1
|
Regan JL, Schumacher D, Staudte S, Steffen A, Lesche R, Toedling J, Jourdan T, Haybaeck J, Golob-Schwarzl N, Mumberg D, Henderson D, Győrffy B, Regenbrecht CR, Keilholz U, Schäfer R, Lange M. Identification of a neural development gene expression signature in colon cancer stem cells reveals a role for EGR2 in tumorigenesis. iScience 2022; 25:104498. [PMID: 35720265 PMCID: PMC9204726 DOI: 10.1016/j.isci.2022.104498] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/28/2022] [Accepted: 05/26/2022] [Indexed: 11/12/2022] Open
Abstract
Recent evidence demonstrates that colon cancer stem cells (CSCs) can generate neurons that synapse with tumor innervating fibers required for tumorigenesis and disease progression. Greater understanding of the mechanisms that regulate CSC driven tumor neurogenesis may therefore lead to more effective treatments. RNA-sequencing analyses of ALDHPositive CSCs from colon cancer patient-derived organoids (PDOs) and xenografts (PDXs) showed CSCs to be enriched for neural development genes. Functional analyses of genes differentially expressed in CSCs from PDO and PDX models demonstrated the neural crest stem cell (NCSC) regulator EGR2 to be required for tumor growth and to control expression of homebox superfamily embryonic master transcriptional regulator HOX genes and the neural stem cell and master cell fate regulator SOX2. These data support CSCs as the source of tumor neurogenesis and suggest that targeting EGR2 may provide a therapeutic differentiation strategy to eliminate CSCs and block nervous system driven disease progression.
Collapse
Affiliation(s)
- Joseph L. Regan
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Dirk Schumacher
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Stephanie Staudte
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Andreas Steffen
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - Ralf Lesche
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| | - Joern Toedling
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| | - Thibaud Jourdan
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Nicole Golob-Schwarzl
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Dermatology and Venereology, Medical University of Graz, 8036 Graz, Austria
| | - Dominik Mumberg
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - David Henderson
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Bayer AG, Business Development and Licensing and Open Innovation, Pharmaceuticals, 13342 Berlin, Germany
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, 1094 Budapest, Hungary
- TTK Cancer Biomarker Research Group, Institute of Enzymology, 1117 Budapest, Hungary
| | - Christian R.A. Regenbrecht
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- CELLphenomics GmbH, 13125 Berlin, Germany
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Ulrich Keilholz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Reinhold Schäfer
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Martin Lange
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| |
Collapse
|
2
|
Saaristo M, Craft JA, Tyagi S, Johnstone CP, Allinson M, Ibrahim KS, Wong BBM. Transcriptome-wide changes associated with the reproductive behaviour of male guppies exposed to 17α-ethinyl estradiol. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116286. [PMID: 33360600 DOI: 10.1016/j.envpol.2020.116286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Although many pharmaceutical compounds (and their metabolites) can induce harmful impacts at the molecular, physiological and behavioural levels, their underlying mechanistic associations have remained largely unexplored. Here, we utilized RNA-Seq to build a whole brain transcriptome profile to examine the impact of a common endocrine disrupting pharmaceutical (17α-ethinyl estradiol, EE2) on reproductive behaviour in wild guppies (Poecilia reticulata). Specifically, we annotated 16,791 coding transcripts in whole brain tissue in relation to the courtship behaviour (i.e. sigmoid display) of EE2 exposed (at environmentally relevant concentration of 8 ng/L for 28-days) and unexposed guppies. Further, we obtained 10,960 assembled transcripts matching in the non-coding orthologous genomes. Behavioural responses were assessed using a standard mate choice experiment, which allowed us to disentangle chemical cues from visual cues. We found that a high proportion of the RNAseq reads aligned back to our de novo assembled transcriptome with 80.59% mapping rate. Behavioural experiments showed that when males were presented only with female visual cues, there was a significant interaction between male treatment and female treatment in the time spent in the preference zone. This is one of the first studies to show that transcriptome-wide changes are associated with the reproductive behaviour of fish: EE2 exposed male guppies that performed high levels of courtship had a gene profile that deviated the most from the other treatment groups, while both non-courting EE2 and control males had similar gene signatures. Using Gene Ontology pathway analysis, our study shows that EE2-exposed males had gene transcripts enriched for pathways associated with altered immunity, starvation, altered metabolism and spermatogenesis. Our study demonstrates that multiple gene networks orchestrate courting behaviour, emphasizing the importance of investigating impacts of pharmaceuticals on gene networks instead of single genes.
Collapse
Affiliation(s)
- Minna Saaristo
- EPA Victoria, Water Sciences, Melbourne, Australia; School of Biological Sciences, Monash University, Australia; Department of Biosciences, Åbo Akademi University, Finland.
| | - John A Craft
- Life Sciences, Glasgow Caledonian University, UK
| | - Sonika Tyagi
- School of Biological Sciences, Monash University, Australia
| | | | - Mayumi Allinson
- Department of Chemical Engineering, University of Melbourne, Australia
| | - Khalid S Ibrahim
- Life Sciences, Glasgow Caledonian University, UK; Department of Biology, University of Zakho, Kurdistan Region, Iraq
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Australia
| |
Collapse
|
3
|
Yang X, Sun NN, Zhao ZN, He SX, Zhang M, Zhang DD, Yu XW, Zhang JM, Fan ZG. Coinheritance of OLFM2 and SIX6 variants in a Chinese family with juvenile-onset primary open-angle glaucoma: A case report. World J Clin Cases 2021; 9:697-706. [PMID: 33553411 PMCID: PMC7829722 DOI: 10.12998/wjcc.v9.i3.697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/26/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Juvenile-onset primary open-angle glaucoma (JOAG), characterized by severe elevation of intraocular pressure and optic neuropathy prior to the age of 40, is a rare subtype of primary open-angle glaucoma. Several genetic mutations have been associated with JOAG.
CASE SUMMARY The proband patient was a young male, diagnosed with primary open-angle glaucoma at the age of 27. The patient and his unaffected parents who have been excluded from classic genetic mutations for primary open-angle glaucoma were included to explore for other possible genetic variants through whole genome sequencing and bioinformatics analysis. In this trio, we found two heterozygous variants inherited from the parents in the proband: c.281G>A, p.Arg94His in OLFM2 and c.177C>G, p.Ile59Met in SIX6. Both genetic mutations are predicted through bioinformatics analysis to replace evolutionary conserved amino acids, therefore rendering a pathogenic effect on proteins. In contrast, very low frequencies for these genetic mutations were recorded in most common control databases.
CONCLUSION This is the first report on coinherited mutations of OLFM2 and SIX6 in a JOAG family, which shows the complexity of JOAG inheritance. Large-scale clinical screening and molecular functional investigations on these coinherited mutations are imperative to improve our understanding of the development of JOAG.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Nan-Nan Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Zhen-Ni Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Shu-Xiang He
- Guangzhou KingMed Diagnostics Group Co., Ltd, Guangzhou 510060, Guangdong Province, China
| | - Miao Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Dan-Dan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Xiao-Wei Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Jia-Min Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Zhi-Gang Fan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| |
Collapse
|
4
|
Garza-Rodríguez ML, González-Álvarez R, Mendoza Alfaro RE, Pérez-Ibave DC, Perez-Maya AA, Luna-Muñoz M, Mohamed-Noriega K, Arámburo-De-La-Hoz C, Aguilera González CJ, Rodriguez Sanchez IP. Olfactomedin-like 2 A and B (OLFML2A and OLFML2B) profile expression in the retina of spotted gar (Lepisosteus oculatus) and bioinformatics mining. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1575-1587. [PMID: 31111317 DOI: 10.1007/s10695-019-00647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
Olfactomedin-like (OLFML) proteins are members of the olfactomedin domain-containing secreted glycoprotein (OLF) family. OLFML2A and OLFML2B are representative molecules of these glycoproteins. Olfactomedins are critical for the development and functional organization of the nervous system and retina, which is a highly conserved structure in vertebrates, having almost identical anatomical and physiological characteristics in multiple taxa. Spotted gar, a member of the Lepisosteidae family, is a freshwater fish that inhabits rivers, bayous, swamps, and brackish waters. Recently, the complete genome has been sequenced, providing a unique bridge between fish medical models to human biology, making it an excellent animal model. This study was aimed to understanding the evolution OLFML2A and OLFML2B in the retina of spotted gar through looking for the expression of these genes. Spotted gar retina was analyzed with hematoxylin-eosin staining assays to provide an overall view of the retina structure and an immunofluorescence assay to identify OLFML2A and OLFML2B protein expression. A phylogenetic tree was created using the neighbor-joining method. Forces that direct the evolution of the fish genes were tested. Spotted gar retina, as in other vertebrates, is made of several layers. OLFML2A and OLFML2B proteins were detected in the rod and cone photoreceptor layer (PRL), outer nuclear layer (ONL), and inner nuclear layer (INL). Phylogenetic tree analysis confirms the orthology within the OLFML2A gene. Purifying selection is the evolutionary force that directs the OLFML2A genes. OLFML2A genes have a well-conserved function over time and species.
Collapse
Affiliation(s)
- María Lourdes Garza-Rodríguez
- Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González," Servicio de Oncología, Monterrey, Nuevo León, Mexico
| | | | - Roberto Eduardo Mendoza Alfaro
- Facultad de Ciencias Biológicas, Departamento de Ecología, Laboratorio de Ecofisiología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Diana Cristina Pérez-Ibave
- Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González," Servicio de Oncología, Monterrey, Nuevo León, Mexico
| | - Antonio Ali Perez-Maya
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Bioquímica y Medicina Molecular, Monterrey, Nuevo León, Mexico
| | - Maricela Luna-Muñoz
- Instituo de Neurobiología, Departamento de Neurobiología Celular y Molecular, Universidad Nacional Autónoma de México, Juriquilla, Queretaro, Mexico
| | - Karim Mohamed-Noriega
- Departamento de Oftalmología, Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", Monterrey, Nuevo León, Mexico
| | - Carlos Arámburo-De-La-Hoz
- Instituo de Neurobiología, Departamento de Neurobiología Celular y Molecular, Universidad Nacional Autónoma de México, Juriquilla, Queretaro, Mexico
| | - Carlos Javier Aguilera González
- Facultad de Ciencias Biológicas, Departamento de Ecología, Laboratorio de Ecofisiología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Iram Pablo Rodriguez Sanchez
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Fisiología Molecular y Estructural, Ave. Pedro de Alba s/n cruz con Ave. Manuel L. Barragán, 66455, San Nicolás de los Garza, Nuevo León, México.
| |
Collapse
|
5
|
Bissen D, Foss F, Acker-Palmer A. AMPA receptors and their minions: auxiliary proteins in AMPA receptor trafficking. Cell Mol Life Sci 2019; 76:2133-2169. [PMID: 30937469 PMCID: PMC6502786 DOI: 10.1007/s00018-019-03068-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/12/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
To correctly transfer information, neuronal networks need to continuously adjust their synaptic strength to extrinsic stimuli. This ability, termed synaptic plasticity, is at the heart of their function and is, thus, tightly regulated. In glutamatergic neurons, synaptic strength is controlled by the number and function of AMPA receptors at the postsynapse, which mediate most of the fast excitatory transmission in the central nervous system. Their trafficking to, at, and from the synapse, is, therefore, a key mechanism underlying synaptic plasticity. Intensive research over the last 20 years has revealed the increasing importance of interacting proteins, which accompany AMPA receptors throughout their lifetime and help to refine the temporal and spatial modulation of their trafficking and function. In this review, we discuss the current knowledge about the roles of key partners in regulating AMPA receptor trafficking and focus especially on the movement between the intracellular, extrasynaptic, and synaptic pools. We examine their involvement not only in basal synaptic function, but also in Hebbian and homeostatic plasticity. Included in our review are well-established AMPA receptor interactants such as GRIP1 and PICK1, the classical auxiliary subunits TARP and CNIH, and the newest additions to AMPA receptor native complexes.
Collapse
Affiliation(s)
- Diane Bissen
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany
| | - Franziska Foss
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute (CPI), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Li Q, Liu A, Gu X, Su Z. Olfactomedin domain-containing proteins: evolution, functional divergence, expression patterns and damaging SNPs. Mol Genet Genomics 2019; 294:875-885. [PMID: 30915543 DOI: 10.1007/s00438-019-01549-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/15/2019] [Indexed: 12/11/2022]
Abstract
Olfactomedin domain-containing proteins appear to facilitate neurodevelopment, cell adhesion, intercellular interactions, and protein-protein interactions, and the disruption of their expression will lead to dramatic developmental perturbations and lethality. The aim of the present work was to study how these genes evolved in metazoans and diverged after their duplication as well as to characterize their expression profiles and detrimental mutations. We conducted an exhaustive survey of olfactomedin domain-containing genes in genomic databases, identifying 235 olfactomedin-like (OLF) proteins in 29 representative species covering all the main metazoan lineages. Phylogenetic analyses allowed us to define nine different subfamilies of OLF genes, and subfamily IX, which specifically includes two immunoglobulin domains, was identified for the first time in arthropods. Functional divergence analysis suggested that the function of this arthropod-specific OLF subfamily might have diverged from that of other subfamilies. Expression pattern analysis of OLF genes in humans and rats showed that human OLF genes tended to be highly expressed in the brain, while rat OLF genes were inclined to be expressed in the ovary and brain. We used the SIFT and PolyPhen servers in dbNSFP to distinguish deleterious mutations from neutral mutations for each member of the OLF gene family. The results showed that OLFML2B contains the most destructive SNPs (up to 61), while none of the mutations in OLFM2, OLFM4 and LPHN2 were predicted to be harmful. Taken together, these findings may not only enhance understanding of the phylogenetic relationships of the OLF family but also aid future studies on OLF protein regulation of nervous system development and immune function.
Collapse
Affiliation(s)
- Qin Li
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Fudan University Shanghai Cancer Center, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ake Liu
- Faculty of Biological Science and Technology, Changzhi University, Changzhi, 046011, Shanxi, China
| | - Xun Gu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Zhixi Su
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China. .,Singlera Genomics Inc, Shanghai, China.
| |
Collapse
|
7
|
Schira J, Heinen A, Poschmann G, Ziegler B, Hartung HP, Stühler K, Küry P. Secretome analysis of nerve repair mediating Schwann cells reveals Smad-dependent trophism. FASEB J 2018; 33:4703-4715. [PMID: 30592632 DOI: 10.1096/fj.201801799r] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Schwann cells promote nerve regeneration by adaptation of a regenerative phenotype referred to as repair mediating Schwann cell. Down-regulation of myelin proteins, myelin clearance, formation of Bungner's bands, and secretion of trophic factors characterize this cell type. We have previously shown that the sphingosine-1-phosphate receptor agonist Fingolimod/FTY720P promotes the generation of this particular Schwann cell phenotype by activation of dedifferentiation markers and concomitant release of trophic factors resulting in enhanced neurite growth of dorsal root ganglion neurons. Despite its biomedical relevance, a detailed characterization of the corresponding Schwann cell secretome is lacking, and the impact of FTY720P on enhancing neurite growth is not defined. Here, we applied a label-free quantitative mass spectrometry approach to characterize the secretomes derived from primary neonatal and adult rat Schwann cells in response to FTY720P. We identified a large proportion of secreted proteins with a high overlap between the neonatal and adult Schwann cells, which can be associated with biologic processes such as development, axon growth, and regeneration. Moreover, FTY720P-treated Schwann cells release proteins downstream of Smad signaling known to support neurite growth. Our results therefore uncover a network of trophic factors involved in glial-mediated repair of the peripheral nervous system.-Schira, J., Heinen, A., Poschmann, G., Ziegler, B., Hartung, H.-P., Stühler, K., Küry, P. Secretome analysis of nerve repair mediating Schwann cells reveals Smad-dependent trophism.
Collapse
Affiliation(s)
- Jessica Schira
- Department of Neurology, Medical Faculty, Biomedical Research Center, Heinrich-Heine-University, Düsseldorf, Germany.,Molecular Proteomics Laboratory, Biomedical Research Center, Heinrich-Heine-University, Düsseldorf, Germany; and
| | - André Heinen
- Department of Neurology, Medical Faculty, Biomedical Research Center, Heinrich-Heine-University, Düsseldorf, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, Biomedical Research Center, Heinrich-Heine-University, Düsseldorf, Germany; and
| | - Brigida Ziegler
- Department of Neurology, Medical Faculty, Biomedical Research Center, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Biomedical Research Center, Heinrich-Heine-University, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biomedical Research Center, Heinrich-Heine-University, Düsseldorf, Germany; and.,Institute for Molecular Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Biomedical Research Center, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
8
|
Li H, Gui H, Yuan G, Zheng X, Gao C, Yuan H. Increased plasma olfactomedin 2 after interventional therapy is a predictor for restenosis in lower extremity arteriosclerosis obliterans patients. Scandinavian Journal of Clinical and Laboratory Investigation 2018; 78:269-274. [PMID: 29553861 DOI: 10.1080/00365513.2018.1452287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Animal studies have indicated that olfactomedin 2 (OLFM2) is involved in the process of vascular remolding. The aim of the present study was to investigate circulating OLFM2 levels in lower extremity arteriosclerosis obliterans (LEASO) patients and the association of OLFM2 with postoperative restenosis in patients. A total of 203 LEASO patients were enrolled in the present study. Plasma OLFM2 was measured before and 6 h after interventional therapy. After 6 months, patients were divided into a restenosis group and a non-restenosis group. Inter-group and intra-group differences in plasma OLFM2 were compared. The correlation between plasma OLFM2 and the severity of restenosis was analyzed by Spearman's correlation analysis. An receiver operating characteristic (ROC) curve was used to evaluate the predictive efficacy of plasma OLFM2 on restenosis. Logistic regression was used to determine the risk factors for restenosis. Postoperative OLFM2 in the restenosis group was significantly higher compared with the non-restenosis group (34.07 ± 5.76 ng/mL vs. 19.53 ± 2.99 ng/mL). No significant difference in preoperative plasma OLFM2 levels was identified between the two groups (10.92 ± 2.49 ng/mL vs. 11.54 ± 3.18 ng/mL). Postoperative OLFM2 levels were positively correlated with the severity of restenosis (r = 0.728, p < .001). The area under the ROC curve was 0.902 (95% confidence interval (CI): 0.874-0.965), with a cutoff value of 26.91 ng/mL (95% CI: 26.16-28.32). Plasma OLFM2 was an independent risk factor for restenosis. Our results suggest that plasma OLFM2 is a potential biomarker for restenosis and may be a novel target for the treatment of restenosis.
Collapse
Affiliation(s)
- Hongbo Li
- a Department of Vascular Surgery , People's Hospital of Shouguang , Weifang , Shandong , China.,b Department of Vascular Surgery , Shandong Provincial Hospital , Jinan , Shandong , China
| | - Hua Gui
- c Department of Surgery , People's Hospital of Shouguang , Weifang , Shandong , China
| | - Guohong Yuan
- c Department of Surgery , People's Hospital of Shouguang , Weifang , Shandong , China
| | - Xiaomei Zheng
- a Department of Vascular Surgery , People's Hospital of Shouguang , Weifang , Shandong , China
| | - Changkuan Gao
- d Department of Clinical Laboratory , Qilu Hospital , Jinan , Shandong , China
| | - Hai Yuan
- b Department of Vascular Surgery , Shandong Provincial Hospital , Jinan , Shandong , China
| |
Collapse
|
9
|
Krishnan J, Rohner N. Cavefish and the basis for eye loss. Philos Trans R Soc Lond B Biol Sci 2017; 372:20150487. [PMID: 27994128 PMCID: PMC5182419 DOI: 10.1098/rstb.2015.0487] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 11/12/2022] Open
Abstract
Animals have colonized the entire world from rather moderate to the harshest environments, some of these so extreme that only few animals are able to survive. Cave environments present such a challenge and obligate cave animals have adapted to perpetual darkness by evolving a multitude of traits. The most common and most studied cave characteristics are the regression of eyes and the overall reduction in pigmentation. Studying these traits can provide important insights into how evolutionary forces drive convergent and regressive adaptation. The blind Mexican cavefish (Astyanax mexicanus) has emerged as a useful model to study cave evolution owing to the availability of genetic and genomic resources, and the amenability of embryonic development as the different populations remain fertile with each other. In this review, we give an overview of our current knowledge underlying the process of regressive and convergent evolution using eye degeneration in cavefish as an example.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Jaya Krishnan
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Nicolas Rohner
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
10
|
Shi N, Li CX, Cui XB, Tomarev SI, Chen SY. Olfactomedin 2 Regulates Smooth Muscle Phenotypic Modulation and Vascular Remodeling Through Mediating Runt-Related Transcription Factor 2 Binding to Serum Response Factor. Arterioscler Thromb Vasc Biol 2017; 37:446-454. [PMID: 28062493 DOI: 10.1161/atvbaha.116.308606] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/22/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The objective of this study is to investigate the role and underlying mechanism of Olfactomedin 2 (Olfm2) in smooth muscle cell (SMC) phenotypic modulation and vascular remodeling. APPROACH AND RESULTS Platelet-derived growth factor-BB induces Olfm2 expression in primary SMCs while modulating SMC phenotype as shown by the downregulation of SMC marker proteins. Knockdown of Olfm2 blocks platelet-derived growth factor-BB-induced SMC phenotypic modulation, proliferation, and migration. Conversely, Olfm2 overexpression inhibits SMC marker expression. Mechanistically, Olfm2 promotes the interaction of serum response factor with the runt-related transcription factor 2 that is induced by platelet-derived growth factor-BB, leading to a decreased interaction between serum response factor and myocardin, causing a repression of SMC marker gene transcription and consequently SMC phenotypic modulation. Animal studies show that Olfm2 is upregulated in balloon-injured rat carotid arteries. Knockdown of Olfm2 effectively inhibits balloon injury-induced neointima formation. Importantly, knockout of Olfm2 in mice profoundly suppresses wire injury-induced neointimal hyperplasia while restoring SMC contractile protein expression, suggesting that Olfm2 plays a critical role in SMC phenotypic modulation in vivo. CONCLUSIONS Olfm2 is a novel factor mediating SMC phenotypic modulation. Thus, Olfm2 may be a potential target for treating injury-induced proliferative vascular diseases.
Collapse
Affiliation(s)
- Ning Shi
- From the Department of Physiology and Pharmacology, University of Georgia, Athens (N.S., C.-X.L., X.-B.C., S.-Y.C.); and Section on Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD (S.I.T.)
| | - Chen-Xiao Li
- From the Department of Physiology and Pharmacology, University of Georgia, Athens (N.S., C.-X.L., X.-B.C., S.-Y.C.); and Section on Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD (S.I.T.)
| | - Xiao-Bing Cui
- From the Department of Physiology and Pharmacology, University of Georgia, Athens (N.S., C.-X.L., X.-B.C., S.-Y.C.); and Section on Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD (S.I.T.)
| | - Stanislav I Tomarev
- From the Department of Physiology and Pharmacology, University of Georgia, Athens (N.S., C.-X.L., X.-B.C., S.-Y.C.); and Section on Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD (S.I.T.)
| | - Shi-You Chen
- From the Department of Physiology and Pharmacology, University of Georgia, Athens (N.S., C.-X.L., X.-B.C., S.-Y.C.); and Section on Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD (S.I.T.).
| |
Collapse
|
11
|
Holt R, Ugur Iseri SA, Wyatt AW, Bax DA, Gold Diaz D, Santos C, Broadgate S, Dunn R, Bruty J, Wallis Y, McMullan D, Ogilvie C, Gerrelli D, Zhang Y, Ragge N. Identification and functional characterisation of genetic variants in OLFM2 in children with developmental eye disorders. Hum Genet 2016; 136:119-127. [PMID: 27844144 DOI: 10.1007/s00439-016-1745-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/06/2016] [Indexed: 12/30/2022]
Abstract
Anophthalmia, microphthalmia, and coloboma are a genetically heterogeneous spectrum of developmental eye disorders and affect around 30 per 100,000 live births. OLFM2 encodes a secreted glycoprotein belonging to the noelin family of olfactomedin domain-containing proteins that modulate the timing of neuronal differentiation during development. OLFM2 SNPs have been associated with open angle glaucoma in a case-control study, and knockdown of Olfm2 in zebrafish results in reduced eye size. From a cohort of 258 individuals with developmental eye anomalies, we identified two with heterozygous variants in OLFM2: an individual with bilateral microphthalmia carrying a de novo 19p13.2 microdeletion involving OLFM2 and a second individual with unilateral microphthalmia and contralateral coloboma who had a novel single base change in the 5' untranslated region. Dual luciferase assays demonstrated that the latter variant causes a significant decrease in expression of OLFM2. Furthermore, RNA in situ hybridisation experiments using human developmental tissue revealed expression in relevant structures, including the lens vesicle and optic cup. Our study indicates that OLFM2 is likely to be important in mammalian eye development and disease and should be considered as a gene for human ocular anomalies.
Collapse
Affiliation(s)
- R Holt
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - S A Ugur Iseri
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - A W Wyatt
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - D A Bax
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - D Gold Diaz
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - C Santos
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - S Broadgate
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - R Dunn
- Department of Genetics, Viapath, Guy's Hospital, London, UK
| | - J Bruty
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Birmingham, UK
| | - Y Wallis
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Birmingham, UK
| | - D McMullan
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Birmingham, UK
| | - C Ogilvie
- Department of Cytogenetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - D Gerrelli
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Y Zhang
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Nicola Ragge
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK. .,Clinical Genetics Unit, West Midlands Regional Genetics Service, Birmingham Women's Hospital, Birmingham, B15 2TG, UK.
| |
Collapse
|
12
|
Pérez-Ibave DC, González-Alvarez R, de La Luz Martinez-Fierro M, Ruiz-Ayma G, Luna-Muñoz M, Martínez-De-Villarreal LE, De Lourdes Garza-Rodríguez M, Reséndez-Pérez D, Mohamed-Noriega J, Garza-Guajardo R, Bautista-De-Lucío VM, Mohamed-Noriega K, Barboza-Quintana O, Arámburo-De-La-Hoz C, Barrera-Saldaña HA, Rodríguez-Sánchez IP. Olfactomedin-like 2 A and B (OLFML2A and OLFML2B) expression profile in primates (human and baboon). Biol Res 2016; 49:44. [PMID: 27821182 PMCID: PMC5100274 DOI: 10.1186/s40659-016-0101-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/24/2016] [Indexed: 12/12/2022] Open
Abstract
Background The olfactomedin-like domain (OLFML) is present in at least four families of proteins, including OLFML2A and OLFML2B, which are expressed in adult rat retina cells. However, no expression of their orthologous has ever been reported in human and baboon. Objective The aim of this study was to investigate the expression of OLFML2A and OLFML2B in ocular tissues of baboons (Papio hamadryas) and humans, as a key to elucidate OLFML function in eye physiology. Methods OLFML2A and OLFML2B cDNA detection in ocular tissues of these species was performed by RT-PCR. The amplicons were cloned and sequenced, phylogenetically analyzed and their proteins products were confirmed by immunofluorescence assays. Results OLFML2A and OLFML2B transcripts were found in human cornea, lens and retina and in baboon cornea, lens, iris and retina. The baboon OLFML2A and OLFML2B ORF sequences have 96% similarity with their human’s orthologous. OLFML2A and OLFML2B evolution fits the hypothesis of purifying selection. Phylogenetic analysis shows clear orthology in OLFML2A genes, while OLFML2B orthology is not clear. Conclusions Expression of OLFML2A and OLFML2B in human and baboon ocular tissues, including their high similarity, make the baboon a powerful model to deduce the physiological and/or metabolic function of these proteins in the eye.
Collapse
Affiliation(s)
- Diana Cristina Pérez-Ibave
- Servicio de Oncología, Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", Monterrey, Nuevo León, Mexico
| | | | - Margarita de La Luz Martinez-Fierro
- Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas, Mexico
| | - Gabriel Ruiz-Ayma
- Departamento de Ecología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451, San Nicolás de los Garza, Nuevo León, Mexico
| | - Maricela Luna-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, Mexico
| | - Laura Elia Martínez-De-Villarreal
- Departamento de Genética, Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", 64460, Monterrey, Nuevo León, Mexico
| | - María De Lourdes Garza-Rodríguez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Diana Reséndez-Pérez
- Departamento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Jibran Mohamed-Noriega
- Departamento de Oftalmología, Universidad Autónoma de Nuevo León Hospital Universitario "Dr. José Eleuterio González", Monterrey, Nuevo León, Mexico
| | - Raquel Garza-Guajardo
- Servicio de Anatomía Patológica y Citopatología, Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", Monterrey, Nuevo León, Mexico
| | - Víctor Manuel Bautista-De-Lucío
- Departamento de Bioquímica y Medicina Molecular, Instituto de Oftalmología. Fundación de Asistencia Privada Conde de Valenciana IAP, Mexico, Mexico
| | - Karim Mohamed-Noriega
- Departamento de Oftalmología, Universidad Autónoma de Nuevo León Hospital Universitario "Dr. José Eleuterio González", Monterrey, Nuevo León, Mexico
| | - Oralia Barboza-Quintana
- Servicio de Anatomía Patológica y Citopatología, Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", Monterrey, Nuevo León, Mexico
| | - Carlos Arámburo-De-La-Hoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, Mexico
| | - Hugo Alberto Barrera-Saldaña
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Irám Pablo Rodríguez-Sánchez
- Departamento de Genética, Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", 64460, Monterrey, Nuevo León, Mexico.
| |
Collapse
|
13
|
Anthony G, Lee JA. An Optimized Small Tissue Handling System for Immunohistochemistry and In Situ Hybridization. PLoS One 2016; 11:e0159991. [PMID: 27489962 PMCID: PMC4973989 DOI: 10.1371/journal.pone.0159991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/12/2016] [Indexed: 11/23/2022] Open
Abstract
Recent development in 3D printing technology has opened an exciting possibility for manufacturing 3D devices on one’s desktop. We used 3D modeling programs to design 3D models of a tissue-handling system and these models were “printed” in a stereolithography (SLA) 3D printer to create precision histology devices that are particularly useful to handle multiple samples with small dimensions in parallel. Our system has been successfully tested for in situ hybridization of zebrafish embryos. Some of the notable features include: (1) A conveniently transferrable chamber with 6 mesh-bottomed wells, each of which can hold dozens of zebrafish embryos. This design allows up to 6 different samples to be treated per chamber. (2) Each chamber sits in a well of a standard 6-well tissue culture plate. Thus, up to 36 different samples can be processed in tandem using a single 6 well plate. (3) Precisely fitting lids prevent solution evaporation and condensation, even at high temperatures for an extended period of time: i.e., overnight riboprobe hybridization. (4) Flat bottom mesh maximizes the consistent treatment of individual tissue samples. (5) A magnet-based lifter was created to handle up to 6 chambers (= 36 samples) in unison. (6) The largely transparent resin aids in convenient visual inspection both with eyes and using a stereomicroscope. (7) Surface engraved labeling enables an accurate tracking of different samples. (8) The dimension of wells and chambers minimizes the required amount of precious reagents. (9) Flexible parametric modeling enables an easy redesign of the 3D models to handle larger or more numerous samples. Precise dimensions of 3D models and demonstration of how we use our devices in whole mount in situ hybridization are presented. We also provide detailed information on the modeling software, 3D printing tips, as well as 3D files that can be used with any 3D printer.
Collapse
Affiliation(s)
- Giovanni Anthony
- Department of Biological and Biomedical Sciences, North Carolina Central University, BBRI 215, 700 George Street, Durham, NC, 27707, United States of America
| | - Ju-Ahng Lee
- Department of Biological and Biomedical Sciences, North Carolina Central University, BBRI 215, 700 George Street, Durham, NC, 27707, United States of America
- * E-mail:
| |
Collapse
|
14
|
Schira J, Falkenberg H, Hendricks M, Waldera-Lupa DM, Kögler G, Meyer HE, Müller HW, Stühler K. Characterization of Regenerative Phenotype of Unrestricted Somatic Stem Cells (USSC) from Human Umbilical Cord Blood (hUCB) by Functional Secretome Analysis. Mol Cell Proteomics 2015; 14:2630-43. [PMID: 26183719 DOI: 10.1074/mcp.m115.049312] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Indexed: 12/13/2022] Open
Abstract
Stem cell transplantation is a promising therapeutic strategy to enhance axonal regeneration after spinal cord injury. Unrestricted somatic stem cells (USSC) isolated from human umbilical cord blood is an attractive stem cell population available at GMP grade without any ethical concerns. It has been shown that USSC transplantation into acute injured rat spinal cords leads to axonal regrowth and significant locomotor recovery, yet lacking cell replacement. Instead, USSC secrete trophic factors enhancing neurite growth of primary cortical neurons in vitro. Here, we applied a functional secretome approach characterizing proteins secreted by USSC for the first time and validated candidate neurite growth promoting factors using primary cortical neurons in vitro. By mass spectrometric analysis and exhaustive bioinformatic interrogation we identified 1156 proteins representing the secretome of USSC. Using Gene Ontology we revealed that USSC secretome contains proteins involved in a number of relevant biological processes of nerve regeneration such as cell adhesion, cell motion, blood vessel formation, cytoskeleton organization and extracellular matrix organization. We found for instance that 31 well-known neurite growth promoting factors like, e.g. neuronal growth regulator 1, NDNF, SPARC, and PEDF span the whole abundance range of USSC secretome. By the means of primary cortical neurons in vitro assays we verified SPARC and PEDF as significantly involved in USSC mediated neurite growth and therewith underline their role in improved locomotor recovery after transplantation. From our data we are convinced that USSC are a valuable tool in regenerative medicine as USSC's secretome contains a comprehensive network of trophic factors supporting nerve regeneration not only by a single process but also maintained its regenerative phenotype by a multitude of relevant biological processes.
Collapse
Affiliation(s)
- Jessica Schira
- From the ‡Molecular Proteomics Laboratory (MPL), Institute for Molecular Medicine, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany; §Molecular Neurobiology Laboratory, Department of Neurology, Heinrich Heine University Medical Centre Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Heiner Falkenberg
- From the ‡Molecular Proteomics Laboratory (MPL), Institute for Molecular Medicine, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marion Hendricks
- §Molecular Neurobiology Laboratory, Department of Neurology, Heinrich Heine University Medical Centre Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Daniel M Waldera-Lupa
- From the ‡Molecular Proteomics Laboratory (MPL), Institute for Molecular Medicine, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Gesine Kögler
- ¶Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, Düsseldorf, Germany
| | - Helmut E Meyer
- ‖Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, Dortmund, Germany
| | - Hans Werner Müller
- §Molecular Neurobiology Laboratory, Department of Neurology, Heinrich Heine University Medical Centre Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; **Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- From the ‡Molecular Proteomics Laboratory (MPL), Institute for Molecular Medicine, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany; **Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
15
|
Shi N, Chen SY. From nerve to blood vessel: a new role of Olfm2 in smooth muscle differentiation from human embryonic stem cell-derived mesenchymal cells. J Biomed Res 2015; 29:261-3. [PMID: 26243513 PMCID: PMC4547375 DOI: 10.7555/jbr.29.20150027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/08/2015] [Indexed: 01/10/2023] Open
Affiliation(s)
- Ning Shi
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Shi-You Chen
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
16
|
McGaugh SE, Gross JB, Aken B, Blin M, Borowsky R, Chalopin D, Hinaux H, Jeffery WR, Keene A, Ma L, Minx P, Murphy D, O’Quin KE, Rétaux S, Rohner N, Searle SMJ, Stahl BA, Tabin C, Volff JN, Yoshizawa M, Warren WC. The cavefish genome reveals candidate genes for eye loss. Nat Commun 2014; 5:5307. [PMID: 25329095 PMCID: PMC4218959 DOI: 10.1038/ncomms6307] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/17/2014] [Indexed: 11/10/2022] Open
Abstract
Natural populations subjected to strong environmental selection pressures offer a window into the genetic underpinnings of evolutionary change. Cavefish populations, Astyanax mexicanus (Teleostei: Characiphysi), exhibit repeated, independent evolution for a variety of traits including eye degeneration, pigment loss, increased size and number of taste buds and mechanosensory organs, and shifts in many behavioural traits. Surface and cave forms are interfertile making this system amenable to genetic interrogation; however, lack of a reference genome has hampered efforts to identify genes responsible for changes in cave forms of A. mexicanus. Here we present the first de novo genome assembly for Astyanax mexicanus cavefish, contrast repeat elements to other teleost genomes, identify candidate genes underlying quantitative trait loci (QTL), and assay these candidate genes for potential functional and expression differences. We expect the cavefish genome to advance understanding of the evolutionary process, as well as, analogous human disease including retinal dysfunction.
Collapse
Affiliation(s)
- Suzanne E. McGaugh
- The Genome Institute, Washington University, Campus Box 8501, St Louis, Missouri 63108, USA
| | - Joshua B. Gross
- Department of Biological Sciences, University of Cincinnati, 711B Rieveschl Hall, 312 College Drive, Cincinnati, Ohio 45221, USA
| | - Bronwen Aken
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Maryline Blin
- DECA group, Neurobiology and Development Laboratory, CNRS-Institut de Neurobiologie Alfred Fessard, 91198 Gif-sur-Yvette, France
| | - Richard Borowsky
- Department of Biology, New York University, New York, New York 10003-6688, USA
| | - Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR 5242, UCBL, 46 allée d’Italie, Lyon F-69364, France
| | - Hélène Hinaux
- DECA group, Neurobiology and Development Laboratory, CNRS-Institut de Neurobiologie Alfred Fessard, 91198 Gif-sur-Yvette, France
| | - William R. Jeffery
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | - Alex Keene
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Li Ma
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | - Patrick Minx
- The Genome Institute, Washington University, Campus Box 8501, St Louis, Missouri 63108, USA
| | - Daniel Murphy
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Kelly E. O’Quin
- Department of Biology, Centre College, 600 West Walnut St, Danville, Kentucky 40422, USA
| | - Sylvie Rétaux
- DECA group, Neurobiology and Development Laboratory, CNRS-Institut de Neurobiologie Alfred Fessard, 91198 Gif-sur-Yvette, France
| | - Nicolas Rohner
- Harvard Medical School Department of Genetics, 77 Avenue Louis Pasteur; NRB 360, Boston, Massachusetts 02115, USA
| | - Steve M. J. Searle
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Bethany A. Stahl
- Department of Biological Sciences, University of Cincinnati, 711B Rieveschl Hall, 312 College Drive, Cincinnati, Ohio 45221, USA
| | - Cliff Tabin
- Harvard Medical School Department of Genetics, 77 Avenue Louis Pasteur; NRB 360, Boston, Massachusetts 02115, USA
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR 5242, UCBL, 46 allée d’Italie, Lyon F-69364, France
| | - Masato Yoshizawa
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Wesley C. Warren
- The Genome Institute, Washington University, Campus Box 8501, St Louis, Missouri 63108, USA
| |
Collapse
|
17
|
Shi N, Guo X, Chen SY. Olfactomedin 2, a novel regulator for transforming growth factor-β-induced smooth muscle differentiation of human embryonic stem cell-derived mesenchymal cells. Mol Biol Cell 2014; 25:4106-14. [PMID: 25298399 PMCID: PMC4263453 DOI: 10.1091/mbc.e14-08-1255] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Smooth muscle plays important roles in vascular development. Study of smooth muscle differentiation of human embryonic stem cell–derived mesenchymal cells identifies olfactomedin 2 as a novel regulator. Olfactomedin 2 regulates smooth muscle gene transcription by empowering serum response factor binding to the CArG box in smooth muscle gene promoters. Transforming growth factor-β (TGF-β) plays an important role in smooth muscle (SM) differentiation, but the downstream target genes regulating the differentiation process remain largely unknown. In this study, we identified olfactomedin 2 (Olfm2) as a novel regulator mediating SM differentiation. Olfm2 was induced during TGF-β–induced SM differentiation of human embryonic stem cell–derived mesenchymal cells. Olfm2 knockdown suppressed TGF-β–induced expression of SM markers, including SM α-actin, SM22α, and SM myosin heavy chain, whereas Olfm2 overexpression promoted the SM marker expression. TGF-β induced Olfm2 nuclear accumulation, suggesting that Olfm2 may be involved in transcriptional activation of SM markers. Indeed, Olfm2 regulated SM marker expression and promoter activity in a serum response factor (SRF)/CArG box–dependent manner. Olfm2 physically interacted with SRF without affecting SRF-myocardin interaction. Olfm2-SRF interaction promoted the dissociation of SRF from HERP1, a transcriptional repressor. Olfm2 also inhibited HERP1 expression. Moreover, blockade of Olfm2 expression inhibited TGF-β–induced SRF binding to SM gene promoters in a chromatin setting, whereas overexpression of Olfm2 dose dependently enhanced SRF binding. These results demonstrate that Olfm2 mediates TGF-β–induced SM gene transcription by empowering SRF binding to CArG box in SM gene promoters.
Collapse
Affiliation(s)
- Ning Shi
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602
| | - Xia Guo
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602
| | - Shi-You Chen
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602
| |
Collapse
|
18
|
Sultana A, Nakaya N, Dong L, Abu-Asab M, Qian H, Tomarev SI. Deletion of olfactomedin 2 induces changes in the AMPA receptor complex and impairs visual, olfactory, and motor functions in mice. Exp Neurol 2014; 261:802-11. [PMID: 25218043 DOI: 10.1016/j.expneurol.2014.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/21/2014] [Accepted: 09/02/2014] [Indexed: 12/19/2022]
Abstract
Olfactomedin 2 (Olfm2) is a secretory glycoprotein belonging to the family of olfactomedin domain-containing proteins. A previous study has shown that a mutation in OLFM2 is associated with primary open angle glaucoma in Japanese patients. In the present study, we generated Olfm2 deficient mice by replacing the Olfm2 gene with the LacZ gene. The loss of Olfm2 resulted in no gross abnormalities. However, Olfm2 null mice showed reduced exploration, locomotion, olfactory sensitivity, abnormal motor coordination, and anxiety related behavior. The pattern of the Olfm2 gene expression was studied in the brain and eye using β-galactosidase staining. In the brain, Olfm2 was mainly expressed in the olfactory bulb, cortex, piriform cortex, olfactory trabeculae, and inferior and superior colliculus. In the eye expression was detected mainly in retinal ganglion cells. In Olfm2 null mice, the amplitude of the first negative wave in the visual evoked potential test was significantly reduced as compared with wild-type littermates. Olfm2, similar to Olfm1, interacted with the GluR2 subunit of the AMPAR complexes and Olfm2 co-segregated with the AMPA receptor subunit GluR2 and other synaptic proteins in the synaptosomal membrane fraction upon biochemical fractionation of the adult mice cortex and retina. Immunoprecipitation from the synaptosomal membrane fraction of the Olfm2 null mouse brain cortex using the GluR2 antibody showed reduced levels of several components of the AMPAR complex in the immunoprecipitates including Olfm1, PSD95 and CNIH2. These results suggest that heterodimers of Olfm1 and Olfm2 interact with AMPAR more efficiently than Olfm2 homodimers and that Olfm2 plays a role in the organization of the AMPA receptor complexes.
Collapse
Affiliation(s)
- Afia Sultana
- Section on Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Naoki Nakaya
- Section on Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Lijin Dong
- Genetic Engineering Facility, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Mones Abu-Asab
- Histopathology Core Facility, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Stanislav I Tomarev
- Section on Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Anholt RRH. Olfactomedin proteins: central players in development and disease. Front Cell Dev Biol 2014; 2:6. [PMID: 25364714 PMCID: PMC4206993 DOI: 10.3389/fcell.2014.00006] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/07/2014] [Indexed: 12/14/2022] Open
Abstract
Olfactomedin proteins are characterized by a conserved domain of \texorpdfstring~\textasciitilde250 amino acids corresponding to the olfactomedin archetype first discovered in olfactory neuroepithelium. They arose early in evolution and occur throughout the animal kingdom. In mice and humans olfactomedin proteins comprise a diverse array of glycoproteins, many of which are critical for early development and functional organization of the nervous system as well as hematopoiesis. Olfactomedin domains appear to facilitate protein-protein interactions, intercellular interactions, and cell adhesion. Several members of the family have been implicated in various common diseases, notably myocilin in glaucoma and OLFM4 in cancer. This review highlights this important, hitherto understudied family of proteins.
Collapse
Affiliation(s)
- Robert R H Anholt
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University Raleigh, NC, USA
| |
Collapse
|
20
|
Anholt RRH, Carbone MA. A molecular mechanism for glaucoma: endoplasmic reticulum stress and the unfolded protein response. Trends Mol Med 2013; 19:586-93. [PMID: 23876925 PMCID: PMC3795998 DOI: 10.1016/j.molmed.2013.06.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/20/2013] [Accepted: 06/28/2013] [Indexed: 10/26/2022]
Abstract
Primary open angle glaucoma (POAG) is a common late-onset neurodegenerative disease. Ocular hypertension represents a major risk factor, but POAG etiology remains poorly understood. Some cases of early-onset congenital glaucoma and adult POAG are linked to mutations in myocilin, a secreted protein of poorly defined function. Transgenic overexpression of myocilin in Drosophila and experiments in mice and human populations implicate the unfolded protein response (UPR) in the pathogenesis of glaucoma. We postulate that compromised ability of the UPR to eliminate misfolded mutant or damaged proteins, including myocilin, causes endoplasmic reticulum stress, resulting in functional impairment of trabecular meshwork cells that regulate intraocular pressure. This mechanism of POAG is reminiscent of other age-dependent neurodegenerative diseases that involve accumulation of protein aggregates.
Collapse
Affiliation(s)
- Robert R H Anholt
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695-7617, USA.
| | | |
Collapse
|
21
|
Sultana A, Nakaya N, Senatorov VV, Tomarev SI. Olfactomedin 2: expression in the eye and interaction with other olfactomedin domain-containing proteins. Invest Ophthalmol Vis Sci 2011; 52:2584-92. [PMID: 21228389 DOI: 10.1167/iovs.10-6356] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Olfactomedin 2 (OLFM2) belongs to the family of olfactomedin domain-containing proteins. Genetic data suggest its association with glaucoma in Japanese patients. However, its functions are still elusive. In this study, the properties of mammalian OLFM2 were investigated. METHODS Expression of the rat and mouse Olfm2 gene was studied by using real-time PCR and in situ hybridization. Substitutions were introduced into OLFM2 by mutagenesis in vitro. Intracellular localization of OLFM2 was studied by confocal microscopy after transient transfection in HEK293 cells. Interaction of OLFM2 with olfactomedin 1 (Olfm1), olfactomedin 3 (Olfm3), myocilin, and gliomedin was studied by using co-immunoprecipitation. RESULTS Two major human OLFM2 mRNAs encode secreted proteins with a length of 454 and 478 amino acids. OLFM2 is more closely related to OLFM1 and -3 than to any other family members. Olfm2 showed the most dynamic expression pattern compared with Olfm1 and -3 during mouse eye development and was expressed preferentially in the developing retinal ganglion cell layer. Among three OLFM2 substitutions tested (T86M, R144Q, and L420S), only L420S completely blocked secretion of the protein. OLFM2 interacted with Olfm1 and -3, but not with myocilin and gliomedin. Co-transfection of the L420S mutant with wild-type Olfm1 and -3 significantly inhibited secretion of Olfm1 and -3. CONCLUSIONS Highly conserved OLFM2 protein may play an important role in the course of retinal and eye development. Severe mutations in one of the closely related olfactomedin domain-containing proteins (Olfm1-3) may block the secretion and probably the activity of all three family members, leading to more pronounced diseases of the retina than the knockout of individual genes.
Collapse
Affiliation(s)
- Afia Sultana
- Section of Molecular Mechanisms of Glaucoma, Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
22
|
|
23
|
Carbone MA, Ayroles JF, Yamamoto A, Morozova TV, West SA, Magwire MM, Mackay TFC, Anholt RRH. Overexpression of myocilin in the Drosophila eye activates the unfolded protein response: implications for glaucoma. PLoS One 2009; 4:e4216. [PMID: 19148291 PMCID: PMC2615221 DOI: 10.1371/journal.pone.0004216] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Accepted: 12/05/2008] [Indexed: 12/18/2022] Open
Abstract
Background Glaucoma is the world's second leading cause of bilateral blindness with progressive loss of vision due to retinal ganglion cell death. Myocilin has been associated with congenital glaucoma and 2–4% of primary open angle glaucoma (POAG) cases, but the pathogenic mechanisms remain largely unknown. Among several hypotheses, activation of the unfolded protein response (UPR) has emerged as a possible disease mechanism. Methodology / Principal Findings We used a transgenic Drosophila model to analyze whole-genome transcriptional profiles in flies that express human wild-type or mutant MYOC in their eyes. The transgenic flies display ocular fluid discharge, reflecting ocular hypertension, and a progressive decline in their behavioral responses to light. Transcriptional analysis shows that genes associated with the UPR, ubiquitination, and proteolysis, as well as metabolism of reactive oxygen species and photoreceptor activity undergo altered transcriptional regulation. Following up on the results from these transcriptional analyses, we used immunoblots to demonstrate the formation of MYOC aggregates and showed that the formation of such aggregates leads to induction of the UPR, as evident from activation of the fluorescent UPR marker, xbp1-EGFP. Conclusions / Significance Our results show that aggregation of MYOC in the endoplasmic reticulum activates the UPR, an evolutionarily conserved stress pathway that culminates in apoptosis. We infer from the Drosophila model that MYOC-associated ocular hypertension in the human eye may result from aggregation of MYOC and induction of the UPR in trabecular meshwork cells. This process could occur at a late age with wild-type MYOC, but might be accelerated by MYOC mutants to account for juvenile onset glaucoma.
Collapse
Affiliation(s)
- Mary Anna Carbone
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Julien F. Ayroles
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Akihiko Yamamoto
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Zoology, North Carolina State University, Raleigh, North Carolina, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Tatiana V. Morozova
- Department of Zoology, North Carolina State University, Raleigh, North Carolina, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Steven A. West
- Department of Zoology, North Carolina State University, Raleigh, North Carolina, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Michael M. Magwire
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Trudy F. C. Mackay
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Robert R. H. Anholt
- Department of Zoology, North Carolina State University, Raleigh, North Carolina, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
24
|
Zebrafish olfactomedin 1 regulates retinal axon elongation in vivo and is a modulator of Wnt signaling pathway. J Neurosci 2008; 28:7900-10. [PMID: 18667622 DOI: 10.1523/jneurosci.0617-08.2008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Olfactomedin 1 (Olfm1) is a secreted glycoprotein belonging to a family of olfactomedin domain-containing proteins. It is involved in the regulation of neural crest production in chicken and promotes neuronal differentiation in Xenopus. Here, we investigate the functions of Olfm1 in zebrafish eye development. Overexpression of full-length Olfm1, and especially its BMY form lacking the olfactomedin domain, increased the thickness of the optic nerve and produced a more extended projection field in the optic tectum compared with control embryos. In contrast, injection of olfm1-morpholino oligonucleotide (Olfm1-MO) reduced the eye size, inhibited optic nerve extension, and increased the number of apoptotic cells in the retinal ganglion cell and inner nuclear layers. Overexpression of full-length Olfm1 increased the lateral separation of the expression domains of eye-field markers, rx3 and six3. The Olfm1-MO had the opposite effect. These data suggest that zebrafish Olfm1 may play roles in the early eye determination, differentiation, optic nerve extension, and branching of the retinal ganglion cell axon terminals, with the N-terminal region of Olfm1 being critical for these effects. Injection of RNA encoding WIF-1, a secreted inhibitor of Wnt signaling, caused changes in the expression pattern of rx3 similar to those observed after Olfm1-MO injection. Simultaneous overexpression of WIF-1 and Olfm1 abolished the WIF-1 effect. Physical interaction of WIF-1 and Olfm1 was demonstrated by coimmunoprecipitation experiments. We concluded that Olfm1 serves as a modulator of Wnt signaling.
Collapse
|
25
|
Wan B, Zhou YB, Zhang X, Zhu H, Huo K, Han ZG. hOLFML1, a novel secreted glycoprotein, enhances the proliferation of human cancer cell lines in vitro. FEBS Lett 2008; 582:3185-92. [DOI: 10.1016/j.febslet.2008.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 08/07/2008] [Accepted: 08/07/2008] [Indexed: 01/21/2023]
|
26
|
Lee JA, Cole GJ. Generation of Transgenic Zebrafish Expressing Green Fluorescent Protein Under Control of Zebrafish Amyloid Precursor Protein Gene Regulatory Elements. Zebrafish 2007; 4:277-86. [DOI: 10.1089/zeb.2007.0516] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ju-Ahng Lee
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina
| | - Gregory J. Cole
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina
- Department of Biology, North Carolina Central University, Durham, North Carolina
| |
Collapse
|
27
|
Tomarev SI, Nakaya N. In-vitro study of the activity of ciprofloxacin alone and in combination against strains of Pseudomonas aeruginosa with multiple antibiotic resistance. J Antimicrob Chemother 1986; 40:122-38. [PMID: 19554483 DOI: 10.1007/s12035-009-8076-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 06/14/2009] [Indexed: 01/25/2023] Open
Abstract
Ciprofloxacin appears to have useful activity against Pseudomonas aeruginosa. We have studied its in-vitro activity against ten strains of Ps. aeruginosa with multiple antibiotic resistance. We have confirmed that ciprofloxacin is very active against Ps. aeruginosa with minimal inhibitory concentrations ranging from 0.07 to 0.7 mg/l. Killing curves show ciprofloxacin to be rapidly bactericidal with no regrowth after 24 h. Checkerboard studies with ciprofloxacin in combination with gentamicin, azlocillin and ceftazidime show no consistent interaction. These studies suggest that ciprofloxacin should prove a useful antibiotic in treating infections caused by multiresistant Ps. aeruginosa.
Collapse
Affiliation(s)
- Stanislav I Tomarev
- Section of Molecular Mechanisms of Glaucoma, Laboratory of Molecular and Developmental Biology, National Eye Institute, NIH, 5635 Fishers Lane, Room 1124, Bethesda, MD, 20892, USA.
| | | |
Collapse
|