4
|
Yuan XC, Liang XF, Cai WJ, He S, Guo WJ, Mai KS. Expansion of sweet taste receptor genes in grass carp (Ctenopharyngodon idellus) coincided with vegetarian adaptation. BMC Evol Biol 2020; 20:25. [PMID: 32046636 PMCID: PMC7014666 DOI: 10.1186/s12862-020-1590-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/28/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Taste is fundamental to diet selection in vertebrates. Genetic basis of sweet taste receptor in the shaping of food habits has been extensively studied in mammals and birds, but scarcely studied in fishes. Grass carp is an excellent model for studying vegetarian adaptation, as it exhibits food habit transition from carnivory to herbivory. RESULTS We identified six sweet taste receptors (gcT1R2A-F) in grass carp. The four gcT1R2s (gcT1R2C-F) have been suggested to be evolved from and paralogous to the two original gcT1R2s (gcT1R2A and gcT1R2B). All gcT1R2s were expressed in taste organs and mediated glucose-, fructose- or arginine-induced intracellular calcium signaling, revealing they were functional. In addition, grass carp was performed to prefer fructose to glucose under a behavioral experiment. Parallelly, compared with gcT1R2A-F/gcT1R3 co-transfected cells, gcT1R2C-F/gcT1R3 co-transfected cells showed a higher response to plant-specific fructose. Moreover, food habit transition from carnivory to herbivory in grass carp was accompanied by increased gene expression of certain gcT1R2s. CONCLUSIONS We suggested that the gene expansion of T1R2s in grass carp was an adaptive strategy to accommodate the change in food environment. Moreover, the selected gene expression of gcT1R2s might drive the food habit transition from carnivory to herbivory in grass carp. This study provided some evolutional and physiological clues for the formation of herbivory in grass carp.
Collapse
Affiliation(s)
- Xiao-Chen Yuan
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China.,Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China. .,Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
| | - Wen-Jing Cai
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China.,Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Shan He
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China.,Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Wen-Jie Guo
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Kang-Sen Mai
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, Shandong, China
| |
Collapse
|
6
|
Liu Z, Liu S, Yao J, Bao L, Zhang J, Li Y, Jiang C, Sun L, Wang R, Zhang Y, Zhou T, Zeng Q, Fu Q, Gao S, Li N, Koren S, Jiang Y, Zimin A, Xu P, Phillippy AM, Geng X, Song L, Sun F, Li C, Wang X, Chen A, Jin Y, Yuan Z, Yang Y, Tan S, Peatman E, Lu J, Qin Z, Dunham R, Li Z, Sonstegard T, Feng J, Danzmann RG, Schroeder S, Scheffler B, Duke MV, Ballard L, Kucuktas H, Kaltenboeck L, Liu H, Armbruster J, Xie Y, Kirby ML, Tian Y, Flanagan ME, Mu W, Waldbieser GC. The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts. Nat Commun 2016; 7:11757. [PMID: 27249958 PMCID: PMC4895719 DOI: 10.1038/ncomms11757] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/27/2016] [Indexed: 12/31/2022] Open
Abstract
Catfish represent 12% of teleost or 6.3% of all vertebrate species, and are of enormous economic value. Here we report a high-quality reference genome sequence of channel catfish (Ictalurus punctatus), the major aquaculture species in the US. The reference genome sequence was validated by genetic mapping of 54,000 SNPs, and annotated with 26,661 predicted protein-coding genes. Through comparative analysis of genomes and transcriptomes of scaled and scaleless fish and scale regeneration experiments, we address the genomic basis for the most striking physical characteristic of catfish, the evolutionary loss of scales and provide evidence that lack of secretory calcium-binding phosphoproteins accounts for the evolutionary loss of scales in catfish. The channel catfish reference genome sequence, along with two additional genome sequences and transcriptomes of scaled catfishes, provide crucial resources for evolutionary and biological studies. This work also demonstrates the power of comparative subtraction of candidate genes for traits of structural significance.
Collapse
Affiliation(s)
- Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Jun Yao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Lisui Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Jiaren Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Yun Li
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Chen Jiang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Luyang Sun
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Ruijia Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Yu Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Qifan Zeng
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Qiang Fu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Sen Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Ning Li
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Sergey Koren
- National Center for Biodefense Analysis and Countermeasures Center, 110 Thomas Johnson Drive, Frederick, Maryland 21702, USA
| | - Yanliang Jiang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Aleksey Zimin
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Peng Xu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Adam M Phillippy
- National Center for Biodefense Analysis and Countermeasures Center, 110 Thomas Johnson Drive, Frederick, Maryland 21702, USA
| | - Xin Geng
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Lin Song
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Fanyue Sun
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Chao Li
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Xiaozhu Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Ailu Chen
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Yulin Jin
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Eric Peatman
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Jianguo Lu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Zhenkui Qin
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Zhaoxia Li
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Tad Sonstegard
- Bovine Functional Genomics Laboratory, United States Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, Maryland 20705, USA
| | - Jianbin Feng
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Roy G Danzmann
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Steven Schroeder
- Bovine Functional Genomics Laboratory, United States Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, Maryland 20705, USA
| | - Brian Scheffler
- USDA, ARS, Genomics and Bioinformatics Research Unit, P.O. Box 38, Stoneville, Mississippi 38776, USA
| | - Mary V Duke
- USDA, ARS, Genomics and Bioinformatics Research Unit, P.O. Box 38, Stoneville, Mississippi 38776, USA
| | - Linda Ballard
- USDA, ARS, Genomics and Bioinformatics Research Unit, P.O. Box 38, Stoneville, Mississippi 38776, USA
| | - Huseyin Kucuktas
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Ludmilla Kaltenboeck
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Haixia Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Jonathan Armbruster
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Yangjie Xie
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Mona L Kirby
- USDA-ARS Warmwater Aquaculture Research Unit, P.O. Box 38, 141 Experiment Station Road, Stoneville, Mississippi 38776, USA
| | - Yi Tian
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Mary Elizabeth Flanagan
- USDA-ARS Warmwater Aquaculture Research Unit, P.O. Box 38, 141 Experiment Station Road, Stoneville, Mississippi 38776, USA
| | - Weijie Mu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | - Geoffrey C Waldbieser
- USDA-ARS Warmwater Aquaculture Research Unit, P.O. Box 38, 141 Experiment Station Road, Stoneville, Mississippi 38776, USA
| |
Collapse
|
13
|
Oike H, Nagai T, Furuyama A, Okada S, Aihara Y, Ishimaru Y, Marui T, Matsumoto I, Misaka T, Abe K. Characterization of ligands for fish taste receptors. J Neurosci 2007; 27:5584-92. [PMID: 17522303 PMCID: PMC6672760 DOI: 10.1523/jneurosci.0651-07.2007] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent progress in the molecular biology of taste reception has revealed that in mammals, the heteromeric receptors T1R1/3 and T1R2/3 respond to amino acids and sweeteners, respectively, whereas T2Rs are receptors for bitter tastants. Similar taste receptors have also been characterized in fish, but their ligands have not been identified yet. In the present study, we conducted a series of experiments to identify the fish taste receptor ligands. Facial nerve recordings in zebrafish (Danio rerio) demonstrated that the fish perceived amino acids and even denatonium, which is a representative of aversive bitter compounds for mammals and Drosophila. Calcium imaging analysis of T1Rs in zebrafish and medaka fish (Oryzias latipes) using an HEK293T heterologous expression system revealed that both T1R1/3 and a series of T1R2/3 responded to amino acids but not to sugars. A triple-labeling, in situ hybridization analysis demonstrated that cells expressing T1R1/3 and T1R2/3s exist in PLCbeta2-expressing taste bud cells of medaka fish. Functional analysis using T2Rs showed that zfT2R5 and mfT2R1 responded to denatonium. Behavior observations confirmed that zebrafish prefer amino acids and avoid denatonium. These results suggest that, although there may be some fish-specific way of discriminating ligands, vertebrates could have a conserved gustatory mechanism by which T1Rs and T2Rs respond to attractive and aversive tastants, respectively.
Collapse
Affiliation(s)
- Hideaki Oike
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan, and
| | - Toshitada Nagai
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan, and
| | - Akira Furuyama
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, Tomita-machi, Koriyama, Fukushima 963-8611, Japan
| | - Shinji Okada
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan, and
| | - Yoshiko Aihara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan, and
| | - Yoshiro Ishimaru
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan, and
| | - Takayuki Marui
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, Tomita-machi, Koriyama, Fukushima 963-8611, Japan
| | - Ichiro Matsumoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan, and
| | - Takumi Misaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan, and
| | - Keiko Abe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan, and
| |
Collapse
|