1
|
Bar O, Ebenau L, Weiner K, Mintz M, Boles RG. Whole exome/genome sequencing in cyclic vomiting syndrome reveals multiple candidate genes, suggesting a model of elevated intracellular cations and mitochondrial dysfunction. Front Neurol 2023; 14:1151835. [PMID: 37234784 PMCID: PMC10208274 DOI: 10.3389/fneur.2023.1151835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/03/2023] [Indexed: 05/28/2023] Open
Abstract
Objective To utilize whole exome or genome sequencing and the scientific literature for identifying candidate genes for cyclic vomiting syndrome (CVS), an idiopathic migraine variant with paroxysmal nausea and vomiting. Methods A retrospective chart review of 80 unrelated participants, ascertained by a quaternary care CVS specialist, was conducted. Genes associated with paroxysmal symptoms were identified querying the literature for genes associated with dominant cases of intermittent vomiting or both discomfort and disability; among which the raw genetic sequence was reviewed. "Qualifying" variants were defined as coding, rare, and conserved. Additionally, "Key Qualifying" variants were Pathogenic/Likely Pathogenic, or "Clinical" based upon the presence of a corresponding diagnosis. Candidate association to CVS was based on a point system. Results Thirty-five paroxysmal genes were identified per the literature review. Among these, 12 genes were scored as "Highly likely" (SCN4A, CACNA1A, CACNA1S, RYR2, TRAP1, MEFV) or "Likely" (SCN9A, TNFRSF1A, POLG, SCN10A, POGZ, TRPA1) CVS related. Nine additional genes (OTC, ATP1A3, ATP1A2, GFAP, SLC2A1, TUBB3, PPM1D, CHAMP1, HMBS) had sufficient evidence in the literature but not from our study participants. Candidate status for mitochondrial DNA was confirmed by the literature and our study data. Among the above-listed 22 CVS candidate genes, a Key Qualifying variant was identified in 31/80 (34%), and any Qualifying variant was present in 61/80 (76%) of participants. These findings were highly statistically significant (p < 0.0001, p = 0.004, respectively) compared to an alternative hypothesis/control group regarding brain neurotransmitter receptor genes. Additional, post-analyses, less-intensive review of all genes (exome) outside our paroxysmal genes identified 13 additional genes as "Possibly" CVS related. Conclusion All 22 CVS candidate genes are associated with either cation transport or energy metabolism (14 directly, 8 indirectly). Our findings suggest a cellular model in which aberrant ion gradients lead to mitochondrial dysfunction, or vice versa, in a pathogenic vicious cycle of cellular hyperexcitability. Among the non-paroxysmal genes identified, 5 are known causes of peripheral neuropathy. Our model is consistent with multiple current hypotheses of CVS.
Collapse
Affiliation(s)
- Omri Bar
- NeurAbilities Healthcare, Voorhees, NJ, United States
| | - Laurie Ebenau
- NeurAbilities Healthcare, Voorhees, NJ, United States
| | - Kellee Weiner
- NeurAbilities Healthcare, Voorhees, NJ, United States
| | - Mark Mintz
- NeurAbilities Healthcare, Voorhees, NJ, United States
| | - Richard G. Boles
- NeurAbilities Healthcare, Voorhees, NJ, United States
- NeuroNeeds, Old Lyme, CT, United States
| |
Collapse
|
2
|
Raggio V, Graña M, Winiarski E, Mansilla S, Simoes C, Rodríguez S, Brandes M, Tapié A, Rodríguez L, Cibils L, Alonso M, Martínez J, Fernández-Calero T, Domínguez F, Mezquida MR, Castro L, Cerisola A, Naya H, Cassina A, Quijano C, Spangenberg L. Computational and mitochondrial functional studies of novel compound heterozygous variants in SPATA5 gene support a causal link with epileptogenic encephalopathy. Hum Genomics 2023; 17:14. [PMID: 36849973 PMCID: PMC9972848 DOI: 10.1186/s40246-023-00463-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/20/2023] [Indexed: 03/01/2023] Open
Abstract
The SPATA5 gene encodes a 892 amino-acids long protein that has a putative mitochondrial targeting sequence and has been proposed to function in maintenance of mitochondrial function and integrity during mouse spermatogenesis. Several studies have associated homozygous or compound heterozygous mutations in SPATA5 gene to microcephaly, intellectual disability, seizures and hearing loss. This suggests a role of the SPATA5 gene also in neuronal development. Recently, our group presented results validating the use of blood cells for the assessment of mitochondrial function for diagnosis and follow-up of mitochondrial disease, minimizing the need for invasive procedures such as muscle biopsy. In this study, we were able to diagnose a patient with epileptogenic encephalopathy using next generation sequencing. We found two novel compound heterozygous variants in SPATA5 that are most likely causative. To analyze the impact of SPATA5 mutations on mitochondrial functional studies directly on the patients' mononuclear cells and platelets were undertaken. Oxygen consumption rates in platelets and PBMCs were impaired in the patient when compared to a healthy control. Also, a decrease in mitochondrial mass was observed in the patient monocytes with respect to the control. This suggests a true pathogenic effect of the mutations in mitochondrial function, especially in energy production and possibly biogenesis, leading to the observed phenotype.
Collapse
Affiliation(s)
- Víctor Raggio
- grid.11630.350000000121657640Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Martín Graña
- grid.418532.90000 0004 0403 6035Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Erik Winiarski
- grid.11630.350000000121657640Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Santiago Mansilla
- grid.11630.350000000121657640Departamento de Métodos Cuantitativos, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Camila Simoes
- grid.418532.90000 0004 0403 6035Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Soledad Rodríguez
- grid.11630.350000000121657640Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mariana Brandes
- grid.418532.90000 0004 0403 6035Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Alejandra Tapié
- grid.11630.350000000121657640Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laura Rodríguez
- grid.11630.350000000121657640Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucía Cibils
- grid.11630.350000000121657640Departamento de Neuropediatría, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Martina Alonso
- grid.11630.350000000121657640Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jennyfer Martínez
- grid.11630.350000000121657640Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Tamara Fernández-Calero
- grid.418532.90000 0004 0403 6035Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay ,grid.442041.70000 0001 2188 793XDepartment of Exact and Natural Sciences, Universidad Católica del Uruguay, 11600 Montevideo, Uruguay
| | - Fernanda Domínguez
- grid.11630.350000000121657640Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay ,grid.442041.70000 0001 2188 793XUniversidad Católica del Uruguay, 11600 Montevideo, Uruguay
| | - Melania Rosas Mezquida
- grid.11630.350000000121657640Departamento de Neuropediatría, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laura Castro
- grid.11630.350000000121657640Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Alfredo Cerisola
- grid.11630.350000000121657640Departamento de Neuropediatría, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Hugo Naya
- grid.418532.90000 0004 0403 6035Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Adriana Cassina
- grid.11630.350000000121657640Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Celia Quijano
- grid.11630.350000000121657640Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucía Spangenberg
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay. .,Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
3
|
Garone C, Pietra A, Nesci S. From the Structural and (Dys)Function of ATP Synthase to Deficiency in Age-Related Diseases. Life (Basel) 2022; 12:401. [PMID: 35330152 PMCID: PMC8949411 DOI: 10.3390/life12030401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 12/21/2022] Open
Abstract
The ATP synthase is a mitochondrial inner membrane complex whose function is essential for cell bioenergy, being responsible for the conversion of ADP into ATP and playing a role in mitochondrial cristae morphology organization. The enzyme is composed of 18 protein subunits, 16 nuclear DNA (nDNA) encoded and two mitochondrial DNA (mtDNA) encoded, organized in two domains, FO and F1. Pathogenetic variants in genes encoding structural subunits or assembly factors are responsible for fatal human diseases. Emerging evidence also underlines the role of ATP-synthase in neurodegenerative diseases as Parkinson's, Alzheimer's, and motor neuron diseases such as Amyotrophic Lateral Sclerosis. Post-translational modification, epigenetic modulation of ATP gene expression and protein level, and the mechanism of mitochondrial transition pore have been deemed responsible for neuronal cell death in vivo and in vitro models for neurodegenerative diseases. In this review, we will explore ATP synthase assembly and function in physiological and pathological conditions by referring to the recent cryo-EM studies and by exploring human disease models.
Collapse
Affiliation(s)
- Caterina Garone
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40137 Bologna, Italy;
- Center for Applied Biomedical Research, Alma Mater Studiorum University of Bologna, 40137 Bologna, Italy
- UOC Neuropsichiatria dell’età Pediatrica, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40137 Bologna, Italy
| | - Andrea Pietra
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40137 Bologna, Italy;
- UO Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40137 Bologna, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy
| |
Collapse
|
4
|
Sukri A, Noorizhab MNF, Teh LK, Salleh MZ. Insight of the mitochondrial genomes of the Orang Asli and Malays: The heterogeneity and the disease-associated variants. Mitochondrion 2021; 62:74-84. [PMID: 34748985 DOI: 10.1016/j.mito.2021.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/27/2022]
Abstract
Orang Asli are the oldest inhabitants in Peninsular Malaysia that forms as a national minority while the Malays are the majority. The study aimed to screen the mitochondrial genomes of the Orang Asli and the Malays to discover the disease-associated variants. A total of 99 Orang Asli from six tribes (Bateq, Cheq Wong, Orang Kanaq, Kensiu, Lanoh, and Semai) were recruited. Mitochondrial genome sequencing was conducted using a next-generation sequencing platform. Furthermore, we retrieved mitochondrial DNA sequences from the Malays for comparison. The clinical significance, pathogenicity prediction and frequency of variants were determined using online tools. Variants associated with mitochondrial diseases were detected in the 2 populations. A high frequency of variants associated with mitochondrial diseases, breast cancer, prostate cancer, and cervical cancer were detected in the Orang Asli and modern Malays. As medicine evolves to adopt prediction and prevention of diseases, this study highlights the need for intervention to adopt genomics medicine to strategise better healthcare management as a way forward for Precision Health.
Collapse
Affiliation(s)
- Asif Sukri
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, 42300 Puncak Alam, Selangor, Malaysia
| | - Mohd Nur Fakhruzzaman Noorizhab
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, 42300 Puncak Alam, Selangor, Malaysia; Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, 42300 Puncak Alam, Selangor, Malaysia
| | - Lay Kek Teh
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, 42300 Puncak Alam, Selangor, Malaysia; Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, 42300 Puncak Alam, Selangor, Malaysia
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, 42300 Puncak Alam, Selangor, Malaysia.
| |
Collapse
|
5
|
Alonso M, Zabala C, Mansilla S, De Brun L, Martínez J, Garau M, Rivas G, Acosta C, Lens D, Cerisola A, Graña M, Naya H, Puentes R, Spangenberg L, Raggio V, Lemes A, Castro L, Quijano C. Blood cell respiration rates and mtDNA copy number: A promising tool for the diagnosis of mitochondrial disease. Mitochondrion 2021; 61:31-43. [PMID: 34536563 DOI: 10.1016/j.mito.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Human mitochondrial diseases are a group of heterogeneous diseases caused by defects in oxidative phosphorylation, due to mutations in mitochondrial (mtDNA) or nuclear DNA. The diagnosis of mitochondrial disease is challenging since mutations in multiple genes can affect mitochondrial function, there is considerable clinical variability and a poor correlation between genotype and phenotype. Herein we assessed mitochondrial function in peripheral blood mononuclear cells (PBMCs) and platelets from volunteers without known metabolic pathology and patients with mitochondrial disease. Oxygen consumption rates were evaluated and respiratory parameters indicative of mitochondrial function were obtained. A negative correlation between age and respiratory parameters of PBMCs from control individuals was observed. Surprisingly, respiratory parameters of PBMCs normalized by cell number were similar in patients and young controls. Considering possible compensatory mechanisms, mtDNA copy number in PBMCs was quantified and an increase was found in patients with respect to controls. Hence, respiratory parameters normalized by mtDNA copy number were determined, and in these conditions a decrease in maximum respiration rate and spare respiratory capacity was observed in patients relative to control individuals. In platelets no decay was seen in mitochondrial function with age, while a reduction in basal, ATP-independent and ATP-dependent respiration normalized by cell number was detected in patients compared to control subjects. In summary, our results offer promising perspectives regarding the assessment of mitochondrial function in blood cells for the diagnosis of mitochondrial disease, minimizing the need for invasive procedures such as muscle biopsies, and for following disease progression and response to treatments.
Collapse
Affiliation(s)
- Martina Alonso
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Uruguay
| | - Cristina Zabala
- Clínica Pediátrica A, Centro Hospitalario Pereira Rossell, Facultad de Medicina, Universidad de la República, Uruguay; Centro de Referencia Nacional en Defectos Congénitos y Enfermedades Raras (CRENADECER) del Banco de Previsión Social (BPS), Uruguay
| | - Santiago Mansilla
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Uruguay; Departamento de Métodos Cuantitativos, Facultad de Medicina, Universidad de la República, Uruguay
| | - Laureana De Brun
- Departamento de Patobiología, Unidad de Microbiología, Facultad de Veterinaria, Universidad de la República, Uruguay
| | - Jennyfer Martínez
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Uruguay
| | - Mariela Garau
- Departamento de Métodos Cuantitativos, Facultad de Medicina, Universidad de la República, Uruguay
| | - Gabriela Rivas
- Cátedra y Departamento de Hemoterapia y Medicina Transfusional, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Uruguay
| | - Cecilia Acosta
- Cátedra y Departamento de Hemoterapia y Medicina Transfusional, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Uruguay
| | - Daniela Lens
- Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Uruguay
| | - Alfredo Cerisola
- Centro de Referencia Nacional en Defectos Congénitos y Enfermedades Raras (CRENADECER) del Banco de Previsión Social (BPS), Uruguay; Cátedra de Neuropediatría, Facultad de Medicina, Universidad de la República, Uruguay
| | - Martín Graña
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Uruguay
| | - Hugo Naya
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Uruguay; Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Uruguay
| | - Rodrigo Puentes
- Departamento de Patobiología, Unidad de Microbiología, Facultad de Veterinaria, Universidad de la República, Uruguay
| | | | - Víctor Raggio
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Uruguay
| | - Aída Lemes
- Centro de Referencia Nacional en Defectos Congénitos y Enfermedades Raras (CRENADECER) del Banco de Previsión Social (BPS), Uruguay
| | - Laura Castro
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Uruguay.
| | - Celia Quijano
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Uruguay.
| |
Collapse
|
6
|
Quantitative multi-omics analysis of the effects of mitochondrial dysfunction on lipid metabolism in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2019; 104:1211-1226. [PMID: 31832712 DOI: 10.1007/s00253-019-10260-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 10/25/2022]
Abstract
In this study, combined genome, transcriptome, and metabolome analysis was performed for eight Saccharomyces cerevisiae mitochondrial respiration-deficient mutants. Each mutant exhibited a unique nuclear genome mutation pattern; the nuclear genome mutations, and thus potentially affected genes and metabolic pathways, showed a co-occurrence frequency of ≤ 3 among the eight mutants. For example, only a lipid metabolism-related pathway was likely to be affected by the nuclear genome mutations in one of the mutants. However, large deletions in the mitochondrial genome were the shared characteristic among the eight mutants. At the transcriptomic level, lipid metabolism was the most significantly enriched Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway for differentially expressed genes (DEGs) co-occurring in both ≥ 4 and ≥ 5 mutants. Any identified DEG enriched in lipid metabolism showed the same up-/down-regulated pattern among nearly all eight mutants. Further, 126 differentially expressed lipid species (DELS) were identified, which also showed the same up-/down-regulated pattern among nearly all investigated mutants. It was conservatively demonstrated that the similar change pattern of lipid metabolism in the entire investigated mutant population was attributed to mitochondrial dysfunction. The change spectrum of lipid species was presented, suggesting that the number and change degree of up-regulated lipid species were higher than those of down-regulated lipid species. Additionally, energy storage lipids increased in content and plasma-membrane phospholipid compositions varied in the relative proposition. The results for the genome, transcriptome, and lipidome were mutually validated, which provides quantitative data revealing the roles of mitochondria from a global cellular perspective.
Collapse
|