1
|
Rivas LJ, Uribe RA. Fibroblast Growth Factor (FGF) 13. Differentiation 2024; 140:100814. [PMID: 39332965 DOI: 10.1016/j.diff.2024.100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Fibroblast Growth Factor (FGF) 13, also referred to as FGF homologous factor (FHF) 2, is a member of the FGF11 subfamily that is characterized as having sequence similarities to classical FGF receptor (FGFR)-binding FGFs, but functionally do not bind FGFRs. In this primer mini-review, we summarize current knowledge regarding FGF13 expression, mutant analyses, and gene and protein structure. Similar to other FHFs, FGF13 has been considered a non-secreted protein that lacks an amino signal and is prominently expressed in developing and mature neurons of the central and peripheral nervous systems, as well as the heart. The expression of FGF13 is not limited to early embryonic stages and has been shown to persist in adult tissues. As well, FGF13 is known to localize subcellularly, both within the cytoplasm and the nucleus. FGF13 is extremely adaptable, as it interacts with MAPK scaffolding protein islet brain 2 (IB2), stabilizes microtubules, or binds to voltage-gated sodium channels. Fgf13 mutant mouse lines display various neurological pathologies. Through sequence mapping, FGF13 is considered a candidate causative gene that is mutated in multiple human X-linked neurological diseases.
Collapse
Affiliation(s)
- Lucia J Rivas
- Department of Biosciences, Rice University, Houston, TX, United States; Biochemistry and Cell Biology Graduate Program, Rice University, Houston, TX, United States
| | - Rosa A Uribe
- Department of Biosciences, Rice University, Houston, TX, United States; Biochemistry and Cell Biology Graduate Program, Rice University, Houston, TX, United States.
| |
Collapse
|
2
|
Zhang H, Hasegawa Y, Suzuki M, Zhang T, Leitner DR, Jackson RP, Waldor MK. Mouse enteric neurons control intestinal plasmacytoid dendritic cell function via serotonin-HTR7 signaling. Nat Commun 2024; 15:9237. [PMID: 39455564 PMCID: PMC11511829 DOI: 10.1038/s41467-024-53545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Serotonergic neurons in the central nervous system control behavior and mood, but knowledge of the roles of serotonergic circuits in the regulation of immune homeostasis is limited. Here, we employ mouse genetics to investigate the functions of enteric serotonergic neurons in the control of immune responses and find that these circuits regulate IgA induction and boost host defense against oral, but not systemic Salmonella Typhimurium infection. Enteric serotonergic neurons promote gut-homing, retention and activation of intestinal plasmacytoid dendritic cells (pDC). Mechanistically, this neuro-immune crosstalk is achieved through a serotonin-5-HT receptor 7 (HTR7) signaling axis that ultimately facilitates the pDC-mediated differentiation of IgA+ B cells from IgD+ precursors in the gut. Single-cell RNA-seq data further reveal novel patterns of bidirectional communication between specific subsets of enteric neurons and lamina propria DC. Our findings thus reveal a close interplay between enteric serotonergic neurons and gut immune homeostasis that enhances mucosal defense.
Collapse
Affiliation(s)
- Hailong Zhang
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Yuko Hasegawa
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Masataka Suzuki
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Ting Zhang
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Deborah R Leitner
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Ruaidhrí P Jackson
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Uribe RA. Genetic regulation of enteric nervous system development in zebrafish. Biochem Soc Trans 2024; 52:177-190. [PMID: 38174765 PMCID: PMC10903509 DOI: 10.1042/bst20230343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
The enteric nervous system (ENS) is a complex series of interconnected neurons and glia that reside within and along the entire length of the gastrointestinal tract. ENS functions are vital to gut homeostasis and digestion, including local control of peristalsis, water balance, and intestinal cell barrier function. How the ENS develops during embryological development is a topic of great concern, as defects in ENS development can result in various diseases, the most common being Hirschsprung disease, in which variable regions of the infant gut lack ENS, with the distal colon most affected. Deciphering how the ENS forms from its progenitor cells, enteric neural crest cells, is an active area of research across various animal models. The vertebrate animal model, zebrafish, has been increasingly leveraged to understand early ENS formation, and over the past 20 years has contributed to our knowledge of the genetic regulation that underlies enteric development. In this review, I summarize our knowledge regarding the genetic regulation of zebrafish enteric neuronal development, and based on the most current literature, present a gene regulatory network inferred to underlie its construction. I also provide perspectives on areas for future zebrafish ENS research.
Collapse
Affiliation(s)
- Rosa A. Uribe
- Biosciences Department, Rice University, Houston, TX 77005, U.S.A
- Laboratory of Neural Crest and Enteric Nervous System Development, Rice University, Houston, TX 77005, U.S.A
| |
Collapse
|
4
|
Sunardi M, Ito K, Sato Y, Uesaka T, Iwasaki M, Enomoto H. A Single RET Mutation in Hirschsprung Disease Induces Intestinal Aganglionosis Via a Dominant-Negative Mechanism. Cell Mol Gastroenterol Hepatol 2022; 15:1505-1524. [PMID: 36521661 DOI: 10.1016/j.jcmgh.2022.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND & AIMS Hirschsprung disease (HSCR) is a congenital disorder characterized by the absence of the enteric nervous system (ENS). HSCR potentially involves multiple gene aberrations and displays complex patterns of inheritance. Mutations of the RET gene, encoding the RET receptor tyrosine kinase, play a central role in the pathogenesis of HSCR. Although a wide variety of coding RET mutations have been identified, their pathogenetic significance in vivo has remained largely unclear. METHODS We introduced a HSCR-associated RET missense mutation, RET(S811F), into the corresponding region (S812) of the mouse Ret gene. Pathogenetic impact of Ret(S812F) was assessed by histologic and functional analyses of the ENS and by biochemical analyses. Interactions of the Ret(S812F) allele with HSCR susceptibility genes, the RET9 allele and the Ednrb gene, were examined by genetic crossing in mice. RESULTS RetS812F/+ mice displayed intestinal aganglionosis (incidence, 50%) or hypoganglionosis (50%), impaired differentiation of enteric neurons, defecation deficits, and increased lethality. Biochemical analyses revealed that Ret(S811F) protein was not only kinase-deficient but also abrogated function of wild-type RET in trans. Moreover, the Ret(S812F) allele interacted with other HSCR susceptibility genes and caused intestinal aganglionosis with full penetrance. CONCLUSIONS This study demonstrates that a single RET missense mutation alone induces intestinal aganglionosis via a dominant-negative mechanism. The RetS812F/+ mice model HSCR displays dominant inheritance with incomplete penetrance and serves as a valuable platform for better understanding of the pathogenetic mechanism of HSCR caused by coding RET mutations.
Collapse
Affiliation(s)
- Mukhamad Sunardi
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Keisuke Ito
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Yuya Sato
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Toshihiro Uesaka
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Mitsuhiro Iwasaki
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Hideki Enomoto
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Hyogo, Japan.
| |
Collapse
|
5
|
Bandla A, Melancon E, Taylor CR, Davidson AE, Eisen JS, Ganz J. A New Transgenic Tool to Study the Ret Signaling Pathway in the Enteric Nervous System. Int J Mol Sci 2022; 23:15667. [PMID: 36555308 PMCID: PMC9779438 DOI: 10.3390/ijms232415667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
The receptor tyrosine kinase Ret plays a critical role in regulating enteric nervous system (ENS) development. Ret is important for proliferation, migration, and survival of enteric progenitor cells (EPCs). Ret also promotes neuronal fate, but its role during neuronal differentiation and in the adult ENS is less well understood. Inactivating RET mutations are associated with ENS diseases, e.g., Hirschsprung Disease, in which distal bowel lacks ENS cells. Zebrafish is an established model system for studying ENS development and modeling human ENS diseases. One advantage of the zebrafish model system is that their embryos are transparent, allowing visualization of developmental phenotypes in live animals. However, we lack tools to monitor Ret expression in live zebrafish. Here, we developed a new BAC transgenic line that expresses GFP under the ret promoter. We find that EPCs and the majority of ENS neurons express ret:GFP during ENS development. In the adult ENS, GFP+ neurons are equally present in females and males. In homozygous mutants of ret and sox10-another important ENS developmental regulator gene-GFP+ ENS cells are absent. In summary, we characterize a ret:GFP transgenic line as a new tool to visualize and study the Ret signaling pathway from early development through adulthood.
Collapse
Affiliation(s)
- Ashoka Bandla
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Ellie Melancon
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Charlotte R. Taylor
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ann E. Davidson
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Judith S. Eisen
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Julia Ganz
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Baker PA, Ibarra-García-Padilla R, Venkatesh A, Singleton EW, Uribe RA. In toto imaging of early enteric nervous system development reveals that gut colonization is tied to proliferation downstream of Ret. Development 2022; 149:278609. [PMID: 36300492 PMCID: PMC9686996 DOI: 10.1242/dev.200668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/27/2022] [Indexed: 01/19/2023]
Abstract
The enteric nervous system is a vast intrinsic network of neurons and glia within the gastrointestinal tract and is largely derived from enteric neural crest cells (ENCCs) that emigrate into the gut during vertebrate embryonic development. Study of ENCC migration dynamics and their genetic regulators provides great insights into fundamentals of collective cell migration and nervous system formation, and these are pertinent subjects for study due to their relevance to the human congenital disease Hirschsprung disease (HSCR). For the first time, we performed in toto gut imaging and single-cell generation tracing of ENCC migration in wild type and a novel ret heterozygous background zebrafish (retwmr1/+) to gain insight into ENCC dynamics in vivo. We observed that retwmr1/+ zebrafish produced fewer ENCCs localized along the gut, and these ENCCs failed to reach the hindgut, resulting in HSCR-like phenotypes. Specifically, we observed a proliferation-dependent migration mechanism, where cell divisions were associated with inter-cell distances and migration speed. Lastly, we detected a premature neuronal differentiation gene expression signature in retwmr1/+ ENCCs. These results suggest that Ret signaling may regulate maintenance of a stem state in ENCCs.
Collapse
Affiliation(s)
- Phillip A. Baker
- BioSciences Department, Rice University, Houston, TX 77005, USA,Biochemistry and Cell Biology Program, Rice University, Houston, TX 77005, USA
| | - Rodrigo Ibarra-García-Padilla
- BioSciences Department, Rice University, Houston, TX 77005, USA,Biochemistry and Cell Biology Program, Rice University, Houston, TX 77005, USA
| | | | | | - Rosa. A. Uribe
- BioSciences Department, Rice University, Houston, TX 77005, USA,Biochemistry and Cell Biology Program, Rice University, Houston, TX 77005, USA,Author for correspondence ()
| |
Collapse
|
7
|
Kuil LE, MacKenzie KC, Tang CS, Windster JD, Le TL, Karim A, de Graaf BM, van der Helm R, van Bever Y, Sloots CEJ, Meeussen C, Tibboel D, de Klein A, Wijnen RMH, Amiel J, Lyonnet S, Garcia-Barcelo MM, Tam PKH, Alves MM, Brooks AS, Hofstra RMW, Brosens E. Size matters: Large copy number losses in Hirschsprung disease patients reveal genes involved in enteric nervous system development. PLoS Genet 2021; 17:e1009698. [PMID: 34358225 PMCID: PMC8372947 DOI: 10.1371/journal.pgen.1009698] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 08/18/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
Hirschsprung disease (HSCR) is a complex genetic disease characterized by absence of ganglia in the intestine. HSCR etiology can be explained by a unique combination of genetic alterations: rare coding variants, predisposing haplotypes and Copy Number Variation (CNV). Approximately 18% of patients have additional anatomical malformations or neurological symptoms (HSCR-AAM). Pinpointing the responsible culprits within a CNV is challenging as often many genes are affected. Therefore, we selected candidate genes based on gene enrichment strategies using mouse enteric nervous system transcriptomes and constraint metrics. Next, we used a zebrafish model to investigate whether loss of these genes affects enteric neuron development in vivo. This study included three groups of patients, two groups without coding variants in disease associated genes: HSCR-AAM and HSCR patients without associated anomalies (HSCR-isolated). The third group consisted of all HSCR patients in which a confirmed pathogenic rare coding variant was identified. We compared these patient groups to unaffected controls. Predisposing haplotypes were determined, confirming that every HSCR subgroup had increased contributions of predisposing haplotypes, but their contribution was highest in isolated HSCR patients without RET coding variants. CNV profiling proved that specifically HSCR-AAM patients had larger Copy Number (CN) losses. Gene enrichment strategies using mouse enteric nervous system transcriptomes and constraint metrics were used to determine plausible candidate genes located within CN losses. Validation in zebrafish using CRISPR/Cas9 targeting confirmed the contribution of UFD1L, TBX2, SLC8A1, and MAPK8 to ENS development. In addition, we revealed epistasis between reduced Ret and Gnl1 expression and between reduced Ret and Tubb5 expression in vivo. Rare large CN losses—often de novo—contribute to HSCR in HSCR-AAM patients. We proved the involvement of six genes in enteric nervous system development and Hirschsprung disease. Hirschsprung disease is a congenital disorder characterized by the absence of intestinal neurons in the distal part of the intestine. It is a complex genetic disorder in which multiple variations in our genome combined, result in disease. One of these variations are Copy Number Variations (CNVs): large segments of our genome that are duplicated or deleted. Patients often have Hirschsprung disease without other symptoms. However, a proportion of patients has additional associated anatomical malformations and neurological symptoms. We found that CNVs, present in patients with associated anomalies, are more often larger compared to unaffected controls or Hirschsprung patients without other symptoms. Furthermore, Copy Number (CN) losses are enriched for constrained coding regions (CCR; genes usually not impacted by genomic alterations in unaffected controls) of which the expression is higher in the developing intestinal neurons compared to the intestine. We modelled loss of these candidate genes in zebrafish by disrupting the zebrafish orthologues by genome editing. For several genes this resulted in changes in intestinal neuron development, reminiscent of HSCR observed in patients. The results presented here highlight the importance of Copy Number profiling, zebrafish validation and evaluating all CCR expressed in developing intestinal neurons during diagnostic evaluation.
Collapse
Affiliation(s)
- Laura E. Kuil
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Katherine C. MacKenzie
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Clara S. Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Li Dak-Sum Research Centre, The University of Hong Kong–Karolinska Institutet Collaboration in Regenerative Medicine, Hong Kong, China
| | - Jonathan D. Windster
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Paediatric Surgery, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thuy Linh Le
- Laboratory of embryology and genetics of malformations, Institut Imagine Université de Paris INSERM UMR1163 Necker Enfants malades University Hospital, Paris, France
| | - Anwarul Karim
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bianca M. de Graaf
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert van der Helm
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Yolande van Bever
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Cornelius E. J. Sloots
- Department of Paediatric Surgery, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Conny Meeussen
- Department of Paediatric Surgery, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dick Tibboel
- Department of Paediatric Surgery, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - René M. H. Wijnen
- Department of Paediatric Surgery, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jeanne Amiel
- Laboratory of embryology and genetics of malformations, Institut Imagine Université de Paris INSERM UMR1163 Necker Enfants malades University Hospital, Paris, France
| | - Stanislas Lyonnet
- Laboratory of embryology and genetics of malformations, Institut Imagine Université de Paris INSERM UMR1163 Necker Enfants malades University Hospital, Paris, France
| | | | - Paul K. H. Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Li Dak-Sum Research Centre, The University of Hong Kong–Karolinska Institutet Collaboration in Regenerative Medicine, Hong Kong, China
| | - Maria M. Alves
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alice S. Brooks
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert M. W. Hofstra
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
8
|
Howard AGA, Baker PA, Ibarra-García-Padilla R, Moore JA, Rivas LJ, Tallman JJ, Singleton EW, Westheimer JL, Corteguera JA, Uribe RA. An atlas of neural crest lineages along the posterior developing zebrafish at single-cell resolution. eLife 2021; 10:e60005. [PMID: 33591267 PMCID: PMC7886338 DOI: 10.7554/elife.60005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
Neural crest cells (NCCs) are vertebrate stem cells that give rise to various cell types throughout the developing body in early life. Here, we utilized single-cell transcriptomic analyses to delineate NCC-derivatives along the posterior developing vertebrate, zebrafish, during the late embryonic to early larval stage, a period when NCCs are actively differentiating into distinct cellular lineages. We identified several major NCC/NCC-derived cell-types including mesenchyme, neural crest, neural, neuronal, glial, and pigment, from which we resolved over three dozen cellular subtypes. We dissected gene expression signatures of pigment progenitors delineating into chromatophore lineages, mesenchyme cells, and enteric NCCs transforming into enteric neurons. Global analysis of NCC derivatives revealed they were demarcated by combinatorial hox gene codes, with distinct profiles within neuronal cells. From these analyses, we present a comprehensive cell-type atlas that can be utilized as a valuable resource for further mechanistic and evolutionary investigations of NCC differentiation.
Collapse
Affiliation(s)
| | - Phillip A Baker
- Department of BioSciences, Rice UniversityHoustonUnited States
| | | | - Joshua A Moore
- Department of BioSciences, Rice UniversityHoustonUnited States
| | - Lucia J Rivas
- Department of BioSciences, Rice UniversityHoustonUnited States
| | - James J Tallman
- Department of BioSciences, Rice UniversityHoustonUnited States
| | | | | | | | - Rosa A Uribe
- Department of BioSciences, Rice UniversityHoustonUnited States
| |
Collapse
|
9
|
Kuil LE, Chauhan RK, Cheng WW, Hofstra RMW, Alves MM. Zebrafish: A Model Organism for Studying Enteric Nervous System Development and Disease. Front Cell Dev Biol 2021; 8:629073. [PMID: 33553169 PMCID: PMC7859111 DOI: 10.3389/fcell.2020.629073] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
The Enteric Nervous System (ENS) is a large network of enteric neurons and glia that regulates various processes in the gastrointestinal tract including motility, local blood flow, mucosal transport and secretion. The ENS is derived from stem cells coming from the neural crest that migrate into and along the primitive gut. Defects in ENS establishment cause enteric neuropathies, including Hirschsprung disease (HSCR), which is characterized by an absence of enteric neural crest cells in the distal part of the colon. In this review, we discuss the use of zebrafish as a model organism to study the development of the ENS. The accessibility of the rapidly developing gut in zebrafish embryos and larvae, enables in vivo visualization of ENS development, peristalsis and gut transit. These properties make the zebrafish a highly suitable model to bring new insights into ENS development, as well as in HSCR pathogenesis. Zebrafish have already proven fruitful in studying ENS functionality and in the validation of novel HSCR risk genes. With the rapid advancements in gene editing techniques and their unique properties, research using zebrafish as a disease model, will further increase our understanding on the genetics underlying HSCR, as well as possible treatment options for this disease.
Collapse
Affiliation(s)
- Laura E. Kuil
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Rajendra K. Chauhan
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - William W. Cheng
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Robert M. W. Hofstra
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, Netherlands
- Stem Cells and Regenerative Medicine, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Maria M. Alves
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
10
|
Rocha M, Singh N, Ahsan K, Beiriger A, Prince VE. Neural crest development: insights from the zebrafish. Dev Dyn 2019; 249:88-111. [PMID: 31591788 DOI: 10.1002/dvdy.122] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/21/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022] Open
Abstract
Our understanding of the neural crest, a key vertebrate innovation, is built upon studies of multiple model organisms. Early research on neural crest cells (NCCs) was dominated by analyses of accessible amphibian and avian embryos, with mouse genetics providing complementary insights in more recent years. The zebrafish model is a relative newcomer to the field, yet it offers unparalleled advantages for the study of NCCs. Specifically, zebrafish provide powerful genetic and transgenic tools, coupled with rapidly developing transparent embryos that are ideal for high-resolution real-time imaging of the dynamic process of neural crest development. While the broad principles of neural crest development are largely conserved across vertebrate species, there are critical differences in anatomy, morphogenesis, and genetics that must be considered before information from one model is extrapolated to another. Here, our goal is to provide the reader with a helpful primer specific to neural crest development in the zebrafish model. We focus largely on the earliest events-specification, delamination, and migration-discussing what is known about zebrafish NCC development and how it differs from NCC development in non-teleost species, as well as highlighting current gaps in knowledge.
Collapse
Affiliation(s)
- Manuel Rocha
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Noor Singh
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| | - Kamil Ahsan
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Anastasia Beiriger
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Victoria E Prince
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois.,Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| |
Collapse
|
11
|
Tuttle A, Drerup CM, Marra M, McGraw H, Nechiporuk AV. Retrograde Ret signaling controls sensory pioneer axon outgrowth. eLife 2019; 8:46092. [PMID: 31476133 PMCID: PMC6718271 DOI: 10.7554/elife.46092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022] Open
Abstract
The trafficking mechanisms and transcriptional targets downstream of long-range neurotrophic factor ligand/receptor signaling that promote axon growth are incompletely understood. Zebrafish carrying a null mutation in a neurotrophic factor receptor, Ret, displayed defects in peripheral sensory axon growth cone morphology and dynamics. Ret receptor was highly enriched in sensory pioneer neurons and Ret51 isoform was required for pioneer axon outgrowth. Loss-of-function of a cargo adaptor, Jip3, partially phenocopied Ret axonal defects, led to accumulation of activated Ret in pioneer growth cones, and reduced retrograde Ret51 transport. Jip3 and Ret51 were also retrogradely co-transported, ultimately suggesting Jip3 is a retrograde adapter of active Ret51. Finally, loss of Ret reduced transcription and growth cone localization of Myosin-X, an initiator of filopodial formation. These results show a specific role for Ret51 in pioneer axon growth, and suggest a critical role for long-range retrograde Ret signaling in regulating growth cone dynamics through downstream transcriptional changes.
Collapse
Affiliation(s)
- Adam Tuttle
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, United States
| | - Catherine M Drerup
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, United States
| | - Molly Marra
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, United States.,Neuroscience Graduate Program, Oregon Health & Science University, Portland, United States
| | - Hillary McGraw
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, United States
| | - Alex V Nechiporuk
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, United States
| |
Collapse
|
12
|
Migration and diversification of the vagal neural crest. Dev Biol 2018; 444 Suppl 1:S98-S109. [PMID: 29981692 DOI: 10.1016/j.ydbio.2018.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 12/17/2022]
Abstract
Arising within the neural tube between the cranial and trunk regions of the body axis, the vagal neural crest shares interesting similarities in its migratory routes and derivatives with other neural crest populations. However, the vagal neural crest is also unique in its ability to contribute to diverse organs including the heart and enteric nervous system. This review highlights the migratory routes of the vagal neural crest and compares them across multiple vertebrates. We also summarize recent advances in understanding vagal neural crest ontogeny and discuss the contribution of this important neural crest population to the cardiovascular system and endoderm-derived organs, including the thymus, lungs and pancreas.
Collapse
|
13
|
Ganz J. Gut feelings: Studying enteric nervous system development, function, and disease in the zebrafish model system. Dev Dyn 2018; 247:268-278. [PMID: 28975691 DOI: 10.1002/dvdy.24597] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 07/14/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
The enteric nervous system (ENS) is the largest part of the peripheral nervous system and is entirely neural crest-derived. It provides the intrinsic innervation of the gut, controlling different aspects of gut function, such as motility. In this review, we will discuss key points of Zebrafish ENS development, genes, and signaling pathways regulating ENS development, as well as contributions of the Zebrafish model system to better understand ENS disorders. During their migration, enteric progenitor cells (EPCs) display a gradient of developmental states based on their proliferative and migratory characteristics, and show spatiotemporal heterogeneity based on gene expression patterns. Many genes and signaling pathways that regulate the migration and proliferation of EPCs have been identified, but later stages of ENS development, especially steps of neuronal and glial differentiation, remain poorly understood. In recent years, Zebrafish have become increasingly important to test candidate genes for ENS disorders (e.g., from genome-wide association studies), to identify environmental influences on ENS development (e.g., through large-scale drug screens), and to investigate the role the gut microbiota play in ENS development and disease. With its unique advantages as a model organism, Zebrafish will continue to contribute to a better understanding of ENS development, function, and disease. Developmental Dynamics 247:268-278, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Julia Ganz
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
14
|
Uribe RA, Hong SS, Bronner ME. Retinoic acid temporally orchestrates colonization of the gut by vagal neural crest cells. Dev Biol 2018; 433:17-32. [PMID: 29108781 PMCID: PMC5722660 DOI: 10.1016/j.ydbio.2017.10.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
Abstract
The enteric nervous system arises from neural crest cells that migrate as chains into and along the primitive gut, subsequently differentiating into enteric neurons and glia. Little is known about the mechanisms governing neural crest migration en route to and along the gut in vivo. Here, we report that Retinoic Acid (RA) temporally controls zebrafish enteric neural crest cell chain migration. In vivo imaging reveals that RA loss severely compromises the integrity and migration of the chain of neural crest cells during the window of time window when they are moving along the foregut. After loss of RA, enteric progenitors accumulate in the foregut and differentiate into enteric neurons, but subsequently undergo apoptosis resulting in a striking neuronal deficit. Moreover, ectopic expression of the transcription factor meis3 and/or the receptor ret, partially rescues enteric neuron colonization after RA attenuation. Collectively, our findings suggest that retinoic acid plays a critical temporal role in promoting enteric neural crest chain migration and neuronal survival upstream of Meis3 and RET in vivo.
Collapse
Affiliation(s)
- Rosa A Uribe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA.
| | - Stephanie S Hong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
15
|
Pu J, Tang S, Tong Q, Wang G, Jia H, Jia Q, Li K, Li D, Yang D, Yang J, Li H, Li S, Mei H. Neuregulin 1 is involved in enteric nervous system development in zebrafish. J Pediatr Surg 2017; 52:1182-1187. [PMID: 28190554 DOI: 10.1016/j.jpedsurg.2017.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 01/12/2017] [Accepted: 01/14/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Hirschsprung's disease (HD, also known as congenital colon aganglionosis) is a congenital disorder characterized by the absence of intramural ganglion cells in the distal gastrointestinal tract, which results in tonic contraction of the aganglionic gut segment and functional intestinal obstruction. Recent studies have indicated neuregulin 1 (NRG1) as a new candidate gene involved in the development of the enteric nervous system (ENS) in humans. METHODS In our study, we investigated the role of NRG1 in zebrafish ENS development by assessing NRG1 expression patterns during ENS development. Knockdown, overexpression and rescue zebrafish models of NRG1 were created to evaluate differences in phenotype, numbers of enteric neurons, ENS-related factors and nerve fiber arrangements. RESULTS NRG1 was expressed in zebrafish intestine at both the larval and adult stage. We also found that decreased expression of NRG1 resulted in reductions in enteric neuron number and decreased expression of ENS development markers. Moreover, NRG1-knockdown zebrafish exhibited a disordered arrangement of nerve fibers. CONCLUSIONS Collectively, these results demonstrated that NRG1 expression might play a role in zebrafish ENS development. In addition, by modulating NRG1 expression, we created a model that may be useful for investigating the mechanism underlying HD pathogenesis.
Collapse
Affiliation(s)
- Jiarui Pu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Shaotao Tang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Guobin Wang
- Department of Gastrointetinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haibo Jia
- Department of Biology Science, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiong Jia
- Department of Biology Science, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kang Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dehua Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hang Li
- Department of Gastrointetinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
16
|
Roy-Carson S, Natukunda K, Chou HC, Pal N, Farris C, Schneider SQ, Kuhlman JA. Defining the transcriptomic landscape of the developing enteric nervous system and its cellular environment. BMC Genomics 2017; 18:290. [PMID: 28403821 PMCID: PMC5389105 DOI: 10.1186/s12864-017-3653-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/22/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Motility and the coordination of moving food through the gastrointestinal tract rely on a complex network of neurons known as the enteric nervous system (ENS). Despite its critical function, many of the molecular mechanisms that direct the development of the ENS and the elaboration of neural network connections remain unknown. The goal of this study was to transcriptionally identify molecular pathways and candidate genes that drive specification, differentiation and the neural circuitry of specific neural progenitors, the phox2b expressing ENS cell lineage, during normal enteric nervous system development. Because ENS development is tightly linked to its environment, the transcriptional landscape of the cellular environment of the intestine was also analyzed. RESULTS Thousands of zebrafish intestines were manually dissected from a transgenic line expressing green fluorescent protein under the phox2b regulatory elements [Tg(phox2b:EGFP) w37 ]. Fluorescence-activated cell sorting was used to separate GFP-positive phox2b expressing ENS progenitor and derivatives from GFP-negative intestinal cells. RNA-seq was performed to obtain accurate, reproducible transcriptional profiles and the unbiased detection of low level transcripts. Analysis revealed genes and pathways that may function in ENS cell determination, genes that may be identifiers of different ENS subtypes, and genes that define the non-neural cellular microenvironment of the ENS. Differential expression analysis between the two cell populations revealed the expected neuronal nature of the phox2b expressing lineage including the enrichment for genes required for neurogenesis and synaptogenesis, and identified many novel genes not previously associated with ENS development. Pathway analysis pointed to a high level of G-protein coupled pathway activation, and identified novel roles for candidate pathways such as the Nogo/Reticulon axon guidance pathway in ENS development. CONCLUSION We report the comprehensive gene expression profiles of a lineage-specific population of enteric progenitors, their derivatives, and their microenvironment during normal enteric nervous system development. Our results confirm previously implicated genes and pathways required for ENS development, and also identify scores of novel candidate genes and pathways. Thus, our dataset suggests various potential mechanisms that drive ENS development facilitating characterization and discovery of novel therapeutic strategies to improve gastrointestinal disorders.
Collapse
Affiliation(s)
- Sweta Roy-Carson
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Kevin Natukunda
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Hsien-Chao Chou
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.,Present Address: National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Narinder Pal
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.,Present address: North Central Regional Plant Introduction Station, 1305 State Ave, Ames, IA, 50014, USA
| | - Caitlin Farris
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.,Present address: Pioneer Hi-Bred International, Johnson, IA, 50131, USA
| | - Stephan Q Schneider
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Julie A Kuhlman
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA. .,642 Science II, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
17
|
Veiga-Fernandes H, Pachnis V. Neuroimmune regulation during intestinal development and homeostasis. Nat Immunol 2017; 18:116-122. [DOI: 10.1038/ni.3634] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/07/2016] [Indexed: 12/22/2022]
|
18
|
Abstract
Although the zebrafish was initially developed as a model system to study embryonic development, it has gained increasing attention as an advantageous system to investigate human diseases, including intestinal disorders. Zebrafish embryos develop rapidly, and their digestive system is fully functional and visible by 5days post fertilization. There is a large degree of homology between the intestine of zebrafish and higher vertebrate organisms in terms of its cellular composition and function as both a digestive and immune organ. Furthermore, molecular pathways regulating injury and immune responses are highly conserved. In this chapter, we provide an overview of studies addressing developmental and physiological processes relevant to human intestinal disease. These studies include those related to congenital disorders, host-microbiota interactions, inflammatory diseases, motility disorders, and intestinal cancer. We also highlight the utility of zebrafish to functionally validate candidate genes identified through mutational analyses and genome-wide association studies, and discuss methodologies to investigate the intestinal biology that are unique to zebrafish.
Collapse
Affiliation(s)
- X Zhao
- University of Pennsylvania, Philadelphia, PA, United States
| | - M Pack
- University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
19
|
Lian EY, Maritan SM, Cockburn JG, Kasaian K, Crupi MJF, Hurlbut D, Jones SJM, Wiseman SM, Mulligan LM. Differential roles of RET isoforms in medullary and papillary thyroid carcinomas. Endocr Relat Cancer 2017; 24:53-69. [PMID: 27872141 DOI: 10.1530/erc-16-0393] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 12/25/2022]
Abstract
The RET receptor tyrosine kinase mediates cell proliferation, survival and migration in embryogenesis and is implicated in the transformation and tumour progression in multiple cancers. RET is frequently mutated and constitutively activated in familial and sporadic thyroid carcinomas. As a result of alternative splicing, RET is expressed as two protein isoforms, RET9 and RET51, which differ in their unique C-terminal amino acids. These isoforms have distinct intracellular trafficking and associated signalling complexes, but functional differences are not well defined. We used shRNA-mediated knockdown (KD) of individual RET isoforms or of total RET to evaluate their functional contributions in thyroid carcinoma cells. We showed that RET is required for cell survival in medullary (MTC) but not papillary thyroid carcinoma (PTC) cells. In PTC cells, RET depletion reduced cell migration and induced a flattened epithelial-like morphology. RET KD decreased the expression of mesenchymal markers and matrix metalloproteinases and reduced anoikis resistance and invasive potential. Further, we showed that RET51 depletion had significantly greater effects on each of these processes than RET9 depletion in both MTC and PTC cells. Finally, we showed that expression of RET, particularly RET51, was correlated with malignancy in a panel of human thyroid tumour tissues. Together, our data show that RET expression promotes a more mesenchymal phenotype with reduced cell-cell adhesion and increased invasiveness in PTC cell models, but is more important for tumour cell survival, proliferation and anoikis resistance in MTC models. Our data suggest that the RET51 isoform plays a more prominent role in mediating these processes compared to RET9.
Collapse
Affiliation(s)
- Eric Y Lian
- Division of Cancer Biology and GeneticsCancer Research Institute, Queen's University, Kingston, Ontario, Canada
- Department of Pathology & Molecular MedicineQueen's University, Kingston, Ontario, Canada
| | - Sarah M Maritan
- Division of Cancer Biology and GeneticsCancer Research Institute, Queen's University, Kingston, Ontario, Canada
- Department of Pathology & Molecular MedicineQueen's University, Kingston, Ontario, Canada
| | - Jessica G Cockburn
- Division of Cancer Biology and GeneticsCancer Research Institute, Queen's University, Kingston, Ontario, Canada
- Department of Pathology & Molecular MedicineQueen's University, Kingston, Ontario, Canada
| | - Katayoon Kasaian
- Michael Smith Genome Sciences CentreBritish Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Mathieu J F Crupi
- Division of Cancer Biology and GeneticsCancer Research Institute, Queen's University, Kingston, Ontario, Canada
- Department of Pathology & Molecular MedicineQueen's University, Kingston, Ontario, Canada
| | - David Hurlbut
- Department of Pathology & Molecular MedicineQueen's University, Kingston, Ontario, Canada
| | - Steven J M Jones
- Michael Smith Genome Sciences CentreBritish Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Medical GeneticsUniversity of British Columbia, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Sam M Wiseman
- Department of SurgerySt Paul's Hospital & University of British Columbia, Vancouver, British Columbia, Canada
| | - Lois M Mulligan
- Division of Cancer Biology and GeneticsCancer Research Institute, Queen's University, Kingston, Ontario, Canada
- Department of Pathology & Molecular MedicineQueen's University, Kingston, Ontario, Canada
| |
Collapse
|
20
|
A Novel Zebrafish ret Heterozygous Model of Hirschsprung Disease Identifies a Functional Role for mapk10 as a Modifier of Enteric Nervous System Phenotype Severity. PLoS Genet 2016; 12:e1006439. [PMID: 27902697 PMCID: PMC5130169 DOI: 10.1371/journal.pgen.1006439] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/21/2016] [Indexed: 11/19/2022] Open
Abstract
Hirschsprung disease (HSCR) is characterized by absence of enteric neurons from the distal colon and severe intestinal dysmotility. To understand the pathophysiology and genetics of HSCR we developed a unique zebrafish model that allows combined genetic, developmental and in vivo physiological studies. We show that ret mutant zebrafish exhibit cellular, physiological and genetic features of HSCR, including absence of intestinal neurons, reduced peristalsis, and varying phenotype expressivity in the heterozygous state. We perform live imaging experiments using a UAS-GAL4 binary genetic system to drive fluorescent protein expression in ENS progenitors. We demonstrate that ENS progenitors migrate at reduced speed in ret heterozygous embryos, without changes in proliferation or survival, establishing this as a principal pathogenic mechanism for distal aganglionosis. We show, using live imaging of actual intestinal movements, that intestinal motility is severely compromised in ret mutants, and partially impaired in ret heterozygous larvae, and establish a clear correlation between neuron position and organised intestinal motility. We exploited the partially penetrant ret heterozygous phenotype as a sensitised background to test the influence of a candidate modifier gene. We generated mapk10 loss-of-function mutants, which show reduced numbers of enteric neurons. Significantly, we show that introduction of mapk10 mutations into ret heterozygotes enhanced the ENS deficit, supporting MAPK10 as a HSCR susceptibility locus. Our studies demonstrate that ret heterozygous zebrafish is a sensitized model, with many significant advantages over existing murine models, to explore the pathophysiology and complex genetics of HSCR. Hirschsprung Disease (HSCR) is a common congenital intestinal motility disorder diagnosed at birth by absence of enteric neurons in the distal gut, leading to intestinal obstruction that requires life-saving surgery. HSCR exhibits complex inheritance patterns and its genetic basis is not fully understood. Although well studied by human geneticists, and modelled using mouse, significant questions remain about the cellular and genetic causes of the disease and the relationship between neuron loss and defective intestinal motility. Here we use accessible, transparent zebrafish to address these outstanding questions. We establish that ret mutant zebrafish display key features of HSCR, including absence of intestinal neurons, reduced gut motility and varying phenotype expressivity. Using live imaging, possible in zebrafish but not in mouse, we demonstrate that decreased migration speed of enteric neuron progenitors colonising the gut is the principal defect leading to neuron deficits. By direct examination of gut motility in zebrafish larvae, we establish a clear correlation between neurons and motility patterns. Finally, we show that mapk10 mutations worsen the enteric neuron deficit of ret mutants, indicating that mutations in MAPK10 may increase susceptibility to HSCR. We show many benefits of modelling human genetic diseases in zebrafish and advance our understanding of HSCR.
Collapse
|
21
|
Taylor CR, Montagne WA, Eisen JS, Ganz J. Molecular fingerprinting delineates progenitor populations in the developing zebrafish enteric nervous system. Dev Dyn 2016; 245:1081-1096. [PMID: 27565577 DOI: 10.1002/dvdy.24438] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 07/01/2016] [Accepted: 07/29/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND To understand the basis of nervous system development, we must learn how multipotent progenitors generate diverse neuronal and glial lineages. We addressed this issue in the zebrafish enteric nervous system (ENS), a complex neuronal and glial network that regulates essential intestinal functions. Little is currently known about how ENS progenitor subpopulations generate enteric neuronal and glial diversity. RESULTS We identified temporally and spatially dependent progenitor subpopulations based on coexpression of three genes essential for normal ENS development: phox2bb, sox10, and ret. Our data suggest that combinatorial expression of these genes delineates three major ENS progenitor subpopulations, (1) phox2bb + /ret- /sox10-, (2) phox2bb + /ret + /sox10-, and (3) phox2bb + /ret + /sox10+, that reflect temporal progression of progenitor maturation during migration. We also found that differentiating zebrafish neurons maintain phox2bb and ret expression, and lose sox10 expression. CONCLUSIONS Our data show that zebrafish enteric progenitors constitute a heterogeneous population at both early and late stages of ENS development and suggest that marker gene expression is indicative of a progenitor's fate. We propose that a progenitor's expression profile reveals its developmental state: "younger" wave front progenitors express all three genes, whereas more mature progenitors behind the wave front selectively lose sox10 and/or ret expression, which may indicate developmental restriction. Developmental Dynamics 245:1081-1096, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Charlotte R Taylor
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - William A Montagne
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - Judith S Eisen
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - Julia Ganz
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA. .,Current address: Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
22
|
Wiles TJ, Jemielita M, Baker RP, Schlomann BH, Logan SL, Ganz J, Melancon E, Eisen JS, Guillemin K, Parthasarathy R. Host Gut Motility Promotes Competitive Exclusion within a Model Intestinal Microbiota. PLoS Biol 2016; 14:e1002517. [PMID: 27458727 PMCID: PMC4961409 DOI: 10.1371/journal.pbio.1002517] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/21/2016] [Indexed: 12/17/2022] Open
Abstract
The gut microbiota is a complex consortium of microorganisms with the ability to influence important aspects of host health and development. Harnessing this “microbial organ” for biomedical applications requires clarifying the degree to which host and bacterial factors act alone or in combination to govern the stability of specific lineages. To address this issue, we combined bacteriological manipulation and light sheet fluorescence microscopy to monitor the dynamics of a defined two-species microbiota within a vertebrate gut. We observed that the interplay between each population and the gut environment produces distinct spatiotemporal patterns. As a consequence, one species dominates while the other experiences sudden drops in abundance that are well fit by a stochastic mathematical model. Modeling revealed that direct bacterial competition could only partially explain the observed phenomena, suggesting that a host factor is also important in shaping the community. We hypothesized the host determinant to be gut motility, and tested this mechanism by measuring colonization in hosts with enteric nervous system dysfunction due to a mutation in the ret locus, which in humans is associated with the intestinal motility disorder known as Hirschsprung disease. In mutant hosts we found reduced gut motility and, confirming our hypothesis, robust coexistence of both bacterial species. This study provides evidence that host-mediated spatial structuring and stochastic perturbation of communities can drive bacterial population dynamics within the gut, and it reveals a new facet of the intestinal host–microbe interface by demonstrating the capacity of the enteric nervous system to influence the microbiota. Ultimately, these findings suggest that therapeutic strategies targeting the intestinal ecosystem should consider the dynamic physical nature of the gut environment. Live imaging of a model intestinal microbiota reveals that enteric neural function and peristalsis, combined with the spatial structure of microbial communities, can drive competition between bacterial species. Hundreds of microbial species thrive within the gut of humans and other animals, where they can influence the health of their host in profound ways. The factors that shape the composition of the resident gut microbiota are not well understood, but identifying them represents an important step toward developing treatments for diseases associated with microbial imbalances. Current experimental approaches poorly capture spatial and temporal aspects of microbial interactions within the gut, and yet these features may hold clues to what determines the composition of the microbiota. To address this issue, we used state-of-the-art live imaging to track two bacterial species within the intestine of a model vertebrate host, the zebrafish. We observed strikingly different interplay between the spatial organization of each population and the intestine’s peristaltic activity. As a result, one species dominates while the other experiences sudden drops in abundance, the dynamics of which are predicted by a stochastic mathematical model. From this work, we conclude that the composition of indigenous microbial communities may, in part, be shaped by a combination of the physical intestinal environment and the spatial structure of bacterial populations.
Collapse
Affiliation(s)
- Travis J Wiles
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Matthew Jemielita
- Department of Physics, University of Oregon, Eugene, Oregon, United States of America
| | - Ryan P Baker
- Department of Physics, University of Oregon, Eugene, Oregon, United States of America
| | - Brandon H Schlomann
- Department of Physics, University of Oregon, Eugene, Oregon, United States of America
| | - Savannah L Logan
- Department of Physics, University of Oregon, Eugene, Oregon, United States of America
| | - Julia Ganz
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Ellie Melancon
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Judith S Eisen
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Raghuveer Parthasarathy
- Department of Physics, University of Oregon, Eugene, Oregon, United States of America
- * E-mail:
| |
Collapse
|
23
|
Heanue TA, Shepherd IT, Burns AJ. Enteric nervous system development in avian and zebrafish models. Dev Biol 2016; 417:129-38. [PMID: 27235814 DOI: 10.1016/j.ydbio.2016.05.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 01/10/2023]
Abstract
Our current understanding of the developmental biology of the enteric nervous system (ENS) and the genesis of ENS diseases is founded almost entirely on studies using model systems. Although genetic studies in the mouse have been at the forefront of this field over the last 20 years or so, historically it was the easy accessibility of the chick embryo for experimental manipulations that allowed the first descriptions of the neural crest origins of the ENS in the 1950s. More recently, studies in the chick and other non-mammalian model systems, notably zebrafish, have continued to advance our understanding of the basic biology of ENS development, with each animal model providing unique experimental advantages. Here we review the basic biology of ENS development in chick and zebrafish, highlighting conserved and unique features, and emphasising novel contributions to our general understanding of ENS development due to technical or biological features.
Collapse
Affiliation(s)
| | | | - Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
24
|
Crupi MJF, Yoganathan P, Bone LN, Lian E, Fetz A, Antonescu CN, Mulligan LM. Distinct Temporal Regulation of RET Isoform Internalization: Roles of Clathrin and AP2. Traffic 2015; 16:1155-73. [DOI: 10.1111/tra.12315] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 08/19/2015] [Accepted: 08/19/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Mathieu J. F. Crupi
- Division of Cancer Biology and Genetics, Cancer Research Institute and Department of Pathology & Molecular Medicine; Queen's University; Kingston Ontario K7L 3N6 Canada
| | - Piriya Yoganathan
- Division of Cancer Biology and Genetics, Cancer Research Institute and Department of Pathology & Molecular Medicine; Queen's University; Kingston Ontario K7L 3N6 Canada
| | - Leslie N. Bone
- Department of Chemistry and Biology; Ryerson University; Toronto Ontario M5B 2K3 Canada
| | - Eric Lian
- Division of Cancer Biology and Genetics, Cancer Research Institute and Department of Pathology & Molecular Medicine; Queen's University; Kingston Ontario K7L 3N6 Canada
| | - Andrew Fetz
- Division of Cancer Biology and Genetics, Cancer Research Institute and Department of Pathology & Molecular Medicine; Queen's University; Kingston Ontario K7L 3N6 Canada
| | - Costin N. Antonescu
- Department of Chemistry and Biology; Ryerson University; Toronto Ontario M5B 2K3 Canada
| | - Lois M. Mulligan
- Division of Cancer Biology and Genetics, Cancer Research Institute and Department of Pathology & Molecular Medicine; Queen's University; Kingston Ontario K7L 3N6 Canada
| |
Collapse
|
25
|
Arab HA, Muhammadnejad S, Faghihi SM, Hassanpour H, Muhammadnejad A. Effects of nitric oxide modulating activities on development of enteric nervous system mediated gut motility in chick embryo model. J Biosci 2015; 39:835-48. [PMID: 25431412 DOI: 10.1007/s12038-014-9474-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The enteric nervous system (ENS) arises from the enteric neural crest-derived cells (ENCCs), and many molecules and biochemical processes may be involved in its development. This study examined the effects of modulating embryonic nitric oxide (NO) activity on the intestinal motility induced by ENS. One-hundred-and-twenty fertilized chicken eggs were assigned to three main groups and incubated at 37 degrees Centigrade and 60 percent humidity. The eggs were treated with NG-nitro-Larginine methyl ester (L-NAME), sodium nitroprusside (SNP), L-arginine (L-Arg) or vehicle from days 3 (1st group), 7 (2nd group) and 10 (3rd group) of incubation and continued up to day 18. On day 19, the embryos were sacrificed, the jejunal and colorectal segments were taken and the intestinal motility was assessed using isolated organ system. The intestinal motility was recorded normally and following cholinergic, adrenergic and non-adrenergic non-cholinergic (NANC) stimulations. The ENS structure was assessed by immunohistochemistry (IHC) using glial fibrillary acidic protein (GFAP). Rhythmic intestinal contractions were seen in all treatment groups, but inhibition of NO in the LNAME- treated embryos caused significant decrease (p less than 0.01) in the frequency and amplitude of the contraction. The responsiveness to adrenergic, cholinergic and NANC stimulations was also significantly decreased (p less than 0.05). The GFAP expression was significantly (p less than 0.05) reduced in the L-NAME-treated embryos. This study showed that the inhibition of NO caused a deficient development of the ENS, leading to a decrease in the frequency and amplitude of the intestinal contractions and reduced the responsiveness to adrenergic, cholinergic and NANC signalling.
Collapse
Affiliation(s)
- Hossein-Ali Arab
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran,
| | | | | | | | | |
Collapse
|
26
|
Jiang Q, Arnold S, Heanue T, Kilambi K, Doan B, Kapoor A, Ling A, Sosa M, Guy M, Jiang Q, Burzynski G, West K, Bessling S, Griseri P, Amiel J, Fernandez R, Verheij J, Hofstra R, Borrego S, Lyonnet S, Ceccherini I, Gray J, Pachnis V, McCallion A, Chakravarti A. Functional loss of semaphorin 3C and/or semaphorin 3D and their epistatic interaction with ret are critical to Hirschsprung disease liability. Am J Hum Genet 2015; 96:581-96. [PMID: 25839327 DOI: 10.1016/j.ajhg.2015.02.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/20/2015] [Indexed: 10/23/2022] Open
Abstract
Innervation of the gut is segmentally lost in Hirschsprung disease (HSCR), a consequence of cell-autonomous and non-autonomous defects in enteric neuronal cell differentiation, proliferation, migration, or survival. Rare, high-penetrance coding variants and common, low-penetrance non-coding variants in 13 genes are known to underlie HSCR risk, with the most frequent variants in the ret proto-oncogene (RET). We used a genome-wide association (220 trios) and replication (429 trios) study to reveal a second non-coding variant distal to RET and a non-coding allele on chromosome 7 within the class 3 Semaphorin gene cluster. Analysis in Ret wild-type and Ret-null mice demonstrates specific expression of Sema3a, Sema3c, and Sema3d in the enteric nervous system (ENS). In zebrafish embryos, sema3 knockdowns show reduction of migratory ENS precursors with complete ablation under conjoint ret loss of function. Seven candidate receptors of Sema3 proteins are also expressed within the mouse ENS and their expression is also lost in the ENS of Ret-null embryos. Sequencing of SEMA3A, SEMA3C, and SEMA3D in 254 HSCR-affected subjects followed by in silico protein structure modeling and functional analyses identified five disease-associated alleles with loss-of-function defects in semaphorin dimerization and binding to their cognate neuropilin and plexin receptors. Thus, semaphorin 3C/3D signaling is an evolutionarily conserved regulator of ENS development whose dys-regulation is a cause of enteric aganglionosis.
Collapse
|
27
|
Bonora E, Bianco F, Cordeddu L, Bamshad M, Francescatto L, Dowless D, Stanghellini V, Cogliandro RF, Lindberg G, Mungan Z, Cefle K, Ozcelik T, Palanduz S, Ozturk S, Gedikbasi A, Gori A, Pippucci T, Graziano C, Volta U, Caio G, Barbara G, D'Amato M, Seri M, Katsanis N, Romeo G, De Giorgio R. Mutations in RAD21 disrupt regulation of APOB in patients with chronic intestinal pseudo-obstruction. Gastroenterology 2015; 148:771-782.e11. [PMID: 25575569 PMCID: PMC4375026 DOI: 10.1053/j.gastro.2014.12.034] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 12/03/2014] [Accepted: 12/23/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Chronic intestinal pseudo-obstruction (CIPO) is characterized by severe intestinal dysmotility that mimics a mechanical subocclusion with no evidence of gut obstruction. We searched for genetic variants associated with CIPO to increase our understanding of its pathogenesis and to identify potential biomarkers. METHODS We performed whole-exome sequencing of genomic DNA from patients with familial CIPO syndrome. Blood and lymphoblastoid cells were collected from patients and controls (individuals without CIPO); levels of messenger RNA (mRNA) and proteins were analyzed by quantitative reverse-transcription polymerase chain reaction, immunoblot, and mobility shift assays. Complementary DNAs were transfected into HEK293 cells. Expression of rad21 was suppressed in zebrafish embryos using a splice-blocking morpholino (rad21a). Gut tissues were collected and analyzed. RESULTS We identified a homozygous mutation (p.622, encodes Ala>Thr) in RAD21 in patients from a consanguineous family with CIPO. Expression of RUNX1, a target of RAD21, was reduced in cells from patients with CIPO compared with controls. In zebrafish, suppression of rad21a reduced expression of runx1; this phenotype was corrected by injection of human RAD21 mRNA, but not with the mRNA from the mutated p.622 allele. rad21a Morpholino zebrafish had delayed intestinal transit and greatly reduced numbers of enteric neurons, similar to patients with CIPO. This defect was greater in zebrafish with suppressed expression of ret and rad21, indicating their interaction in the regulation of gut neurogenesis. The promoter region of APOB bound RAD21 but not RAD21 p.622 Ala>Thr; expression of wild-type RAD21 in HEK293 cells repressed expression of APOB, compared with control vector. The gut-specific isoform of APOB (APOB48) is overexpressed in sera from patients with CIPO who carry the RAD21 mutation. APOB48 also is overexpressed in sporadic CIPO in sera and gut biopsy specimens. CONCLUSIONS Some patients with CIPO carry mutations in RAD21 that disrupt the ability of its product to regulate genes such as RUNX1 and APOB. Reduced expression of rad21 in zebrafish, and dysregulation of these target genes, disrupts intestinal transit and the development of enteric neurons.
Collapse
Affiliation(s)
- Elena Bonora
- Department of Medical and Surgical Sciences, University of Bologna, and St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Francesca Bianco
- Department of Medical and Surgical Sciences, University of Bologna, and St. Orsola-Malpighi Hospital, Bologna, Italy
| | | | - Michael Bamshad
- University of Washington Center for Mendelian Genomics, Seattle, USA
| | | | - Dustin Dowless
- Center for Human Disease Modeling Duke University, Durham, USA
| | - Vincenzo Stanghellini
- Department of Medical and Surgical Sciences, University of Bologna, and St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Rosanna F. Cogliandro
- Department of Medical and Surgical Sciences, University of Bologna, and St. Orsola-Malpighi Hospital, Bologna, Italy
| | | | | | - Kivanc Cefle
- Istanbul Medical Faculty, Dept. of Internal Medicine, Division of Medical Genetics
| | | | - Sukru Palanduz
- Istanbul Medical Faculty, Dept. of Internal Medicine, Division of Medical Genetics
| | - Sukru Ozturk
- Istanbul Medical Faculty, Dept. of Internal Medicine, Division of Medical Genetics
| | - Asuman Gedikbasi
- Istanbul Medical Faculty, Dept. of Internal Medicine, Division of Medical Genetics
| | - Alessandra Gori
- Department of Medical and Surgical Sciences, University of Bologna, and St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Tommaso Pippucci
- Department of Medical and Surgical Sciences, University of Bologna, and St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Claudio Graziano
- Department of Medical and Surgical Sciences, University of Bologna, and St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Umberto Volta
- Department of Medical and Surgical Sciences, University of Bologna, and St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Giacomo Caio
- Department of Medical and Surgical Sciences, University of Bologna, and St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Giovanni Barbara
- Department of Medical and Surgical Sciences, University of Bologna, and St. Orsola-Malpighi Hospital, Bologna, Italy
| | | | - Marco Seri
- Department of Medical and Surgical Sciences, University of Bologna, and St. Orsola-Malpighi Hospital, Bologna, Italy
| | | | - Giovanni Romeo
- Department of Medical and Surgical Sciences, University of Bologna, and St. Orsola-Malpighi Hospital, Bologna, Italy.
| | - Roberto De Giorgio
- Department of Medical and Surgical Sciences, University of Bologna, and St. Orsola-Malpighi Hospital, Bologna, Italy; Centro Unificato di Ricerca Biomedica Applicata, Bologna, Italy.
| |
Collapse
|
28
|
RET receptor in the gut of developing cat. Res Vet Sci 2013; 94:1-4. [DOI: 10.1016/j.rvsc.2012.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 06/13/2012] [Accepted: 07/20/2012] [Indexed: 11/20/2022]
|
29
|
Obermayr F, Hotta R, Enomoto H, Young HM. Development and developmental disorders of the enteric nervous system. Nat Rev Gastroenterol Hepatol 2013; 10:43-57. [PMID: 23229326 DOI: 10.1038/nrgastro.2012.234] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The enteric nervous system (ENS) arises from neural crest-derived cells that migrate into and along the gut, leading to the formation of a complex network of neurons and glial cells that regulates motility, secretion and blood flow. This Review summarizes the progress made in the past 5 years in our understanding of ENS development, including the migratory pathways of neural crest-derived cells as they colonize the gut. The importance of interactions between neural crest-derived cells, between signalling pathways and between developmental processes (such as proliferation and migration) in ensuring the correct development of the ENS is also presented. The signalling pathways involved in ENS development that were determined using animal models are also described, as is the evidence for the involvement of the genes encoding these molecules in Hirschsprung disease-the best characterized paediatric enteric neuropathy. Finally, the aetiology and treatment of Hirschsprung disease in the clinic and the potential involvement of defects in ENS development in other paediatric motility disorders are outlined.
Collapse
Affiliation(s)
- Florian Obermayr
- Department of Pediatric Surgery, University Children's Hospital, University of Tübingen, Hoppe-Seyler Straße 3, Tübingen 72076, Germany
| | | | | | | |
Collapse
|
30
|
Hyndman BD, Gujral TS, Krieger JR, Cockburn JG, Mulligan LM. Multiple functional effects of RET kinase domain sequence variants in Hirschsprung disease. Hum Mutat 2012; 34:132-42. [PMID: 22837065 DOI: 10.1002/humu.22170] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 07/16/2012] [Indexed: 01/08/2023]
Abstract
The REarranged during Transfection (RET) gene encodes a receptor tyrosine kinase required for maturation of the enteric nervous system. RET sequence variants occur in the congenital abnormality Hirschsprung disease (HSCR), characterized by absence of ganglia in the intestinal tract. Although HSCR-RET variants are predicted to inactivate RET, the molecular mechanisms of these events are not well characterized. Using structure-based models of RET, we predicted the molecular consequences of 23 HSCR-associated missense variants and how they lead to receptor dysfunction. We validated our predictions in biochemical and cell-based assays to explore mutational effects on RET protein functions. We found a minority of HSCR-RET variants abrogated RET kinase function, while the remaining mutants were phosphorylated and transduced intracellular signals. HSCR-RET sequence variants also impacted on maturation, stability, and degradation of RET proteins. We showed that each variant conferred a unique combination of effects that together impaired RET protein activity. However, all tested variants impaired RET-mediated cellular functions, including cell transformation and migration. Our data indicate that the molecular mechanisms of impaired RET function in HSCR are highly variable. Although a subset of variants cause loss of RET kinase activity and downstream signaling, enzymatic inactivation is not the sole mechanism at play in HSCR.
Collapse
Affiliation(s)
- Brandy D Hyndman
- Division of Cancer Biology and Genetics, Cancer Research Institute, and Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | | | | | | | | |
Collapse
|
31
|
Richardson DS, Rodrigues DM, Hyndman BD, Crupi MJF, Nicolescu AC, Mulligan LM. Alternative splicing results in RET isoforms with distinct trafficking properties. Mol Biol Cell 2012; 23:3838-50. [PMID: 22875993 PMCID: PMC3459860 DOI: 10.1091/mbc.e12-02-0114] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The RET gene encodes a receptor tyrosine kinase that is alternatively spliced to two protein isoforms that differ in their C-terminal peptide sequences (RET9, RET51). These unique C-terminal tails produce distinct subcellular localizations and intracellular trafficking properties, which affect downstream signaling. RET encodes a receptor tyrosine kinase that is essential for spermatogenesis, development of the sensory, sympathetic, parasympathetic, and enteric nervous systems and the kidneys, as well as for maintenance of adult midbrain dopaminergic neurons. RET is alternatively spliced to encode multiple isoforms that differ in their C-terminal amino acids. The RET9 and RET51 isoforms display unique levels of autophosphorylation and have differential interactions with adaptor proteins. They induce distinct gene expression patterns, promote different levels of cell differentiation and transformation, and play unique roles in development. Here we present a comprehensive study of the subcellular localization and trafficking of RET isoforms. We show that immature RET9 accumulates intracellularly in the Golgi, whereas RET51 is efficiently matured and present in relatively higher amounts on the plasma membrane. RET51 is internalized faster after ligand binding and undergoes recycling back to the plasma membrane. This differential trafficking of RET isoforms produces a more rapid and longer duration of signaling through the extracellular-signal regulated kinase/mitogen-activated protein kinase pathway downstream of RET51 relative to RET9. Together these differences in trafficking properties contribute to some of the functional differences previously observed between RET9 and RET51 and establish the important role of intracellular trafficking in modulating and maintaining RET signaling.
Collapse
Affiliation(s)
- Douglas S Richardson
- Department of Pathology and Molecular Medicine and Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Patel A, Harker N, Moreira-Santos L, Ferreira M, Alden K, Timmis J, Foster K, Garefalaki A, Pachnis P, Andrews P, Enomoto H, Milbrandt J, Pachnis V, Coles MC, Kioussis D, Veiga-Fernandes H. Differential RET signaling pathways drive development of the enteric lymphoid and nervous systems. Sci Signal 2012; 5:ra55. [PMID: 22855506 DOI: 10.1126/scisignal.2002734] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During the early development of the gastrointestinal tract, signaling through the receptor tyrosine kinase RET is required for initiation of lymphoid organ (Peyer's patch) formation and for intestinal innervation by enteric neurons. RET signaling occurs through glial cell line-derived neurotrophic factor (GDNF) family receptor α co-receptors present in the same cell (signaling in cis). It is unclear whether RET signaling in trans, which occurs in vitro through co-receptors from other cells, has a biological role. We showed that the initial aggregation of hematopoietic cells to form lymphoid clusters occurred in a RET-dependent, chemokine-independent manner through adhesion-mediated arrest of lymphoid tissue initiator (LTin) cells. Lymphoid tissue inducer cells were not necessary for this initiation phase. LTin cells responded to all RET ligands in trans, requiring factors from other cells, whereas RET was activated in enteric neurons exclusively by GDNF in cis. Furthermore, genetic and molecular approaches revealed that the versatile RET responses in LTin cells were determined by distinct patterns of expression of the genes encoding RET and its co-receptors. Our study shows that a trans RET response in LTin cells determines the initial phase of enteric lymphoid organ morphogenesis, and suggests that differential co-expression of Ret and Gfra can control the specificity of RET signaling.
Collapse
Affiliation(s)
- Amisha Patel
- Division of Molecular Immunology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The enteric nervous system (ENS) is composed of neurons and glia that modulate many aspects of intestinal function. The ability to use both forward and reverse genetic approaches and to visualize development in living embryos and larvae has made zebrafish an attractive model in which to study mechanisms underlying ENS development. In this chapter, we review the recent work describing the development and organization of the zebrafish ENS and how this relates to intestinal motility. We also discuss the cellular, molecular, and genetic mechanisms that have been revealed by these studies and how they are providing new insights into human ENS diseases.
Collapse
Affiliation(s)
- Iain Shepherd
- Department of Biology, Emory University Rollins Research Building, Atlanta, Georgia, USA
| | | |
Collapse
|
34
|
Lucini C, D’Angelo L, Patruno M, Mascarello F, de Girolamo P, Castaldo L. GDNF family ligand RET receptor in the brain of adult zebrafish. Neurosci Lett 2011; 502:214-8. [DOI: 10.1016/j.neulet.2011.07.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/22/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
|
35
|
Knight RD, Mebus K, d'Angelo A, Yokoya K, Heanue T, Roehl H. Ret signalling integrates a craniofacial muscle module during development. Development 2011; 138:2015-24. [PMID: 21490065 DOI: 10.1242/dev.061002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An appropriate organisation of muscles is crucial for their function, yet it is not known how functionally related muscles are coordinated with each other during development. In this study, we show that the development of a subset of functionally related head muscles in the zebrafish is regulated by Ret tyrosine kinase signalling. Three genes in the Ret pathway (gfra3, artemin2 and ret) are required specifically for the development of muscles attaching to the opercular bone (gill cover), but not other adjacent muscles. In animals lacking Ret or Gfra3 function, myogenic gene expression is reduced in forming opercular muscles, but not in non-opercular muscles derived from the same muscle anlagen. These animals have a normal skeleton with small or missing opercular muscles and tightly closed mouths. Myogenic defects correlate with a highly restricted expression of artn2, gfra3 and ret in mesenchymal cells in and around the forming opercular muscles. ret(+) cells become restricted to the forming opercular muscles and a loss of Ret signalling results in reductions of only these, but not adjacent, muscles, revealing a specific role of Ret in a subset of head muscles. We propose that Ret signalling regulates myogenesis in head muscles in a modular manner and that this is achieved by restricting Ret function to a subset of muscle precursors.
Collapse
Affiliation(s)
- Robert D Knight
- MRC Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK.
| | | | | | | | | | | | | |
Collapse
|
36
|
Doodnath R, Dervan A, Wride MA, Puri P. Zebrafish: an exciting model for investigating the spatio-temporal pattern of enteric nervous system development. Pediatr Surg Int 2010; 26:1217-21. [PMID: 20972797 DOI: 10.1007/s00383-010-2746-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2010] [Indexed: 11/29/2022]
Abstract
AIM Recently, the zebrafish (Danio rerio) has been shown to be an excellent model for human paediatric research. Advantages over other models include its small size, externally visually accessible development and ease of experimental manipulation. The enteric nervous system (ENS) consists of neurons and enteric glia. Glial cells permit cell bodies and processes of neurons to be arranged and maintained in a proper spatial arrangement, and are essential in the maintenance of basic physiological functions of neurons. Glial fibrillary acidic protein (GFAP) is expressed in astrocytes, but also expressed outside of the central nervous system. The aim of this study was to investigate the spatio-temporal pattern of GFAP expression in developing zebrafish ENS from 24 h post-fertilization (hpf), using transgenic fish that express green fluorescent protein (GFP). METHODS Zebrafish embryos were collected from transgenic GFP Tg(GFAP:GFP)(mi2001) adult zebrafish from 24 to 120 hpf, fixed and processed for whole mount immunohistochemistry. Antibodies to Phox2b were used to identify enteric neurons. Specimens were mounted on slides and imaging was performed using a fluorescent laser confocal microscope. RESULTS GFAP:GFP labelling outside the spinal cord was identified in embryos from 48 hpf. The patterning was intracellular and consisted of elongated profiles that appeared to migrate away from the spinal cord into the periphery. At 72 and 96 hpf, GFAP:GFP was expressed dorsally and ventrally to the intestinal tract. At 120 hpf, GFAP:GFP was expressed throughout the intestinal wall, and clusters of enteric neurons were identified using Phox2b immunofluorescence along the pathway of GFAP:GFP positive processes, indicative of a migratory pathway of ENS precursors from the spinal cord into the intestine. CONCLUSION The pattern of migration of GFAP:GFP expressing cells outside the spinal cord suggests an organized, early developing migratory pathway to the ENS. This shows for the first time that Tg(GFAP:GFP)(mi2001) zebrafish model is an ideal one to study spatio-temporal patterning of early ENS development.
Collapse
Affiliation(s)
- Reshma Doodnath
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland.
| | | | | | | |
Collapse
|
37
|
Abramsson A, Westman-Brinkmalm A, Pannee J, Gustavsson M, von Otter M, Blennow K, Brinkmalm G, Kettunen P, Zetterberg H. Proteomics profiling of single organs from individual adult zebrafish. Zebrafish 2010; 7:161-8. [PMID: 20392139 DOI: 10.1089/zeb.2009.0644] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The model organism zebrafish (Danio rerio) is extensively utilized in studies of developmental biology but is also being investigated in the context of a growing list of human age-related diseases. To facilitate such studies, we here present protein expression patterns of adult zebrafish organs, including blood, brain, fin, heart, intestine, liver, and skeletal muscle. Protein extracts were prepared from the different organs of two zebrafish and analyzed using liquid chromatography coupled to high-resolution tandem mass spectrometry. Zebrafish tissue was digested directly after minimal fractionation and cleaned up (the shotgun approach). Proteins were identified using Mascot software. In total, 1394 proteins were identified of which 644 were nonredundant. Of these, 373 demonstrated an organ-specific expression pattern and 57 had not been shown on protein level before. These data emphasize the need for increased research at the protein level to facilitate the selection of candidate proteins for targeted quantification and to refine systematic genetic network analysis in vertebrate development, biology, and disease.
Collapse
Affiliation(s)
- Alexandra Abramsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Young HM, Cane KN, Anderson CR. Development of the autonomic nervous system: a comparative view. Auton Neurosci 2010; 165:10-27. [PMID: 20346736 DOI: 10.1016/j.autneu.2010.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Revised: 02/27/2010] [Accepted: 03/01/2010] [Indexed: 12/15/2022]
Abstract
In this review we summarize current understanding of the development of autonomic neurons in vertebrates. The mechanisms controlling the development of sympathetic and enteric neurons have been studied in considerable detail in laboratory mammals, chick and zebrafish, and there are also limited data about the development of sympathetic and enteric neurons in amphibians. Little is known about the development of parasympathetic neurons apart from the ciliary ganglion in chicks. Although there are considerable gaps in our knowledge, some of the mechanisms controlling sympathetic and enteric neuron development appear to be conserved between mammals, avians and zebrafish. For example, some of the transcriptional regulators involved in the development of sympathetic neurons are conserved between mammals, avians and zebrafish, and the requirement for Ret signalling in the development of enteric neurons is conserved between mammals (including humans), avians and zebrafish. However, there are also differences between species in the migratory pathways followed by sympathetic and enteric neuron precursors and in the requirements for some signalling pathways.
Collapse
Affiliation(s)
- Heather M Young
- Department of Anatomy & Cell Biology, University of Melbourne, VIC Australia.
| | | | | |
Collapse
|
39
|
Facello B, Castaldo L, De Martino L, Lucini C. Glial cell line-derived neurotrophic factor in Purkinje cells of adult zebrafish: An autocrine mode of action? Neurosci Lett 2009; 465:133-7. [DOI: 10.1016/j.neulet.2009.08.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 07/29/2009] [Accepted: 08/25/2009] [Indexed: 11/28/2022]
|
40
|
Epistasis between RET and BBS mutations modulates enteric innervation and causes syndromic Hirschsprung disease. Proc Natl Acad Sci U S A 2009; 106:13921-6. [PMID: 19666486 DOI: 10.1073/pnas.0901219106] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hirschsprung disease (HSCR) is a common, multigenic neurocristopathy characterized by incomplete innervation along a variable length of the gut. The pivotal gene in isolated HSCR cases, either sporadic or familial, is RET. HSCR also presents in various syndromes, including Shah-Waardenburg syndrome (WS), Down (DS), and Bardet-Biedl (BBS). Here, we report 3 families with BBS and HSCR with concomitant mutations in BBS genes and regulatory RET elements, whose functionality is tested in physiologically relevant assays. Our data suggest that BBS mutations can potentiate HSCR predisposing RET alleles, which by themselves are insufficient to cause disease. We also demonstrate that these genes interact genetically in vivo to modulate gut innervation, and that this interaction likely occurs through complementary, yet independent, pathways that converge on the same biological process.
Collapse
|
41
|
Abstract
The mature enteric nervous system (ENS) is composed of many different neuron subtypes and enteric glia, which all arise from the neural crest. How this diversity is generated from neural crest-derived cells is a central question in neurogastroenterology, as defects in these processes are likely to underlie some paediatric motility disorders. Here we review the developmental appearance (the earliest age at which expression of specific markers can be localized) and birthdates (the age at which precursors exit the cell cycle) of different enteric neuron subtypes, and their projections to some targets. We then focus on what is known about the mechanisms underlying the generation of enteric neuron diversity and axon pathfinding. Finally, we review the development of the ENS in humans and the etiologies of a number of paediatric motility disorders.
Collapse
Affiliation(s)
- Marlene M Hao
- Department of Anatomy & Cell Biology, University of MelbourneParkville, Victoria, Australia
| | - Heather M Young
- Department of Anatomy & Cell Biology, University of MelbourneParkville, Victoria, Australia
| |
Collapse
|
42
|
Burzynski G, Shepherd IT, Enomoto H. Genetic model system studies of the development of the enteric nervous system, gut motility and Hirschsprung's disease. Neurogastroenterol Motil 2009; 21:113-27. [PMID: 19215589 PMCID: PMC4041618 DOI: 10.1111/j.1365-2982.2008.01256.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The enteric nervous system (ENS) is the largest and most complicated subdivision of the peripheral nervous system. Its action is necessary to regulate many of the functions of the gastrointestinal tract including its motility. Whilst the ENS has been studied extensively by developmental biologists, neuroscientists and physiologists for several decades it has only been since the early 1990s that the molecular and genetic basis of ENS development has begun to emerge. Central to this understanding has been the use of genetic model organisms. In this article, we will discuss recent advances that have been achieved using both mouse and zebrafish model genetic systems that have led to new insights into ENS development and the genetic basis of Hirschsprung's disease.
Collapse
Affiliation(s)
- G Burzynski
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
43
|
Recent Papers on Zebrafish and Other Aquarium Fish Models. Zebrafish 2008. [DOI: 10.1089/zeb.2008.9987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|