1
|
Tacconi S, Augello S, Persano F, Sbarigia C, Carata E, Leporatti S, Fidaleo M, Dini L. Amino-functionalized mesoporous silica nanoparticles (NH 2-MSiNPs) impair the embryonic development of the sea urchin Paracentrotus lividus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103956. [PMID: 35963553 DOI: 10.1016/j.etap.2022.103956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Nanoparticles have found use in a wide range of applications, mainly as carriers of active biomolecules. It is thus necessary to assess their toxicity for human health, as well as for the environment, on which there is still a gap of knowledge. In this work, sea urchin Paracentrotus lividus, a widely used model for embryotoxicity and spermiotoxicity, has been used to assess potential detrimental effects of amino-functionalized mesoporous silica nanoparticles (NH2-MSiNPs) on embryonic development. Specifically, gametes quality, embryogenesis morphological and timing alterations, and cellular stress markers, such as mitochondrial functionality, were assessed in presence of different concentrations of NH2-MSiNPs in filtered seawater (FSW). Furthermore, dorsal-ventral axis development and skeletogenesis were characterized by microscopy imaging and gene expression analysis. NH2-MSiNPs determined a strong reduction in the egg fertilization rate. Consequently, the presence of NH2-MSiNPs resulted detrimental in P. lividus embryonic development, with severe morphological alterations correlated with an increased embryos mortality. Finally, NH2-MSiNPs treatment was responsible for other toxic effects, such as reduced mitochondrial function and skeletogenesis alterations, according to the reduced mineralization sites in the endoskeleton formation and the related genes altered expression. Taken together, these results suggest the potential toxic effects of NH2-MSiNPs on the marine ecosystem, with consequences for the development and reproduction of its organisms. Despite their promising potential as carriers of biomolecules, it is pivotal to consider that their uncontrolled use may result harmful to the environment and, consequently, to living organisms.
Collapse
Affiliation(s)
- Stefano Tacconi
- Department of Biology and Biotechnology Charles Darwin, University of Rome Sapienza, 00185 Rome, Italy.
| | - Simone Augello
- Department of Biology and Biotechnology Charles Darwin, University of Rome Sapienza, 00185 Rome, Italy.
| | - Francesca Persano
- University of Salento, Department of Mathematics and Physics, 73100 Lecce, Italy; CNR Nanotec-Istituto di Nanotecnologia, 73100 Lecce, Italy.
| | - Carolina Sbarigia
- Department of Biology and Biotechnology Charles Darwin, University of Rome Sapienza, 00185 Rome, Italy.
| | - Elisabetta Carata
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Monteroni, 73100 Lecce, Italy.
| | | | - Marco Fidaleo
- Department of Biology and Biotechnology Charles Darwin, University of Rome Sapienza, 00185 Rome, Italy; CNIS Research Center for Nanotechnology Applied to Engineering, Sapienza University of Rome, 00185 Rome, Italy.
| | - Luciana Dini
- Department of Biology and Biotechnology Charles Darwin, University of Rome Sapienza, 00185 Rome, Italy; CNIS Research Center for Nanotechnology Applied to Engineering, Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
2
|
Latorre-Padilla N, Meynard A, Oyarzun FX, Contreras-Porcia L. Ingestion of contaminated kelps by the herbivore Tetrapygus niger: Negative effects on food intake, growth, fertility, and early development. MARINE POLLUTION BULLETIN 2021; 167:112365. [PMID: 33882333 DOI: 10.1016/j.marpolbul.2021.112365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Macrocystis pyrifera reaches distant areas after detachment, accumulate heavy metals, and serve as trophic subsidy. In this context, effects on both adults and larvae of Tetrapygus niger fed with polluted kelps were determined by assessing growth, fertility, and early larval development. Results revealed that sea urchins fed with polluted kelps from highly impacted zone (HIZ) showed a lower growth (3.6% gained weight) and gamete release (358 cells mL-1) than those fed with non-impacted kelps (NIZ) (19.3% and 945 cells mL-1). The HIZ treatment showed a developmental delay in comparison to NIZ, accounted mainly by the abundance of malformed 2-arm pluteus larvae (10-15%) during most of the culture. Malformed 4-arm pluteus larvae showed a constant increase, reaching 37% at the end of the culture. Thus, the pollutants ingested by sea urchins can be transferred to their offspring and cause negative effects in their early development, categorizing M. pyrifera as a pollutant carrier.
Collapse
Affiliation(s)
- Nicolás Latorre-Padilla
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, Chile
| | - Andrés Meynard
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, Chile
| | - Fernanda X Oyarzun
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, Chile; Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Chile
| | - Loretto Contreras-Porcia
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, Chile.
| |
Collapse
|
3
|
Cunningham B, Torres-Duarte C, Cherr G, Adams N. Effects of three zinc-containing sunscreens on development of purple sea urchin (Strongylocentrotus purpuratus) embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 218:105355. [PMID: 31790937 DOI: 10.1016/j.aquatox.2019.105355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/26/2019] [Accepted: 11/03/2019] [Indexed: 05/20/2023]
Abstract
The growing popularity of physical sunscreens will lead to an increased release of ingredients from zinc oxide (ZnO) sunscreens into marine environments. Though zinc (Zn) is a necessary micronutrient in the ocean, greater than natural Zn concentrations may be released into marine environments by use of sunscreens. The extent of the consequences of this addition of Zn to the ocean are not fully understood. We investigated the effects of materials released by ZnO- sunscreens on the development of California purple sea urchin, Strongylocentrotus purpuratus. Embryos incubated in various concentrations of Zn (0.01, 0.05, 0.1, 0.5, and 1 mg/L), the sources of which included zinc-containing compounds: ZnO and zinc sulfate (ZnSO4); and ZnO sunscreens: All Good, Badger, and Raw Elements brands. Based on EC50 values, ZnO-containing sunscreens were slightly, but not significantly, more toxic than ZnO and ZnSO4, suggesting that sunscreens may release additional unknown materials that are detrimental to sea urchin embryo development. All concentrations of Zn-exposure resulted in significant malformations (skeletal abnormality, stage arrest, axis determination disruption), which were identified using light and fluorescence confocal microscopy. The concentration of Zn2+ internalized by the developing embryos correlated positively with the concentration of Zn in seawater. Additionally, exposure to both ZnO sunscreens and ZnO and ZnSO4 at 1 mg/L Zn, significantly increased calcein-AM (CAM) accumulation, indicating decreased multidrug resistant (MDR) transporter activity. This is one of the first studies documenting ZnO-containing sunscreens release high concentrations of Zn that are internalized by and have detrimental effects on aquatic organisms.
Collapse
Affiliation(s)
- Brittany Cunningham
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, United States.
| | - Cristina Torres-Duarte
- Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA, 94923, United States; CONACYT - Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C. (CIATEJ), Guadalajara, 44270, Mexico
| | - Gary Cherr
- Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA, 94923, United States; Departments of Environmental Toxicology and Nutrition, University of California Davis, Davis, CA, United States
| | - Nikki Adams
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, United States
| |
Collapse
|
4
|
Torres-Duarte C, Adeleye AS, Pokhrel S, Mädler L, Keller AA, Cherr GN. Developmental effects of two different copper oxide nanomaterials in sea urchin (Lytechinus pictus) embryos. Nanotoxicology 2015; 10:671-9. [PMID: 26643145 DOI: 10.3109/17435390.2015.1107145] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Copper oxide nanomaterials (nano-CuOs) are widely used and can be inadvertently introduced into estuarine and marine environments. We analyzed the effects of different nano-CuOs (a synthesized and a less-pure commercial form), as well as ionic copper (CuSO4) on embryo development in the white sea urchin, a well-known marine model. After 96 h of development with both nano-CuO exposures, we did not detect significant oxidative damage to proteins but did detect decreases in total antioxidant capacity. We show that the physicochemical characteristics of the two nano-CuOs play an essential role in their toxicities. Both nano-CuOs were internalized by embryos and their differential dissolution was the most important toxicological parameter. The synthesized nano-CuO showed greater toxicity (EC50 = 450 ppb of copper) and had increased dissolution (2.5% by weight over 96 h) as compared with the less-pure commercial nano-CuO (EC50 = 5395 ppb of copper, 0.73% dissolution by weight over 96 h). Copper caused specific developmental abnormalities in sea urchin embryos including disruption of the aboral-oral axis as a result in changes to the redox environment caused by dissolution of internalized nano-CuO. Abnormal skeleton formation also occurred.
Collapse
Affiliation(s)
| | - Adeyemi S Adeleye
- b Bren School of Environmental Science & Management, University of California , Santa Barbara , CA , USA
| | - Suman Pokhrel
- c Foundation Institute of Materials Science (IWT), Department of Production Engineering , University of Bremen , Bremen , Germany , and
| | - Lutz Mädler
- c Foundation Institute of Materials Science (IWT), Department of Production Engineering , University of Bremen , Bremen , Germany , and
| | - Arturo A Keller
- b Bren School of Environmental Science & Management, University of California , Santa Barbara , CA , USA
| | - Gary N Cherr
- a Bodega Marine Laboratory, University of California , Davis , Bodega Bay, CA , USA .,d Department of Environmental Toxicology and Nutrition , University of California , Davis , CA , USA
| |
Collapse
|
5
|
Symmetry Breaking and Establishment of Dorsal/Ventral Polarity in the Early Sea Urchin Embryo. Symmetry (Basel) 2015. [DOI: 10.3390/sym7041721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
6
|
Röttinger E, DuBuc TQ, Amiel AR, Martindale MQ. Nodal signaling is required for mesodermal and ventral but not for dorsal fates in the indirect developing hemichordate, Ptychodera flava. Biol Open 2015; 4:830-42. [PMID: 25979707 PMCID: PMC4571091 DOI: 10.1242/bio.011809] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nodal signaling plays crucial roles in vertebrate developmental processes such as endoderm and mesoderm formation, and axial patterning events along the anteroposterior, dorsoventral and left-right axes. In echinoderms, Nodal plays an essential role in the establishment of the dorsoventral axis and left-right asymmetry, but not in endoderm or mesoderm induction. In protostomes, Nodal signaling appears to be involved only in establishing left-right asymmetry. Hence, it is hypothesized that Nodal signaling has been co-opted to pattern the dorsoventral axis of deuterostomes and for endoderm, mesoderm formation as well as anteroposterior patterning in chordates. Hemichordata, together with echinoderms, represent the sister taxon to chordates. In this study, we analyze the role of Nodal signaling in the indirect developing hemichordate Ptychodera flava. In particular, we show that during gastrulation nodal transcripts are detected in a ring of cells at the vegetal pole that gives rise to endomesoderm and in the ventral ectoderm at later stages of development. Inhibition of Nodal function disrupts dorsoventral fates and also blocks formation of the larval mesoderm. Interestingly, molecular analysis reveals that only mesodermal, apical and ventral gene expression is affected while the dorsal side appears to be patterned correctly. Taken together, this study suggests that the co-option of Nodal signaling in mesoderm formation and potentially in anteroposterior patterning has occurred prior to the emergence of chordates and that Nodal signaling on the ventral side is uncoupled from BMP signaling on the dorsal side, representing a major difference from the molecular mechanisms of dorsoventral patterning events in echinoderms.
Collapse
Affiliation(s)
- Eric Röttinger
- Université Nice Sophia Antipolis, IRCAN, UMR 7284, 06107 Nice, France CNRS, IRCAN, UMR 7284, 06107 Nice, France INSERM, IRCAN, U1081, 06107 Nice, France
| | - Timothy Q DuBuc
- The Whitney Marine Laboratory for Marine Science, University of Florida, St. Augustine, FL 32080-8610, USA
| | - Aldine R Amiel
- Université Nice Sophia Antipolis, IRCAN, UMR 7284, 06107 Nice, France CNRS, IRCAN, UMR 7284, 06107 Nice, France INSERM, IRCAN, U1081, 06107 Nice, France
| | - Mark Q Martindale
- The Whitney Marine Laboratory for Marine Science, University of Florida, St. Augustine, FL 32080-8610, USA
| |
Collapse
|
7
|
Cavalieri V, Spinelli G. Early asymmetric cues triggering the dorsal/ventral gene regulatory network of the sea urchin embryo. eLife 2014; 3:e04664. [PMID: 25457050 PMCID: PMC4273433 DOI: 10.7554/elife.04664] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/01/2014] [Indexed: 12/16/2022] Open
Abstract
Dorsal/ventral (DV) patterning of the sea urchin embryo relies on a ventrally-localized organizer expressing Nodal, a pivotal regulator of the DV gene regulatory network. However, the inceptive mechanisms imposing the symmetry-breaking are incompletely understood. In Paracentrotus lividus, the Hbox12 homeodomain-containing repressor is expressed by prospective dorsal cells, spatially facing and preceding the onset of nodal transcription. We report that Hbox12 misexpression provokes DV abnormalities, attenuating nodal and nodal-dependent transcription. Reciprocally, impairing hbox12 function disrupts DV polarity by allowing ectopic expression of nodal. Clonal loss-of-function, inflicted by blastomere transplantation or gene-transfer assays, highlights that DV polarization requires Hbox12 action in dorsal cells. Remarkably, the localized knock-down of nodal restores DV polarity of embryos lacking hbox12 function. Finally, we show that hbox12 is a dorsal-specific negative modulator of the p38-MAPK activity, which is required for nodal expression. Altogether, our results suggest that Hbox12 function is essential for proper positioning of the DV organizer.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Giovanni Spinelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| |
Collapse
|
8
|
Agca C, Elhajj MC, Klein WH, Venuti JM. Neurosensory and neuromuscular organization in tube feet of the sea urchin Strongylocentrotus purpuratus. J Comp Neurol 2011; 519:3566-79. [DOI: 10.1002/cne.22724] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Röttinger E, Martindale MQ. Ventralization of an indirect developing hemichordate by NiCl₂ suggests a conserved mechanism of dorso-ventral (D/V) patterning in Ambulacraria (hemichordates and echinoderms). Dev Biol 2011; 354:173-90. [PMID: 21466800 DOI: 10.1016/j.ydbio.2011.03.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 03/07/2011] [Accepted: 03/28/2011] [Indexed: 12/16/2022]
Abstract
One of the earliest steps in embryonic development is the establishment of the future body axes. Morphological and molecular data place the Ambulacraria (echinoderms and hemichordates) within the Deuterostomia and as the sister taxon to chordates. Extensive work over the last decades in echinoid (sea urchins) echinoderms has led to the characterization of gene regulatory networks underlying germ layer specification and axis formation during embryogenesis. However, with the exception of recent studies from a direct developing hemichordate (Saccoglossus kowalevskii), very little is known about the molecular mechanism underlying early hemichordate development. Unlike echinoids, indirect developing hemichordates retain the larval body axes and major larval tissues after metamorphosis into the adult worm. In order to gain insight into dorso-ventral (D/V) patterning, we used nickel chloride (NiCl₂), a potent ventralizing agent on echinoderm embryos, on the indirect developing enteropneust hemichordate, Ptychodera flava. Our present study shows that NiCl₂ disrupts the D/V axis and induces formation of a circumferential mouth when treated before the onset of gastrulation. Molecular analysis, using newly isolated tissue-specific markers, shows that the ventral ectoderm is expanded at expense of dorsal ectoderm in treated embryos, but has little effect on germ layer or anterior-posterior markers. The resulting ventralized phenotype, the effective dose, and the NiCl₂ sensitive response period of Ptychodera flava, is very similar to the effects of nickel on embryonic development described in larval echinoderms. These strong similarities allow one to speculate that a NiCl₂ sensitive pathway involved in dorso-ventral patterning may be shared between echinoderms, hemichordates and a putative ambulacrarian ancestor. Furthermore, nickel treatments ventralize the direct developing hemichordate, S. kowalevskii indicating that a common pathway patterns both larval and adult body plans of the ambulacrarian ancestor and provides insight in to the origin of the chordate body plan.
Collapse
Affiliation(s)
- E Röttinger
- Kewalo Marine Laboratory, PBRC, University of Hawaii, Honolulu, HI, USA
| | | |
Collapse
|
10
|
Ertl RP, Robertson AJ, Saunders D, Coffman JA. Nodal-mediated epigenesis requires dynamin-mediated endocytosis. Dev Dyn 2011; 240:704-11. [PMID: 21337468 DOI: 10.1002/dvdy.22557] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2010] [Indexed: 12/12/2022] Open
Abstract
Nodal proteins are diffusible morphogens that drive pattern formation via short-range feedback activation coupled to long-range Lefty-mediated inhibition. In the sea urchin embryo, specification of the secondary (oral-aboral) axis occurs via zygotic expression of nodal, which is localized to the prospective oral ectoderm at early blastula stage. In mid-blastula stage embryos treated with low micromolar nickel or zinc, nodal expression expands progressively beyond the confines of this localized domain to encompass the entire equatorial circumference of the embryo, producing radialized embryos lacking an oral-aboral axis. RNAseq analysis of embryos treated with nickel, zinc, or cadmium (which does not radialize embryos) showed that several genes involved in endocytosis were similarly perturbed by nickel and zinc but not cadmium. Inhibiting dynamin, a GTPase required for receptor-mediated endocytosis, phenocopies the effects of nickel and zinc, suggesting that dynamin-mediated endocytosis is required as a sink to limit the range of Nodal signaling.
Collapse
|
11
|
Echinoderms as Blueprints for Biocalcification: Regulation of Skeletogenic Genes and Matrices. MOLECULAR BIOMINERALIZATION 2011; 52:225-48. [DOI: 10.1007/978-3-642-21230-7_8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Bergeron KF, Xu X, Brandhorst BP. Oral-aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans. Mech Dev 2010; 128:71-89. [PMID: 21056656 DOI: 10.1016/j.mod.2010.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/30/2010] [Accepted: 11/01/2010] [Indexed: 12/24/2022]
Abstract
Glycosaminoglycans (GAGs) are a heavily sulfated component of the extracellular matrix (ECM) implicated in a variety of cell signaling events involved in patterning of embryos. Embryos of the sea urchin Strongylocentrotus purpuratus were exposed to several inhibitors that disrupt GAG function during development. Treatment with chlorate, a general inhibitor of sulfation that leads to undersulfated GAGs, reduced sulfation of the urchin blastocoelar ECM. It also prevented correct specification of the oral-aboral axis and mouth formation, resulting in a radialized phenotype characterized by the lack of an oral field, incomplete gastrulation and formation of multiple skeletal spicule rudiments. Oral markers were initially expressed in most of the prospective ectoderm of chlorate-treated early blastulae, but then declined as aboral markers became expressed throughout most of the ectoderm. Nodal expression in the presumptive oral field is necessary and sufficient to specify the oral-aboral axis in urchins. Several lines of evidence suggest a deregulation of Nodal signaling is involved in the radialization caused by chlorate: (1) Radial embryos resemble those in which Nodal expression was knocked down. (2) Chlorate disrupted localized nodal expression in oral ectoderm, even when applied after the oral-aboral axis is specified and expression of other oral markers is resistant to treatment. (3) Inhibition with SB-431542 of ALK-4/5/7 receptors that mediate Nodal signaling causes defects in ectodermal patterning similar to those caused by chlorate. (4) Intriguingly, treatment of embryos with a sub-threshold dose of SB-431542 rescued the radialization caused by low concentrations of chlorate. Our results indicate important roles for sulfated GAGs in Nodal signaling and oral-aboral axial patterning, and in the cellular processes necessary for archenteron extension and mouth formation during gastrulation. We propose that interaction of the Nodal ligand with sulfated GAGs limits its diffusion, and is required to specify an oral field in the urchin embryo and organize the oral-aboral axis.
Collapse
Affiliation(s)
- Karl-Frederik Bergeron
- Molecular Biology and Biochemistry Department, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6.
| | | | | |
Collapse
|
13
|
Agca C, Klein WH, Venuti JM. Reduced O2and elevated ROS in sea urchin embryos leads to defects in ectoderm differentiation. Dev Dyn 2009; 238:1777-87. [DOI: 10.1002/dvdy.22001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|