense change, the pathogenicity of which was validated in a yeast model. Fluorescence microscopy revealed abnormally elongated mitochondria and aberrant peroxisomes in mutant fibroblasts, indicating impaired fission of these organelles. In conclusion, we described a recessive disease caused by DNM1L mutations, with a clinical phenotype resembling mitochondrial disorders but without any biochemical features typical of these syndromes (lactic acidosis, respiratory chain complex deficiency) or indicating a peroxisomal disorder.
Collapse
Affiliation(s)
- Alessia Nasca
- Unit of Molecular Neurogenetics, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan, Italy
| | - Andrea Legati
- Unit of Molecular Neurogenetics, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan, Italy
| | | | - Cecilia Nolli
- Department of Life Sciences, University of Parma, Parma, Italy
| | - Isabella Moroni
- Unit of Child Neurology, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan, Italy
| | - Anna Ardissone
- Unit of Child Neurology, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan, Italy
| | - Paola Goffrini
- Department of Life Sciences, University of Parma, Parma, Italy
| | - Daniele Ghezzi
- Unit of Molecular Neurogenetics, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan, Italy
| |
Collapse
|