1
|
Liu J, Murray JI. Mechanisms of lineage specification in Caenorhabditis elegans. Genetics 2023; 225:iyad174. [PMID: 37847877 PMCID: PMC11491538 DOI: 10.1093/genetics/iyad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
The studies of cell fate and lineage specification are fundamental to our understanding of the development of multicellular organisms. Caenorhabditis elegans has been one of the premiere systems for studying cell fate specification mechanisms at single cell resolution, due to its transparent nature, the invariant cell lineage, and fixed number of somatic cells. We discuss the general themes and regulatory mechanisms that have emerged from these studies, with a focus on somatic lineages and cell fates. We next review the key factors and pathways that regulate the specification of discrete cells and lineages during embryogenesis and postembryonic development; we focus on transcription factors and include numerous lineage diagrams that depict the expression of key factors that specify embryonic founder cells and postembryonic blast cells, and the diverse somatic cell fates they generate. We end by discussing some future perspectives in cell and lineage specification.
Collapse
Affiliation(s)
- Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Van de Walle P, Muñoz-Jiménez C, Askjaer P, Schoofs L, Temmerman L. DamID identifies targets of CEH-60/PBX that are associated with neuron development and muscle structure in Caenorhabditis elegans. PLoS One 2020; 15:e0242939. [PMID: 33306687 PMCID: PMC7732058 DOI: 10.1371/journal.pone.0242939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/11/2020] [Indexed: 11/29/2022] Open
Abstract
Transcription factors govern many of the time- and tissue-specific gene expression events in living organisms. CEH-60, a homolog of the TALE transcription factor PBX in vertebrates, was recently characterized as a new regulator of intestinal lipid mobilization in Caenorhabditis elegans. Because CEH-60's orthologs and paralogs exhibit several other functions, notably in neuron and muscle development, and because ceh-60 expression is not limited to the C. elegans intestine, we sought to identify additional functions of CEH-60 through DNA adenine methyltransferase identification (DamID). DamID identifies protein-genome interaction sites through GATC-specific methylation. We here report 872 putative CEH-60 gene targets in young adult animals, and 587 in L2 larvae, many of which are associated with neuron development or muscle structure. In light of this, we investigate morphology and function of ceh-60 expressing AWC neurons, and contraction of pharyngeal muscles. We find no clear functional consequences of loss of ceh-60 in these assays, suggesting that in AWC neurons and pharyngeal muscle, CEH-60 function is likely more subtle or redundant with other factors.
Collapse
Affiliation(s)
- Pieter Van de Walle
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Celia Muñoz-Jiménez
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, Seville, Spain
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, Seville, Spain
| | - Liliane Schoofs
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
3
|
Chang LW, Tseng IC, Wang LH, Sun YH. Isoform-specific functions of an evolutionarily conserved 3 bp micro-exon alternatively spliced from another exon in Drosophila homothorax gene. Sci Rep 2020; 10:12783. [PMID: 32732884 PMCID: PMC7392893 DOI: 10.1038/s41598-020-69644-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/14/2020] [Indexed: 12/03/2022] Open
Abstract
Micro-exons are exons of very small size (usually 3–30 nts). Some micro-exons are alternatively spliced. Their functions, regulation and evolution are largely unknown. Here, we present an example of an alternatively spliced 3 bp micro-exon (micro-Ex8) in the homothorax (hth) gene in Drosophila. Hth is involved in many developmental processes. It contains a MH domain and a TALE-class homeodomain (HD). It binds to another homeodomain Exd via its MH domain to promote the nuclear import of the Hth-Exd complex and serve as a cofactor for Hox proteins. The MH and HD domains in Hth as well as the HTh-Exd interaction are highly conserved in evolution. The alternatively spliced micro-exon lies between the exons encoding the MH and HD domains. We provide clear proof that the micro-Ex8 is produced by alternative splicing from a 48 bp full-length exon 8 (FL-Ex8) and the micro-Ex8 is the first three nt is FL-Ex8. We found that the micro-Ex8 is the ancient form and the 3 + 48 organization of alternatively spliced overlapping exons only emerged in the Schizophora group of Diptera and is absolutely conserved in this group. We then used several strategies to test the in vivo function of the two types of isoforms and found that the micro-Ex8 and FL-Ex8 isoforms have largely overlapping functions but also have non-redundant functions that are tissue-specific, which supports their strong evolutionary conservation. Since the different combinations of protein interaction of Hth with Exd and/or Hox can have different DNA target specificity, our finding of alternatively spliced isoforms adds to the spectrum of structural and functional diversity under developmental regulation.
Collapse
Affiliation(s)
- Ling-Wen Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC
| | - I-Chieh Tseng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC.,Institute of Genomic Sciences, National Yang-Ming University, Taipei, Taiwan, ROC.,Department of Life Science, Chinese Culture University, Taipei, Taiwan, ROC
| | - Lan-Hsin Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
| | - Y Henry Sun
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC. .,Institute of Genomic Sciences, National Yang-Ming University, Taipei, Taiwan, ROC.
| |
Collapse
|
4
|
Van de Walle P, Geens E, Baggerman G, José Naranjo-Galindo F, Askjaer P, Schoofs L, Temmerman L. CEH-60/PBX regulates vitellogenesis and cuticle permeability through intestinal interaction with UNC-62/MEIS in Caenorhabditis elegans. PLoS Biol 2019; 17:e3000499. [PMID: 31675356 PMCID: PMC6824563 DOI: 10.1371/journal.pbio.3000499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/08/2019] [Indexed: 11/18/2022] Open
Abstract
The onset of sexual maturity involves dramatic changes in physiology and gene expression in many animals. These include abundant yolk protein production in egg-laying species, an energetically costly process under extensive transcriptional control. Here, we used the model organism Caenorhabditis elegans to provide evidence for the spatiotemporally defined interaction of two evolutionarily conserved transcription factors, CEH-60/PBX and UNC-62/MEIS, acting as a gateway to yolk protein production. Via proteomics, bimolecular fluorescence complementation (BiFC), and biochemical and functional readouts, we show that this interaction occurs in the intestine of animals at the onset of sexual maturity and suffices to support the reproductive program. Our electron micrographs and functional assays provide evidence that intestinal PBX/MEIS cooperation drives another process that depends on lipid mobilization: the formation of an impermeable epicuticle. Without this lipid-rich protective layer, mutant animals are hypersensitive to exogenous oxidative stress and are poor partners for mating. Dedicated communication between the hypodermis and intestine in C. elegans likely supports these physiological outcomes, and we propose a fundamental role for the conserved PBX/MEIS interaction in multicellular signaling networks that rely on lipid homeostasis.
Collapse
Affiliation(s)
- Pieter Van de Walle
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Ellen Geens
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Geert Baggerman
- Centre for Proteomics (CFP), University of Antwerp, Antwerpen, Belgium
- VITO, Mol, Belgium
| | | | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), Universidad Pablo de Olavide, Seville, Spain
| | - Liliane Schoofs
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
- * E-mail:
| |
Collapse
|
5
|
Hale JJ, Amin NM, George C, Via Z, Shi H, Liu J. A role of the LIN-12/Notch signaling pathway in diversifying the non-striated egg-laying muscles in C. elegans. Dev Biol 2014; 389:137-48. [PMID: 24512688 PMCID: PMC3981933 DOI: 10.1016/j.ydbio.2014.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/27/2014] [Accepted: 02/01/2014] [Indexed: 01/19/2023]
Abstract
The proper formation and function of an organ is dependent on the specification and integration of multiple cell types and tissues. An example of this is the Caenorhabditis elegans hermaphrodite egg-laying system, which requires coordination between the vulva, uterus, neurons, and musculature. While the genetic constituents of the first three components have been well studied, little is known about the molecular mechanisms underlying the specification of the egg-laying musculature. The egg-laying muscles are non-striated in nature and consist of sixteen cells, four each of type I and type II vulval muscles and uterine muscles. These 16 non-striated muscles exhibit distinct morphology, location, synaptic connectivity and function. Using an RNAi screen targeting the putative transcription factors in the C. elegans genome, we identified a number of novel factors important for the diversification of these different types of egg-laying muscles. In particular, we found that RNAi knockdown of lag-1, which encodes the sole C. elegans ortholog of the transcription factor CSL (CBF1, Suppressor of Hairless, LAG-1), an effector of the LIN-12/Notch pathway, led to the production of extra type I vulval muscles. Similar phenotypes were also observed in animals with down-regulation of the Notch receptor LIN-12 and its DSL (Delta, Serrate, LAG-2) ligand LAG-2. The extra type I vulval muscles in animals with reduced LIN-12/Notch signaling resulted from a cell fate transformation of type II vulval muscles to type I vulval muscles. We showed that LIN-12/Notch was activated in the undifferentiated type II vulval muscle cells by LAG-2/DSL that is likely produced by the anchor cell (AC). Our findings provide additional evidence highlighting the roles of LIN-12/Notch signaling in coordinating the formation of various components of the functional C. elegans egg-laying system. We also identify multiple new factors that play critical roles in the proper specification of the different types of egg-laying muscles.
Collapse
Affiliation(s)
- Jared J Hale
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States
| | - Nirav M Amin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States
| | - Carolyn George
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States
| | - Zachary Via
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States
| | - Herong Shi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States
| | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
6
|
Reinke V, Krause M, Okkema P. Transcriptional regulation of gene expression in C. elegans. ACTA ACUST UNITED AC 2013:1-34. [PMID: 23801596 DOI: 10.1895/wormbook.1.45.2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein coding gene sequences are converted to mRNA by the highly regulated process of transcription. The precise temporal and spatial control of transcription for many genes is an essential part of development in metazoans. Thus, understanding the molecular mechanisms underlying transcriptional control is essential to understanding cell fate determination during embryogenesis, post-embryonic development, many environmental interactions, and disease-related processes. Studies of transcriptional regulation in C. elegans exploit its genomic simplicity and physical characteristics to define regulatory events with single-cell and minute-time-scale resolution. When combined with the genetics of the system, C. elegans offers a unique and powerful vantage point from which to study how chromatin-associated proteins and their modifications interact with transcription factors and their binding sites to yield precise control of gene expression through transcriptional regulation.
Collapse
Affiliation(s)
- Valerie Reinke
- Department of Genetics, Yale University, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
7
|
Krause M, Liu J. Somatic muscle specification during embryonic and post-embryonic development in the nematode C. elegans. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:203-14. [PMID: 23801436 DOI: 10.1002/wdev.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Myogenesis has proved to be a powerful paradigm for understanding cell fate specification and differentiation in many model organisms. Studies of somatic bodywall muscle (BWM) development in Caenorhabditis elegans allow us to define, with single cell resolution, the distinct hierarchies of transcriptional regulators needed for myogenesis throughout development. Although all 95 BWM cells appear uniform after differentiation, there are several different regulatory cascades employed embryonically and post-embryonically. These, in turn, are integrated into multiple extrinsic cell signaling events. The convergence of these different pathways on the key nodal point, that is the activation of the core muscle module, commits individual cells to myogenesis. Comparisons of myogenesis between C. elegans and other model systems provide insights into the evolution of contractile cell types, demonstrating the conservation of regulatory schemes for muscles throughout the animal kingdom.
Collapse
Affiliation(s)
- Michael Krause
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| | | |
Collapse
|
8
|
Tian C, Shi H, Colledge C, Stern M, Waterston R, Liu J. The C. elegans SoxC protein SEM-2 opposes differentiation factors to promote a proliferative blast cell fate in the postembryonic mesoderm. Development 2011; 138:1033-43. [PMID: 21307099 DOI: 10.1242/dev.062240] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The proper development of multicellular organisms requires precise regulation and coordination of cell fate specification, cell proliferation and differentiation. Abnormal regulation and coordination of these processes could lead to disease, including cancer. We have examined the function of the sole C. elegans SoxC protein, SEM-2, in the M lineage, which produces the postembryonic mesoderm. We found that SEM-2/SoxC is both necessary and sufficient to promote a proliferating blast cell fate, the sex myoblast fate, over a differentiated striated bodywall muscle fate. A number of factors control the specific expression of sem-2 in the sex myoblast precursors and their descendants. This includes direct control of sem-2 expression by a Hox-PBC complex. The crucial nature of the HOX/PBC factors in directly enhancing expression of this proliferative factor in the C. elegans M lineage suggests a possible more general link between Hox-PBC factors and SoxC proteins in regulating cell proliferation.
Collapse
Affiliation(s)
- Chenxi Tian
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
9
|
Amin NM, Shi H, Liu J. The FoxF/FoxC factor LET-381 directly regulates both cell fate specification and cell differentiation in C. elegans mesoderm development. Development 2010; 137:1451-60. [PMID: 20335356 DOI: 10.1242/dev.048496] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Forkhead transcription factors play crucial and diverse roles in mesoderm development. In particular, FoxF and FoxC genes are, respectively, involved in the development of visceral/splanchnic mesoderm and non-visceral mesoderm in coelomate animals. Here, we show at single-cell resolution that, in the pseudocoelomate nematode C. elegans, the single FoxF/FoxC transcription factor LET-381 functions in a feed-forward mechanism in the specification and differentiation of the non-muscle mesodermal cells, the coelomocytes (CCs). LET-381/FoxF directly activates the CC specification factor, the Six2 homeodomain protein CEH-34, and functions cooperatively with CEH-34/Six2 to directly activate genes required for CC differentiation. Our results unify a diverse set of studies on the functions of FoxF/FoxC factors and provide a model for how FoxF/FoxC factors function during mesoderm development.
Collapse
Affiliation(s)
- Nirav M Amin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
10
|
Kim K, Kim R, Sengupta P. The HMX/NKX homeodomain protein MLS-2 specifies the identity of the AWC sensory neuron type via regulation of the ceh-36 Otx gene in C. elegans. Development 2010; 137:963-74. [PMID: 20150279 DOI: 10.1242/dev.044719] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The differentiated features of postmitotic neurons are dictated by the expression of specific transcription factors. The mechanisms by which the precise spatiotemporal expression patterns of these factors are regulated are poorly understood. In C. elegans, the ceh-36 Otx homeobox gene is expressed in the AWC sensory neurons throughout postembryonic development, and regulates terminal differentiation of this neuronal subtype. Here, we show that the HMX/NKX homeodomain protein MLS-2 regulates ceh-36 expression specifically in the AWC neurons. Consequently, the AWC neurons fail to express neuron type-specific characteristics in mls-2 mutants. mls-2 is expressed transiently in postmitotic AWC neurons, and directly initiates ceh-36 expression. CEH-36 subsequently interacts with a distinct site in its cis-regulatory sequences to maintain its own expression, and also directly regulates the expression of AWC-specific terminal differentiation genes. We also show that MLS-2 acts in additional neuron types to regulate their development and differentiation. Our analysis describes a transcription factor cascade that defines the unique postmitotic characteristics of a sensory neuron subtype, and provides insights into the spatiotemporal regulatory mechanisms that generate functional diversity in the sensory nervous system.
Collapse
Affiliation(s)
- Kyuhyung Kim
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | | | | |
Collapse
|
11
|
Jiang Y, Shi H, Liu J. Two Hox cofactors, the Meis/Hth homolog UNC-62 and the Pbx/Exd homolog CEH-20, function together during C. elegans postembryonic mesodermal development. Dev Biol 2009; 334:535-46. [PMID: 19643105 DOI: 10.1016/j.ydbio.2009.07.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/14/2009] [Accepted: 07/20/2009] [Indexed: 01/12/2023]
Abstract
The TALE homeodomain-containing PBC and MEIS proteins play multiple roles during metazoan development. Mutations in these proteins can cause various disorders, including cancer. In this study, we examined the roles of MEIS proteins in mesoderm development in C. elegans using the postembryonic mesodermal M lineage as a model system. We found that the MEIS protein UNC-62 plays essential roles in regulating cell fate specification and differentiation in the M lineage. Furthermore, UNC-62 appears to function together with the PBC protein CEH-20 in regulating these processes. Both unc-62 and ceh-20 have overlapping expression patterns within and outside of the M lineage, and they share physical and regulatory interactions. In particular, we found that ceh-20 is genetically required for the promoter activity of unc-62, providing evidence for another layer of regulatory interactions between MEIS and PBC proteins.
Collapse
Affiliation(s)
- Yuan Jiang
- Department of Molecular Biology and Genetics, Cornell University, 439 Biotechnology Building, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
12
|
A conserved Six-Eya cassette acts downstream of Wnt signaling to direct non-myogenic versus myogenic fates in the C. elegans postembryonic mesoderm. Dev Biol 2009; 331:350-60. [PMID: 19427847 DOI: 10.1016/j.ydbio.2009.05.538] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 05/04/2009] [Indexed: 01/29/2023]
Abstract
The subdivision of mesodermal cells into muscle and non-muscle cells is crucial to animal development. In the C. elegans postembryonic mesoderm, this subdivision is a result of an asymmetric cell division that leads to the formation of striated body wall muscles and non-muscle coelomocytes. Here we report that the Six homeodomain protein CEH-34 and its cofactor Eyes Absent, EYA-1, function synergistically to promote the non-muscle fate in cells also competent to form muscles. We further show that the asymmetric expression of ceh-34 and eya-1 is regulated by a combination of 1) mesodermal intrinsic factors MAB-5, HLH-1 and FOZI-1, 2) differential POP-1 (TCF/LEF) transcriptional activity along the anterior-posterior axis, and 3) coelomocyte competence factor(s). These factors are conserved in both vertebrates and invertebrates, suggesting a conserved paradigm for mesoderm development in metazoans.
Collapse
|
13
|
Mann RS, Lelli KM, Joshi R. Hox specificity unique roles for cofactors and collaborators. Curr Top Dev Biol 2009; 88:63-101. [PMID: 19651302 DOI: 10.1016/s0070-2153(09)88003-4] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hox proteins are well known for executing highly specific functions in vivo, but our understanding of the molecular mechanisms underlying gene regulation by these fascinating proteins has lagged behind. The premise of this review is that an understanding of gene regulation-by any transcription factor-requires the dissection of the cis-regulatory elements that they act upon. With this goal in mind, we review the concepts and ideas regarding gene regulation by Hox proteins and apply them to a curated list of directly regulated Hox cis-regulatory elements that have been validated in the literature. Our analysis of the Hox-binding sites within these elements suggests several emerging generalizations. We distinguish between Hox cofactors, proteins that bind DNA cooperatively with Hox proteins and thereby help with DNA-binding site selection, and Hox collaborators, proteins that bind in parallel to Hox-targeted cis-regulatory elements and dictate the sign and strength of gene regulation. Finally, we summarize insights that come from examining five X-ray crystal structures of Hox-cofactor-DNA complexes. Together, these analyses reveal an enormous amount of flexibility into how Hox proteins function to regulate gene expression, perhaps providing an explanation for why these factors have been central players in the evolution of morphological diversity in the animal kingdom.
Collapse
Affiliation(s)
- Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | | |
Collapse
|