1
|
Saputra HA, Chung JH, Sahin MAZ, Park DS, Shim YB. Dual-signal output biosensor for the detection of program death-ligand 1 and therapy progress monitoring of cancer. Biosens Bioelectron 2024; 262:116565. [PMID: 39003918 DOI: 10.1016/j.bios.2024.116565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
A disposable dual-output biosensor to detect program death-ligand 1 (PD-L1) was developed for immunotherapy progress monitoring and early cancer detection in a single experimental setup. The aptamer probe was assembled on rGO composited with carboxylated terthiophene polymer (rGO-pTBA) to specifically capture PD-L1 protein labeled with a new redox mediator, ortho-amino phenol para sulphonic acid, for amperometric detection. Each sensing layer was characterized through electrochemical and surface analysis experiments, then confirmed the sensing performance. The calibration plots for the standard PD-L1 protein detection revealed two dynamic ranges of 0.5-100.0 pM and 100.0-500.0 pM, where the detection limit was 0.20 ± 0.001 pM (RSD ≤5.2%) by amperometry. The sensor reliability was evaluated by detecting A549 lung cancer cell-secreted PD-L1 and clinically relevant serum levels of soluble PD-L1 (sPD-L1) using both detection methods. In addition, therapeutic trials were studied through the quantification of sPD-L1 levels for a small cohort of lung cancer patients. A significantly higher level of sPD-L1 was observed for patients (221.6-240.4 pM) compared to healthy individuals (16.2-19.6 pM). After immunotherapy, the patients' PD-L1 level decreased to the range of 126.7-141.2 pM. The results indicated that therapy monitoring was successfully done using both the proposed methods. Additionally, based on a comparative study on immune checkpoint-related proteins, PD-L1 is a more effective biomarker than granzyme B and interferon-gamma.
Collapse
Affiliation(s)
- Heru Agung Saputra
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, South Korea
| | - Jae Heun Chung
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, 626-770, South Korea
| | - Md Ali Zaber Sahin
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, South Korea
| | - Deog-Su Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, South Korea
| | - Yoon-Bo Shim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, South Korea.
| |
Collapse
|
2
|
Patil PD, Gargate N, Dongarsane K, Jagtap H, Phirke AN, Tiwari MS, Nadar SS. Revolutionizing biocatalysis: A review on innovative design and applications of enzyme-immobilized microfluidic devices. Int J Biol Macromol 2024; 281:136193. [PMID: 39362440 DOI: 10.1016/j.ijbiomac.2024.136193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/01/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Integrating microfluidic devices and enzymatic processes in biocatalysis is a rapidly advancing field with promising applications. This review explores various facets, including applications, scalability, techno-commercial implications, and environmental consequences. Enzyme-embedded microfluidic devices offer advantages such as compact dimensions, rapid heat transfer, and minimal reagent consumption, especially in pharmaceutical optically pure compound synthesis. Addressing scalability challenges involves strategies for uniform flow distribution and consistent residence time. Incorporation with downstream processing and biocatalytic reactions makes the overall process environmentally friendly. The review navigates challenges related to reaction kinetics, cofactor recycling, and techno-commercial aspects, highlighting cost-effectiveness, safety enhancements, and reduced energy consumption. The potential for automation and commercial-grade infrastructure is discussed, considering initial investments and long-term savings. The incorporation of machine learning in enzyme-embedded microfluidic devices advocates a blend of experimental and in-silico methods for optimization. This comprehensive review examines the advancements and challenges associated with these devices, focusing on their integration with enzyme immobilization techniques, the optimization of process parameters, and the techno-commercial considerations crucial for their widespread implementation. Furthermore, this review offers novel insights into strategies for overcoming limitations such as design complexities, laminar flow challenges, enzyme loading optimization, catalyst fouling, and multi-enzyme immobilization, highlighting the potential for sustainable and efficient enzymatic processes in various industries.
Collapse
Affiliation(s)
- Pravin D Patil
- Department of Basic Science & Humanities, Mukesh Patel School of Technology Management & Engineering, SVKM's NMIMS, Mumbai, Maharashtra 400056, India
| | - Niharika Gargate
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Khushi Dongarsane
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Hrishikesh Jagtap
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Ajay N Phirke
- Department of Basic Science & Humanities, Mukesh Patel School of Technology Management & Engineering, SVKM's NMIMS, Mumbai, Maharashtra 400056, India
| | - Manishkumar S Tiwari
- Department of Data Science, Mukesh Patel School of Technology Management & Engineering, SVKM's NMIMS, Mumbai, Maharashtra 400056, India
| | - Shamraja S Nadar
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India.
| |
Collapse
|
3
|
Patil ND, Bains A, Sridhar K, Sharma M, Dhull SB, Goksen G, Chawla P, Inbaraj BS. Recent advances in the analytical methods for quantitative determination of antioxidants in food matrices. Food Chem 2024; 463:141348. [PMID: 39340911 DOI: 10.1016/j.foodchem.2024.141348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Antioxidants are crucial in reducing oxidative stress and enhancing health, necessitating precise quantification in food matrices. Advanced techniques such as biosensors and nanosensors offer high sensitivity and specificity, enabling real-time monitoring and accurate antioxidant quantification in complex food systems. These technologies herald a new era in food analysis, improving food quality and safety through sophisticated detection methods. Their application facilitates comprehensive antioxidant profiling, driving innovation in food technology to meet the rising demand for nutritional optimization and food integrity. These are complemented by electrochemical techniques, spectroscopy, and chromatography. Electrochemical methods provide rapid response times, spectroscopy offers versatile chemical composition analysis, and chromatography excels in precise separation and quantification. Collectively, these methodologies establish a comprehensive framework for food analysis, essential for improving food quality, safety, and nutritional value. Future research should aim to refine these analytical methods, promising significant advancements in food and nutritional science.
Collapse
Affiliation(s)
- Nikhil Dnyaneshwar Patil
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India.
| | | |
Collapse
|
4
|
Sagot M, Derkenne T, Giunchi P, Davit Y, Nougayrède JP, Tregouet C, Raimbault V, Malaquin L, Venzac B. Functionality integration in stereolithography 3D printed microfluidics using a "print-pause-print" strategy. LAB ON A CHIP 2024; 24:3508-3520. [PMID: 38934387 PMCID: PMC11235415 DOI: 10.1039/d4lc00147h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Stereolithography 3D printing, although an increasingly used fabrication method for microfluidic chips, has the main disadvantage of producing monolithic chips in a single material. We propose to incorporate during printing various objects using a "print-pause-print" strategy. Here, we demonstrate that this novel approach can be used to incorporate glass slides, hydrosoluble films, paper pads, steel balls, elastic or nanoporous membranes and silicon-based microdevices, in order to add microfluidic functionalities as diverse as valves, fluidic diodes, shallow chambers, imaging windows for bacteria tracking, storage of reagents, blue energy harvesting or filters for cell capture and culture.
Collapse
Affiliation(s)
- Matthieu Sagot
- LAAS-CNRS, CNRS, 7 Avenue du Colonel Roche, 31400 Toulouse, France.
- Smartcatch, 1 Place Pierre Potier, 31100, Toulouse, France
| | - Timothée Derkenne
- MIE, CBI, ESPCI Paris, Université PSL, CNRS, 10 Rue Vauquelin, 75005 Paris, France
| | - Perrine Giunchi
- Institut de Mécanique des Fluides de Toulouse (IMFT, UMR 5502), Université de Toulouse, CNRS, INPT, UPS, 2 Allée du Professeur Camille Soula, 31400 Toulouse, France
- Institut de Recherche en Santé Digestive (IRSD, U1220), Université de Toulouse, INRAE, ENVT, UPS, 105 Avenue de Casselardit, 31300 Toulouse, France
| | - Yohan Davit
- Institut de Mécanique des Fluides de Toulouse (IMFT, UMR 5502), Université de Toulouse, CNRS, INPT, UPS, 2 Allée du Professeur Camille Soula, 31400 Toulouse, France
| | - Jean-Philippe Nougayrède
- Institut de Recherche en Santé Digestive (IRSD, U1220), Université de Toulouse, INRAE, ENVT, UPS, 105 Avenue de Casselardit, 31300 Toulouse, France
| | - Corentin Tregouet
- MIE, CBI, ESPCI Paris, Université PSL, CNRS, 10 Rue Vauquelin, 75005 Paris, France
| | | | - Laurent Malaquin
- LAAS-CNRS, CNRS, 7 Avenue du Colonel Roche, 31400 Toulouse, France.
| | - Bastien Venzac
- LAAS-CNRS, CNRS, 7 Avenue du Colonel Roche, 31400 Toulouse, France.
| |
Collapse
|
5
|
Mousavi SM, Nezhad FF, Ghahramani Y, Binazadeh M, Javidi Z, Azhdari R, Gholami A, Omidifar N, Rahman MM, Chiang WH. Recent Advances in Bioactive Carbon Nanotubes Based on Polymer Composites for Biosensor Applications. Chem Biodivers 2024; 21:e202301288. [PMID: 38697942 DOI: 10.1002/cbdv.202301288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Recent breakthroughs in the field of carbon nanotubes (CNTs) have opened up unprecedented opportunities for the development of specialized bioactive CNT-polymers for a variety of biosensor applications. The incorporation of bioactive materials, including DNA, aptamers and antibodies, into CNTs to produce composites of bioactive CNTs has attracted considerable attention. In addition, polymers are essential for the development of biosensors as they provide biocompatible conditions and are the ideal matrix for the immobilization of proteins. The numerous applications of bioactive compounds combined with the excellent chemical and physical properties of CNTs have led to the development of bioactive CNT-polymer composites. This article provides a comprehensive overview of CNT-polymer composites and new approaches to encapsulate bioactive compounds and polymers in CNTs. Finally, biosensor applications of bioactive CNT-polymer for the detection of glucose, H2O2 and cholesterol were investigated. The surface of CNT-polymer facilitates the immobilization of bioactive molecules such as DNA, enzymes or antibodies, which in turn enables the construction of state-of-the-art, future-oriented biosensors.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | | | - Yasamin Ghahramani
- Department of Endodontics, Dental School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Mollasadra Street, 71345, Shiraz, Fars, Iran
| | - Zahra Javidi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rouhollah Azhdari
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz, 71468-64685, Iran
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| |
Collapse
|
6
|
Strohmaier-Nguyen D, Horn C, Baeumner AJ. Membrane-Free Lateral Flow Assay with the Active Control of Fluid Transport for Ultrasensitive Cardiac Biomarker Detection. Anal Chem 2024; 96:7014-7021. [PMID: 38659215 PMCID: PMC11079857 DOI: 10.1021/acs.analchem.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Membrane-based lateral flow immunoassays (LFAs) have been employed as early point-of-care (POC) testing tools in clinical settings. However, the varying membrane properties, uncontrollable sample transport in LFAs, visual readout, and required large sample volumes have been major limiting factors in realizing needed sensitivity and desirable precise quantification. Addressing these challenges, we designed a membrane-free system in which the desirable three-dimensional (3D) structure of the detection zone is imitated and used a small pump for fluid flow and fluorescence as readout, all the while maintaining a one-step assay protocol. A hydrogel-like protein-polyelectrolyte complex (PPC) within a polyelectrolyte multilayer (PEM) was developed as the test line by complexing polystreptavidin (pSA) with poly(diallyldimethylammonium chloride) (PDDA), which in turn was layered with poly(acrylic acid) (PAA) resulting in a superior 3D streptavidin-rich test line. Since the remainder of the microchannel remains material-free, good flow control is achieved, and with the total volume of 20 μL, 7.5-fold smaller sample volumes can be used in comparison to conventional LFAs. High sensitivity with desirable reproducibility and a 20 min total assay time were achieved for the detection of NT-proBNP in plasma with a dynamic range of 60-9000 pg·mL-1 and a limit of detection of 56 pg·mL-1 using probe antibody-modified fluorescence nanoparticles. While instrument-free visual detection is no longer possible, the developed lateral flow channel platform has the potential to dramatically expand the LFA applicability, as it overcomes the limitations of membrane-based immunoassays, ultimately improving the accuracy and reducing the sample volume so that finger-prick analyses can easily be done in a one-step assay for analytes present at very low concentrations.
Collapse
Affiliation(s)
- Dan Strohmaier-Nguyen
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Carina Horn
- Roche
Diagnostics GmbH, 68305 Mannheim, Germany
| | - Antje J. Baeumner
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
7
|
Abdul Wahab MR, Palaniyandi T, Viswanathan S, Baskar G, Surendran H, Gangadharan SGD, Sugumaran A, Sivaji A, Kaliamoorthy S, Kumarasamy S. Biomarker-specific biosensors revolutionise breast cancer diagnosis. Clin Chim Acta 2024; 555:117792. [PMID: 38266968 DOI: 10.1016/j.cca.2024.117792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Breast cancer is the most common cancer among women across the globe. In order to treat breast cancer successfully, it is crucial to conduct a comprehensive assessment of the condition during its initial stages. Although mammogram screening has long been a common method of breast cancer screening, high rates of type I error and type II error results as well as radiation exposure have always been of concern. The outgrowth cancer mortality rate is primarily due to delayed diagnosis, which occurs most frequently in a metastatic III or IV stage, resulting in a poor prognosis after therapy. Traditional detection techniques require identifying carcinogenic properties of cells, such as DNA or RNA alterations, conformational changes and overexpression of certain proteins, and cell shape, which are referred to as biomarkers or analytes. These procedures are complex, long-drawn-out, and expensive. Biosensors have recently acquired appeal as low-cost, simple, and super sensitive detection methods for analysis. The biosensor approach requires the existence of biomarkers in the sample. Thus, the development of novel molecular markers for diverse forms of cancer is a rising complementary affair. These biosensor devices offer two major advantages: (1) a tiny amount of blood collected from the patient is sufficient for analysis, and (2) it could help clinicians swiftly select and decide on the best therapy routine for the individual. This review will include updates on prospective cancer markers and biosensors in cancer diagnosis, as well as the associated detection limitations, with a focus on biosensor development for marker detection.
Collapse
Affiliation(s)
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India.
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Hemapreethi Surendran
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - S G D Gangadharan
- Department of Medical Oncology, Madras Medical College, R. G. G. G. H., Chennai, Tamil Nadu, India
| | - Abimanyu Sugumaran
- Department of Pharmaceutical Sciences, Assam University, (A Central University), Silchar, Assam, India
| | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, India
| | - Senthilkumar Kaliamoorthy
- Department of Electronics and Communication Engineering, Dr. M.G.R Educational and Research Institute, Chennai, Tamil Nadu, India
| | - Saravanan Kumarasamy
- Department of Electrical and Electronics Engineering, Dr. M.G.R Educational and Research Institute, Chennai, Tamil Nadu, India
| |
Collapse
|
8
|
Haghjooy Javanmard S, Rafiee L, Bahri Najafi M, Khorsandi D, Hasan A, Vaseghi G, Makvandi P. Microfluidic-based technologies in cancer liquid biopsy: Unveiling the role of horizontal gene transfer (HGT) materials. ENVIRONMENTAL RESEARCH 2023; 238:117083. [PMID: 37690629 DOI: 10.1016/j.envres.2023.117083] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Liquid biopsy includes the isolating and analysis of non-solid biological samples enables us to find new ways for molecular profiling, prognostic assessment, and better therapeutic decision-making in cancer patients. Despite the conventional theory of tumor development, a non-vertical transmission of DNA has been reported among cancer cells and between cancer and normal cells. The phenomenon referred to as horizontal gene transfer (HGT) has the ability to amplify the advancement of tumors by disseminating genes that encode molecules conferring benefits to the survival or metastasis of cancer cells. Currently, common liquid biopsy approaches include the analysis of extracellular vesicles (EVs) and tumor-free DNA (tfDNA) derived from primary tumors and their metastatic sites, which are well-known HGT mediators in cancer cells. Current technological and molecular advances expedited the high-throughput and high-sensitive HGT materials analyses by using new technologies, such as microfluidics in liquid biopsies. This review delves into the convergence of microfluidic-based technologies and the investigation of Horizontal Gene Transfer (HGT) materials in cancer liquid biopsy. The integration of microfluidics offers unprecedented advantages such as high sensitivity, rapid analysis, and the ability to analyze rare cell populations. These attributes are instrumental in detecting and characterizing CTCs, circulating nucleic acids, and EVs, which are carriers of genetic cargo that could potentially undergo HGT. The phenomenon of HGT in cancer has raised intriguing questions about its role in driving genomic diversity and acquired drug resistance. By leveraging microfluidic platforms, researchers have been able to capture and analyze individual cells or genetic material with enhanced precision, shedding light on the potential transfer of genetic material between cancer cells and surrounding stromal cells. Furthermore, the application of microfluidics in single-cell sequencing has enabled the elucidation of the genetic changes associated with HGT events, providing insights into the evolution of tumor genomes. This review also discusses the challenges and opportunities in studying HGT materials using microfluidic-based technologies. In conclusion, microfluidic-based technologies have significantly advanced the field of cancer liquid biopsy, enabling the sensitive and accurate detection of HGT materials. As the understanding of HGT's role in tumor evolution and therapy resistance continues to evolve, the synergistic integration of microfluidics and HGT research promises to provide valuable insights into cancer biology, with potential implications for precision oncology and therapeutic strategies.
Collapse
Affiliation(s)
- Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Rafiee
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majed Bahri Najafi
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, United States
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar.
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China.
| |
Collapse
|
9
|
Jiang L, Wang P, Shu Y, Jin P, Xu L, Xu C, Guo L. A colloidal gold immunoassay strip assay for cadmium detection in oilfield chemicals. Analyst 2023; 148:4166-4173. [PMID: 37522178 DOI: 10.1039/d3an01075a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Cadmium ions (Cd2+) are some of the major pollutants in oilfield chemicals. To reduce the pollution of oilfield chemicals, it is necessary to detect and control the content of Cd2+. In this study, we synthesized a highly sensitive and specific monoclonal antibody against Cd2+ with an IC50 of 1.97 ng mL-1 and no cross-reactivity. Based on this antibody, a colloidal gold immunoassay strip detection assay with an IC50 of 1 mg kg-1 and a detection range of 1.0-20 mg kg-1 in oilfield chemicals was developed. This assay could be completed in 20 min and can be used for Cd2+ on-site testing in oilfield chemicals and improve supervision efficiency in oil exploration and development.
Collapse
Affiliation(s)
- Luming Jiang
- PetroChina Research Institute of Petroleum Exploration and Development, Beijing, 10083, China
- Key Laboratory of Oilfield Chemicals, CNPC, Beijing 10083, China
| | - Peng Wang
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Yong Shu
- PetroChina Research Institute of Petroleum Exploration and Development, Beijing, 10083, China
- Key Laboratory of Oilfield Chemicals, CNPC, Beijing 10083, China
| | - Ping Jin
- Suzhou Product Quality Supervision and Inspection Institute, Building B, No. 1368 Wuzhong Avenue, Suzhou, Jiangsu, 215000, China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Lingling Guo
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
10
|
Siddiqui SA, Ullah Farooqi MQ, Bhowmik S, Zahra Z, Mahmud MC, Assadpour E, Gan RY, Kharazmi MS, Jafari SM. Application of micro/nano-fluidics for encapsulation of food bioactive compounds - principles, applications, and challenges. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
11
|
Meggiolaro A, Moccia V, Brun P, Pierno M, Mistura G, Zappulli V, Ferraro D. Microfluidic Strategies for Extracellular Vesicle Isolation: Towards Clinical Applications. BIOSENSORS 2022; 13:bios13010050. [PMID: 36671885 PMCID: PMC9855931 DOI: 10.3390/bios13010050] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 05/15/2023]
Abstract
Extracellular vesicles (EVs) are double-layered lipid membrane vesicles released by cells. Currently, EVs are attracting a lot of attention in the biological and medical fields due to their role as natural carriers of proteins, lipids, and nucleic acids. Thus, they can transport useful genomic information from their parental cell through body fluids, promoting cell-to-cell communication even between different organs. Due to their functionality as cargo carriers and their protein expression, they can play an important role as possible diagnostic and prognostic biomarkers in various types of diseases, e.g., cancers, neurodegenerative, and autoimmune diseases. Today, given the invaluable importance of EVs, there are some pivotal challenges to overcome in terms of their isolation. Conventional methods have some limitations: they are influenced by the starting sample, might present low throughput and low purity, and sometimes a lack of reproducibility, being operator dependent. During the past few years, several microfluidic approaches have been proposed to address these issues. In this review, we summarize the most important microfluidic-based devices for EV isolation, highlighting their advantages and disadvantages compared to existing technology, as well as the current state of the art from the perspective of the use of these devices in clinical applications.
Collapse
Affiliation(s)
- Alessio Meggiolaro
- Department of Physics and Astronomy, University of Padua, Via Marzolo 8, 35131 Padua, Italy
| | - Valentina Moccia
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | - Matteo Pierno
- Department of Physics and Astronomy, University of Padua, Via Marzolo 8, 35131 Padua, Italy
| | - Giampaolo Mistura
- Department of Physics and Astronomy, University of Padua, Via Marzolo 8, 35131 Padua, Italy
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Davide Ferraro
- Department of Physics and Astronomy, University of Padua, Via Marzolo 8, 35131 Padua, Italy
- Correspondence:
| |
Collapse
|
12
|
Hager R, Forsich C, Duchoslav J, Burgstaller C, Stifter D, Weghuber J, Lanzerstorfer P. Microcontact Printing of Biomolecules on Various Polymeric Substrates: Limitations and Applicability for Fluorescence Microscopy and Subcellular Micropatterning Assays. ACS APPLIED POLYMER MATERIALS 2022; 4:6887-6896. [PMID: 36277174 PMCID: PMC9578008 DOI: 10.1021/acsapm.2c00834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Polymeric materials play an emerging role in biosensing interfaces. Within this regard, polymers can serve as a superior surface for binding and printing of biomolecules. In this study, we characterized 11 different polymer foils [cyclic olefin polymer (COP), cyclic olefin copolymer (COC), polymethylmethacrylate (PMMA), DI-Acetate, Lumirror 4001, Melinex 506, Melinex ST 504, polyamide 6, polyethersulfone, polyether ether ketone, and polyimide] to test for the applicability for surface functionalization, biomolecule micropatterning, and fluorescence microscopy approaches. Pristine polymer foils were characterized via UV-vis spectroscopy. Functional groups were introduced by plasma activation and epoxysilane-coating. Polymer modification was evaluated by water contact angle measurement and X-ray photoelectron spectroscopy. Protein micropatterns were fabricated using microcontact printing. Functionalized substrates were characterized via fluorescence contrast measurements using epifluorescence and total internal reflection fluorescence microscopy. Results showed that all polymer substrates could be chemically modified with epoxide functional groups, as indicated by reduced water contact angles compared to untreated surfaces. However, transmission and refractive index measurements revealed differences in important optical parameters, which was further proved by fluorescence contrast measurements of printed biomolecules. COC, COP, and PMMA were identified as the most promising alternatives to commonly used glass coverslips, which also showed superior applicability in subcellular micropatterning experiments.
Collapse
Affiliation(s)
- Roland Hager
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
| | - Christian Forsich
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
| | - Jiri Duchoslav
- Center
for Surface and Nanoanalytics (ZONA), Johannes
Kepler University Linz, 4040 Linz, Austria
| | - Christoph Burgstaller
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
- Transfercenter
für Kunststofftechnik GmbH, 4600 Wels, Austria
| | - David Stifter
- Center
for Surface and Nanoanalytics (ZONA), Johannes
Kepler University Linz, 4040 Linz, Austria
| | - Julian Weghuber
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
- FFoQSI—Austrian
Competence Center for Feed and Food Quality, 3430 Tulln, Austria
| | - Peter Lanzerstorfer
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
| |
Collapse
|
13
|
Theel EK, Schwaminger SP. Microfluidic Approaches for Affinity-Based Exosome Separation. Int J Mol Sci 2022; 23:ijms23169004. [PMID: 36012270 PMCID: PMC9409173 DOI: 10.3390/ijms23169004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 12/13/2022] Open
Abstract
As a subspecies of extracellular vesicles (EVs), exosomes have provided promising results in diagnostic and theranostic applications in recent years. The nanometer-sized exosomes can be extracted by liquid biopsy from almost all body fluids, making them especially suitable for mainly non-invasive point-of-care (POC) applications. To achieve this, exosomes must first be separated from the respective biofluid. Impurities with similar properties, heterogeneity of exosome characteristics, and time-related biofouling complicate the separation. This practical review presents the state-of-the-art methods available for the separation of exosomes. Furthermore, it is shown how new separation methods can be developed. A particular focus lies on the fabrication and design of microfluidic devices using highly selective affinity separation. Due to their compactness, quick analysis time and portable form factor, these microfluidic devices are particularly suitable to deliver fast and reliable results for POC applications. For these devices, new manufacturing methods (e.g., laminating, replica molding and 3D printing) that use low-cost materials and do not require clean rooms are presented. Additionally, special flow routes and patterns that increase contact surfaces, as well as residence time, and thus improve affinity purification are displayed. Finally, various analyses are shown that can be used to evaluate the separation results of a newly developed device. Overall, this review paper provides a toolbox for developing new microfluidic affinity devices for exosome separation.
Collapse
Affiliation(s)
- Eike K. Theel
- Bioseparation Engineering Group, School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching bei München, Germany
| | - Sebastian P. Schwaminger
- Bioseparation Engineering Group, School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching bei München, Germany
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- Correspondence:
| |
Collapse
|
14
|
Geissler M, Ponton A, Nassif C, Malic L, Turcotte K, Lukic L, Morton KJ, Veres T. Use of Polymer Micropillar Arrays as Templates for Solid-Phase Immunoassays. ACS APPLIED POLYMER MATERIALS 2022; 4:5287-5297. [PMID: 37552739 PMCID: PMC9173674 DOI: 10.1021/acsapm.2c00163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/20/2022] [Indexed: 08/10/2023]
Abstract
We investigate the use of periodic micropillar arrays produced by high-fidelity microfabrication with cyclic olefin polymers for solid-phase immunoassays. These three-dimensional (3D) templates offer higher surface-to-volume ratios than two-dimensional substrates, making it possible to attach more antibodies and so increase the signal obtained by the assay. Micropillar arrays also provide the capacity to induce wicking, which is used to distribute and confine antibodies on the surface with spatial control. Micropillar array substrates are modified by using oxygen plasma treatment, followed by grafting of (3-aminopropyl)triethoxysilane for binding proteins covalently using glutaraldehyde as a cross-linker. The relationship between microstructure and fluorescence signal was investigated through variation of pitch (10-50 μm), pillar diameter (5-40 μm), and pillar height (5-57 μm). Our findings suggest that signal intensity scales proportionally with the 3D surface area available for performing solid-phase immunoassays. A linear relationship between fluorescence intensity and microscale structure can be maintained even when the aspect ratio and pillar density both become very high, opening the possibility of tuning assay response by design such that desired signal intensity is obtained over a wide dynamic range compatible with different assays, analyte concentrations, and readout instruments. We demonstrate the versatility of the approach by performing the most common immunoassay formats-direct, indirect, and sandwich-in a qualitative fashion by using colorimetric and fluorescence-based detection for a number of clinically relevant protein markers, such as tumor necrosis factor alpha, interferon gamma (IFN-γ), and spike protein of severe acute respiratory syndrome coronavirus 2. We also show quantitative detection of IFN-γ in serum using a fluorescence-based sandwich immunoassay and calibrated samples with spike-in concentrations ranging from 50 pg/mL to 5 μg/mL, yielding an estimated limit of detection of ∼1 pg/mL for arrays with high micropillar density (11561 per mm2) and aspect ratio (1:11.35).
Collapse
Affiliation(s)
- Matthias Geissler
- Life Sciences Division, National Research Council of
Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4,
Canada
| | - André Ponton
- Life Sciences Division, National Research Council of
Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4,
Canada
| | - Christina Nassif
- Life Sciences Division, National Research Council of
Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4,
Canada
| | - Lidija Malic
- Life Sciences Division, National Research Council of
Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4,
Canada
| | - Karine Turcotte
- Life Sciences Division, National Research Council of
Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4,
Canada
| | - Ljuboje Lukic
- Life Sciences Division, National Research Council of
Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4,
Canada
| | - Keith J. Morton
- Life Sciences Division, National Research Council of
Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4,
Canada
| | - Teodor Veres
- Life Sciences Division, National Research Council of
Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4,
Canada
| |
Collapse
|
15
|
Farah J, Gravel E, Doris E, Malloggi F. Direct integration of gold-carbon nanotube hybrids in continuous-flow microfluidic chips: A versatile approach for nanocatalysis. J Colloid Interface Sci 2022; 613:359-367. [PMID: 35042033 DOI: 10.1016/j.jcis.2021.12.178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022]
Abstract
A carbon nanotube-based packed-bed microreactor was developed for the on-chip oxidation of silanes. The process is catalyzed by a heterogeneous gold-carbon nanotube hybrid that was embedded in the device using a micrometric restriction zone. Integration of the nanohybrid permitted efficient flow aerobic oxidation of the substrates into the corresponding silanols with high selectivity and under sustainable conditions.
Collapse
Affiliation(s)
- Joseph Farah
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France; Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Edmond Gravel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Eric Doris
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Florent Malloggi
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
16
|
Piffoux M, Silva AKA, Gazeau F, Salmon H. Potential of on‐chip analysis and engineering techniques for extracellular vesicle bioproduction for therapeutics. VIEW 2022. [DOI: 10.1002/viw.20200175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Max Piffoux
- Department of Medical Oncology Centre Léon Bérard Lyon France
- INSERM UMR 1197‐Interaction cellules souches‐niches: physiologie tumeurs et réparation tissulaire Villejuif France
- Laboratoire Matière et Systèmes Complexes, CNRS Université de Paris Paris France
| | - Amanda K. A. Silva
- Laboratoire Matière et Systèmes Complexes, CNRS Université de Paris Paris France
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes, CNRS Université de Paris Paris France
| | - Hugo Salmon
- Laboratoire Matière et Systèmes Complexes, CNRS Université de Paris Paris France
- Université de Paris, T3S, INSERM Paris France
| |
Collapse
|
17
|
Siontorou CG, Georgopoulos KN. A Ready-to-Use Metal-Supported Bilayer Lipid Membrane Biosensor for the Detection of Phenol in Water. MEMBRANES 2021; 11:871. [PMID: 34832100 PMCID: PMC8622659 DOI: 10.3390/membranes11110871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
This work presents a novel metal-supported bilayer lipid membrane (BLM) biosensor built on tyrosinase to quantitate phenol. The detection strategy is based on the enzyme-analyte initial association and not the commonly adopted monitoring of the redox cascade reactions; such an approach has not been proposed in the literature to date and offers many advantages for environmental monitoring with regard to sensitivity, selectivity, reliability and assay simplicity. The phenol sensor developed herein showed good analytical and operational characteristics: the detection limit (signal-to-noise ratio = 3) was 1.24 pg/mL and the sensitivity was 33.45 nA per pg/mL phenol concentration. The shelf life of the tyrosinase sensor was 12 h and the lifetime (in consecutive assays) was 8 h. The sensor was reversible with bathing at pH 8.5 and could be used for eight assay runs in consecutive assays. The validation in real water samples showed that the sensor could reliably detect 2.5 ppb phenol in tap and river water and 6.1 ppb phenol in lake water, without sample pretreatment. The prospects and applicability of the proposed biosensor and the underlying technology are also discussed.
Collapse
Affiliation(s)
- Christina G. Siontorou
- Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, University of Piraeus, 80 Karaoli and Dimitriou Str., 18534 Piraeus, Greece;
| | | |
Collapse
|
18
|
Rocca M, Dufresne M, Salva M, Niemeyer CM, Delamarche E. Microscale Interfacial Polymerization on a Chip. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marco Rocca
- IBM Research Europe—Zurich Säumerstrasse 4 CH-8803 Rüschlikon Zurich Switzerland
- Institute of Biological Interfaces (IBG1) Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Maxime Dufresne
- IBM Research Europe—Zurich Säumerstrasse 4 CH-8803 Rüschlikon Zurich Switzerland
| | - Marie Salva
- IBM Research Europe—Zurich Säumerstrasse 4 CH-8803 Rüschlikon Zurich Switzerland
- Institute of Biological Interfaces (IBG1) Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Christof M. Niemeyer
- Institute of Biological Interfaces (IBG1) Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Emmanuel Delamarche
- IBM Research Europe—Zurich Säumerstrasse 4 CH-8803 Rüschlikon Zurich Switzerland
| |
Collapse
|
19
|
Rocca M, Dufresne M, Salva M, Niemeyer CM, Delamarche E. Microscale Interfacial Polymerization on a Chip. Angew Chem Int Ed Engl 2021; 60:24064-24069. [PMID: 34460136 PMCID: PMC8597160 DOI: 10.1002/anie.202110974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Indexed: 12/22/2022]
Abstract
Forming hydrogels with precise geometries is challenging and mostly done using photopolymerization, which involves toxic chemicals, rinsing steps, solvents, and bulky optical equipment. Here, we introduce a new method for in situ formation of hydrogels with a well‐defined geometry in a sealed microfluidic chip by interfacial polymerization. The geometry of the hydrogel is programmed by microfluidic design using capillary pinning structures and bringing into contact solutions containing hydrogel precursors from vicinal channels. The characteristics of the hydrogel (mesh size, molecular weight cut‐off) can be readily adjusted. This method is compatible with capillary‐driven microfluidics, fast, uses small volumes of reagents and samples, and does not require specific laboratory equipment. Our approach creates opportunities for filtration, hydrogel functionalization, and hydrogel‐based assays, as exemplified by a rapid, compact competitive immunoassay that does not require a rinsing step.
Collapse
Affiliation(s)
- Marco Rocca
- IBM Research Europe-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Zurich, Switzerland.,Institute of Biological Interfaces (IBG1), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Maxime Dufresne
- IBM Research Europe-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Zurich, Switzerland
| | - Marie Salva
- IBM Research Europe-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Zurich, Switzerland.,Institute of Biological Interfaces (IBG1), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christof M Niemeyer
- Institute of Biological Interfaces (IBG1), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Emmanuel Delamarche
- IBM Research Europe-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Zurich, Switzerland
| |
Collapse
|
20
|
Naganuma C, Moriyama K, Suye SI, Fujita S. One-Step Surface Immobilization of Protein A on Hydrogel Nanofibers by Core-Shell Electrospinning for Capturing Antibodies. Int J Mol Sci 2021; 22:9857. [PMID: 34576021 PMCID: PMC8471760 DOI: 10.3390/ijms22189857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
Nanofibers (NFs) are potential candidates as filter materials for affinity separation owing to their high liquid permeability based on their high porosity. Multiple and complex processes were conventionally performed to immobilize proteins for modifying NF surfaces. A simple method must be developed to immobilize proteins without impairing their biological activity. Herein, we succeeded in fabricating NFs with a core of cellulose acetate and a shell of hydrophilic polyvinyl alcohol immobilized with staphylococcal recombinant protein A by a one-step process based on core-shell electrospinning. A total of 12.9 mg/cm3 of antibody was captured in the fiber shell through high affinity with protein A immobilized in an aqueous environment of the hydrogel. The maximum adsorption site and dissociation constant evaluated by the Langmuir model were 87.8 µg and 1.37 µmol/L, respectively. The fiber sheet withstood triplicate use. Thus, our NF exhibited high potential as a material for membrane chromatography.
Collapse
Affiliation(s)
- Chihiro Naganuma
- Department of Frontier Fiber Technology and Science, University of Fukui, Fukui 910-8507, Japan; (C.N.); (K.M.); (S.-i.S.)
| | - Kosuke Moriyama
- Department of Frontier Fiber Technology and Science, University of Fukui, Fukui 910-8507, Japan; (C.N.); (K.M.); (S.-i.S.)
| | - Shin-ichiro Suye
- Department of Frontier Fiber Technology and Science, University of Fukui, Fukui 910-8507, Japan; (C.N.); (K.M.); (S.-i.S.)
- Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-8507, Japan
| | - Satoshi Fujita
- Department of Frontier Fiber Technology and Science, University of Fukui, Fukui 910-8507, Japan; (C.N.); (K.M.); (S.-i.S.)
- Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-8507, Japan
| |
Collapse
|