1
|
Lazo PA. Nuclear functions regulated by the VRK1 kinase. Nucleus 2024; 15:2353249. [PMID: 38753965 DOI: 10.1080/19491034.2024.2353249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
In the nucleus, the VRK1 Ser-Thr kinase is distributed in nucleoplasm and chromatin, where it has different roles. VRK1 expression increases in response to mitogenic signals. VRK1 regulates cyclin D1 expression at G0 exit and facilitates chromosome condensation at the end of G2 and G2/M progression to mitosis. These effects are mediated by the phosphorylation of histone H3 at Thr3 by VRK1, and later in mitosis by haspin. VRK1 regulates the apigenetic patterns of histones in processes requiring chromating remodeling, such as transcription, replication and DNA repair. VRK1 is overexpressed in tumors, facilitating tumor progression and resistance to genotoxic treatments. VRK1 also regulates the organization of Cajal bodies assembled on coilin, which are necessary for the assembly of different types of RNP complexes. VRK1 pathogenic variants cuase defects in Cajal bodies, functionally altering neurons with long axons and leading to neurological diseases, such as amyotrophic laterla sclerosis, spinal muscular atrophy, distal hereditay motor neuropathies and Charcot-Marie-Tooth.
Collapse
Affiliation(s)
- Pedro A Lazo
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| |
Collapse
|
2
|
Lamelza P, Parrado M, Hamlin E, Lampson MA. Species-specific satellite DNA composition dictates de novo formation of PRC1-mediated pericentric heterochromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617947. [PMID: 39416160 PMCID: PMC11482882 DOI: 10.1101/2024.10.11.617947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Pericentromeres are heterochromatic regions adjacent to centromeres that ensure accurate chromosome segregation. Despite their conserved function, they are composed of rapidly evolving A/T-rich satellite DNA. This paradoxical observation is partially resolved by epigenetic mechanisms that maintain heterochromatin, independent of specific DNA sequences. However, it is unclear how satellite DNA sequence variation impacts de novo formation of pericentric heterochromatin, which is initially absent from paternal chromosomes in the zygote. Here we show that satellite variation has functional consequences for zygotic heterochromatin formation, recruitment of the Chromosome Passenger Complex (CPC), and interactions with spindle microtubules. In M. musculus zygotes, Polycomb Repressive Complex 1 (PRC1) is recruited to pericentric satellites by its AT-hook domain, which binds runs of A/T nucleotides, to generate H2AK119ub1 (H2Aub) heterochromatin. By fertilizing M. musculus eggs with sperm from other mouse species, we show that species-specific satellite sequences differ in their ability to recruit PRC1 and form H2Aub. This satellite-DNA mediated increase in PRC1 heterochromatin leads to reduced CPC recruitment and increased microtubule forces on kinetochores. Our results provide a direct link between satellite DNA composition and pericentromere function in the zygote, when epigenetic pathways maintaining pericentromere heterochromatin are absent.
Collapse
Affiliation(s)
- Piero Lamelza
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104
| | - Malena Parrado
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104
| | - Emma Hamlin
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104
| | - Michael A Lampson
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
3
|
Lazo PA, Morejón-García P. VRK1 variants at the cross road of Cajal body neuropathogenic mechanisms in distal neuropathies and motor neuron diseases. Neurobiol Dis 2023; 183:106172. [PMID: 37257665 DOI: 10.1016/j.nbd.2023.106172] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
Distal hereditary neuropathies and neuro motor diseases are complex neurological phenotypes associated with pathogenic variants in a large number of genes, but in some the origin is unknown. Recently, rare pathogenic variants of the human VRK1 gene have been associated with these neurological phenotypes. All VRK1 pathogenic variants are recessive, and their clinical presentation occurs in either homozygous or compound heterozygous patients. The pathogenic VRK1 gene pathogenic variants are located in three clusters within the protein sequence. The main, and initial, shared clinical phenotype among VRK1 pathogenic variants is a distal progressive loss of motor and/or sensory function, which includes diseases such as spinal muscular atrophy, Charcot-Marie-Tooth, amyotrophic lateral sclerosis and hereditary spastic paraplegia. In most cases, symptoms start early in infancy, or in utero, and are slowly progressive. Additional neurological symptoms vary among non-related patients, probably because of their different VRK1 variants and their genetic background. The underlying common pathogenic mechanism, by its functional impairment, is a likely consequence of the roles that the VRK1 protein plays in the regulation on the stability and assembly of Cajal bodies, which affect RNA maturation and processing, neuronal migration of RNPs along axons, and DNA-damage responses. Alterations of these processes are associated with several neuro sensory or motor syndromes. The clinical heterogeneity of the neurological phenotypes associated with VRK1 is a likely consequence of the protein complexes in which VRK1 is integrated, which include several proteins known to be associated with Cajal bodies and DNA damage responses. Several hereditary distal neurological diseases are a consequence of pathogenic variants in genes that alter these cellular functions. We conclude that VRK1-related distal hereditary neuropathies and motor neuron diseases represent a novel subgroup of Cajal body related neurological syndromes.
Collapse
Affiliation(s)
- Pedro A Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.
| | - Patricia Morejón-García
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.
| |
Collapse
|
4
|
Dissecting the roles of Haspin and VRK1 in histone H3 phosphorylation during mitosis. Sci Rep 2022; 12:11210. [PMID: 35778595 PMCID: PMC9249732 DOI: 10.1038/s41598-022-15339-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022] Open
Abstract
Protein kinases that phosphorylate histones are ideally-placed to influence the behavior of chromosomes during cell division. Indeed, a number of conserved histone phosphorylation events occur prominently during mitosis and meiosis in most eukaryotes, including on histone H3 at threonine-3 (H3T3ph). At least two kinases, Haspin and VRK1 (NHK-1/ballchen in Drosophila), have been proposed to carry out this modification. Phosphorylation of H3 by Haspin has defined roles in mitosis, but the significance of VRK1 activity towards histones in dividing cells has been unclear. Here, using in vitro kinase assays, KiPIK screening, RNA interference, and CRISPR/Cas9 approaches, we were unable to substantiate a direct role for VRK1, or its paralogue VRK2, in the phosphorylation of threonine-3 or serine-10 of Histone H3 in mitosis, although loss of VRK1 did slow cell proliferation. We conclude that the role of VRKs, and their more recently identified association with neuromuscular disease and importance in cancers of the nervous system, are unlikely to involve mitotic histone kinase activity. In contrast, Haspin is required to generate H3T3ph during mitosis.
Collapse
|
5
|
Gòdia M, Casellas J, Ruiz-Herrera A, Rodríguez-Gil JE, Castelló A, Sánchez A, Clop A. Whole genome sequencing identifies allelic ratio distortion in sperm involving genes related to spermatogenesis in a swine model. DNA Res 2021; 27:5906030. [PMID: 32931559 PMCID: PMC7750926 DOI: 10.1093/dnares/dsaa019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 09/02/2020] [Indexed: 12/28/2022] Open
Abstract
Transmission Ratio Distortion (TRD), the uneven transmission of an allele from a parent to its offspring, can be caused by allelic differences affecting gametogenesis, fertilization or embryogenesis. However, TRD remains vaguely studied at a genomic scale. We sequenced the diploid and haploid genomes of three boars from leukocytes and spermatozoa at 50x to shed light into the genetic basis of spermatogenesis-caused Allelic Ratio Distortion (ARD). We first developed a Binomial model to identify ARD by simultaneously analysing all three males. This led to the identification of 55 ARD SNPs, most of which were animal-specific. We then evaluated ARD individually within each pig by a Fisher’s exact test and identified two shared genes (TOP3A and UNC5B) and four shared genomic regions harbouring distinct ARD SNPs in the three boars. The shared genomic regions contained candidate genes with functions related to spermatogenesis including AK7, ARID4B, BDKRB2, GSK3B, NID1, NSMCE1, PALB2, VRK1 and ZC3H13. Using the Fisher’s test, we also identified 378 genes containing variants with protein damaging potential in at least one boar, a high proportion of which, including FAM120B, TDRD15, JAM2 or AOX4 among others, are associated to spermatogenesis. Overall, our results show that sperm is subjected to ARD with variants associated to a wide variety of genes involved in different stages of spermatogenesis.
Collapse
Affiliation(s)
- Marta Gòdia
- Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Joaquim Casellas
- Department of Animal and Food Sciences, Autonomous University of Barcelona, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel.lular, Fisiologia i Immunologia, Autonomous University of Barcelona, Cerdanyola del Vallès, Catalonia 08193, Spain.,Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Autonomous University of Barcelona, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Joan E Rodríguez-Gil
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Autonomous University of Barcelona, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Anna Castelló
- Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, Catalonia 08193, Spain.,Department of Animal and Food Sciences, Autonomous University of Barcelona, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Armand Sánchez
- Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, Catalonia 08193, Spain.,Department of Animal and Food Sciences, Autonomous University of Barcelona, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Alex Clop
- Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, Catalonia 08193, Spain.,Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Catalonia 08003, Spain
| |
Collapse
|
6
|
Ngow YS, Rajan S, Ye H, Yoon HS. Crystal structure of human vaccinia-related kinase 1 in complex with AMP-PNP, a non-hydrolyzable ATP analog. Protein Sci 2018; 28:524-532. [PMID: 30461091 DOI: 10.1002/pro.3552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 01/16/2023]
Abstract
Vaccinia-related kinase 1 (VRK1), a serine/threonine mitotic kinase, is widely over-expressed in dividing cells and regarded as a cancer drug target primarily due to its function as an early response gene in cell proliferation. However, the mechanism of VRK1 phosphorylation and substrate activation is not well understood. More importantly even the molecular basis of VRK1 interaction with its cofactor, adenosine triphosphate (ATP), is unavailable to-date. As designing specific inhibitors remains to be the major challenge in kinase research, such a molecular understanding will enable us to design ATP-competitive specific inhibitors of VRK1. Here we report the molecular characterization of VRK1 in complex with AMP-PNP, a non-hydrolyzable ATP-analog, using NMR titration followed by the co-crystal structure determined upto 2.07 Å resolution. We also carried out the structural comparison of the AMP-PNP bound-form with its apo and inhibitor-bound counterparts, which has enabled us to present our rationale toward designing VRK1-specific inhibitors.
Collapse
Affiliation(s)
- Yeen Shian Ngow
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Sreekanth Rajan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Hong Ye
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Ho Sup Yoon
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
7
|
Mon AM, MacKinnon AC, Traktman P. Overexpression of the VRK1 kinase, which is associated with breast cancer, induces a mesenchymal to epithelial transition in mammary epithelial cells. PLoS One 2018; 13:e0203397. [PMID: 30180179 PMCID: PMC6122820 DOI: 10.1371/journal.pone.0203397] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/20/2018] [Indexed: 01/23/2023] Open
Abstract
Vaccinia-related kinase 1 (VRK1) is a pro-proliferative nuclear kinase. Mice engrafted with VRK1-depleted MDA-MB-231 breast cancer cells have been shown to develop fewer distal metastases than controls, suggesting VRK1 might play a role in cell migration, invasion, and/or colonization. In work described herein, we investigated the impact of VRK1 overexpression on human mammary epithelial cells. In 2D culture, VRK1 overexpression diminishes cell migration and invasion and impairs the migration-associated processes of cell spreading and cytoskeletal rearrangement. VRK1-overexpressing cells show reduced accumulation of the mesenchymal marker vimentin and increased accumulation of the epithelial markers E-cadherin and claudin-1. VRK1 overexpression also leads to reduced levels of the transcriptional repressors snail, slug, and twist1. Cumulatively, these data indicate that VRK1 overexpression augments the epithelial properties of both MCF10a and MDA-MB-231 cells. We further studied the impact of VRK1 on the epithelial properties of MCF10a cells in 3D matrigel culture, in which cells proliferate and form epithelial sheets that mature into hollow spherical acini. VRK1 overexpression significantly accelerates the initial stages of cell proliferation, leading to larger acini that nevertheless differentiate and mature. Our analysis of human tumor tissue microarrays (TMAs) revealed that VRK1 protein levels are higher in lymph node metastases than in patient-matched mammary tumors. Using public databases, we determined that VRK1 is among the top 10% of overexpressed transcripts in multiple subtypes of invasive breast cancer, and that high levels of VRK1 expression are correlated with decreased relapse-free survival. In sum, overexpression of VRK1, by regulating the transcription repressors snail, slug, and twist1, can promote a mesenchymal-to-epithelial transition (MET) in cell culture. VRK1-mediated MET might facilitate the colonization of distal sites by metastatic breast cancer cells, providing some insight into the frequent association of VRK1 overexpression with breast malignancies and the correlation between VRK1 overexpression and poor clinical outcome.
Collapse
Affiliation(s)
- Aye M. Mon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States of America
| | - A. Craig MacKinnon
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Paula Traktman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States of America
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States of America
- The Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States of America
| |
Collapse
|
8
|
Vinograd-Byk H, Renbaum P, Levy-Lahad E. Vrk1 partial Knockdown in Mice Results in Reduced Brain Weight and Mild Motor Dysfunction, and Indicates Neuronal VRK1 Target Pathways. Sci Rep 2018; 8:11265. [PMID: 30050127 PMCID: PMC6062608 DOI: 10.1038/s41598-018-29215-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022] Open
Abstract
Mutations in Vaccinia-related kinase 1 (VRK1) have emerged as a cause of severe neuronal phenotypes in human, including brain developmental defects and degeneration of spinal motor neurons, leading to Spinal Muscular Atrophy (SMA) or early onset Amyotrophic Lateral Sclerosis (ALS). Vrk1 gene-trap partial Knockout (KO) mice (Vrk1GT3/GT3), which express decreased levels of Vrk1, are sterile due to impaired gamete production. Here, we examined whether this mouse model also presents neuronal phenotypes. We found a 20-50% reduction in Vrk1 expression in neuronal tissues of the Vrk1GT3/GT3 mice, leading to mild neuronal phenotypes including significant but small reduction in brain mass and motor (rotarod) impairment. Analysis of gene expression in the Vrk1GT3/GT3 cortex predicts novel roles for VRK1 in neuronal pathways including neurotrophin signaling, axon guidance and pathways implicated in the pathogenesis of ALS. Together, our studies of the partial KO Vrk1 mice reveal that even moderately reduced levels of Vrk1 expression result in minor neurological impairment and indicate new neuronal pathways likely involving VRK1.
Collapse
Affiliation(s)
- Hadar Vinograd-Byk
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
- Hebrew University Medical School, Jerusalem, 91120, Israel
| | - Paul Renbaum
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
| | - Ephrat Levy-Lahad
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, 91031, Israel.
- Hebrew University Medical School, Jerusalem, 91120, Israel.
| |
Collapse
|
9
|
Campillo-Marcos I, Lazo PA. Implication of the VRK1 chromatin kinase in the signaling responses to DNA damage: a therapeutic target? Cell Mol Life Sci 2018; 75:2375-2388. [PMID: 29679095 PMCID: PMC5986855 DOI: 10.1007/s00018-018-2811-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/14/2018] [Accepted: 04/03/2018] [Indexed: 12/19/2022]
Abstract
DNA damage causes a local distortion of chromatin that triggers the sequential processes that participate in specific DNA repair mechanisms. This initiation of the repair response requires the involvement of a protein whose activity can be regulated by histones. Kinases are candidates to regulate and coordinate the connection between a locally altered chromatin and the response initiating signals that lead to identification of the type of lesion and the sequential steps required in specific DNA damage responses (DDR). This initiating kinase must be located in chromatin, and be activated independently of the type of DNA damage. We review the contribution of the Ser-Thr vaccinia-related kinase 1 (VRK1) chromatin kinase as a new player in the signaling of DNA damage responses, at chromatin and cellular levels, and its potential as a new therapeutic target in oncology. VRK1 is involved in the regulation of histone modifications, such as histone phosphorylation and acetylation, and in the formation of γH2AX, NBS1 and 53BP1 foci induced in DDR. Induction of DNA damage by chemotherapy or radiation is a mainstay of cancer treatment. Therefore, novel treatments can be targeted to proteins implicated in the regulation of DDR, rather than by directly causing DNA damage.
Collapse
Affiliation(s)
- Ignacio Campillo-Marcos
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Pedro A Lazo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, 37007, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
10
|
Gotoh S, Miyauchi Y, Moore R, Negishi M. Glucose elicits serine/threonine kinase VRK1 to phosphorylate nuclear pregnane X receptor as a novel hepatic gluconeogenic signal. Cell Signal 2017; 40:200-209. [DOI: 10.1016/j.cellsig.2017.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/26/2017] [Accepted: 09/10/2017] [Indexed: 12/11/2022]
|
11
|
Flora P, McCarthy A, Upadhyay M, Rangan P. Role of Chromatin Modifications in Drosophila Germline Stem Cell Differentiation. Results Probl Cell Differ 2017; 59:1-30. [PMID: 28247044 DOI: 10.1007/978-3-319-44820-6_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
During Drosophila oogenesis, germline stem cells (GSCs) self-renew and differentiate to give rise to a mature egg. Self-renewal and differentiation of GSCs are regulated by both intrinsic mechanisms such as regulation of gene expression in the germ line and extrinsic signaling pathways from the surrounding somatic niche. Epigenetic mechanisms, including histone-modifying proteins, nucleosome remodeling complexes, and histone variants, play a critical role in regulating intrinsic gene expression and extrinsic signaling cues from the somatic niche. In the GSCs, intrinsic epigenetic modifiers are required to maintain a stem cell fate by promoting expression of self-renewal factors and repressing the differentiation program. Subsequently, in the GSC daughters, epigenetic regulators activate the differentiation program to promote GSC differentiation. During differentiation, the GSC daughter undergoes meiosis to give rise to the developing egg, containing a compacted chromatin architecture called the karyosome. Epigenetic modifiers control the attachment of chromosomes to the nuclear lamina to aid in meiotic recombination and the release from the lamina for karyosome formation. The germ line is in close contact with the soma for the entirety of this developmental process. This proximity facilitates signaling from the somatic niche to the developing germ line. Epigenetic modifiers play a critical role in the somatic niche, modulating signaling pathways in order to coordinate the transition of GSC to an egg. Together, intrinsic and extrinsic epigenetic mechanisms modulate this exquisitely balanced program.
Collapse
Affiliation(s)
- Pooja Flora
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Alicia McCarthy
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Maitreyi Upadhyay
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA.
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA.
| |
Collapse
|
12
|
Dobrzynska A, Askjaer P. Vaccinia-related kinase 1 is required for early uterine development in Caenorhabditis elegans. Dev Biol 2016; 411:246-256. [PMID: 26827901 DOI: 10.1016/j.ydbio.2016.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 10/25/2022]
Abstract
Protein kinases regulate a multitude of processes by reversible phosphorylation of target molecules. Induction of cell proliferation and differentiation are fundamental to development and rely on tightly controlled kinase activities. Vaccinia-Related Kinases (VRKs) have emerged as a multifunctional family of kinases with essential functions conserved, from nematodes and fruit flies, to humans. VRK substrates include chromatin and transcription factors, whereas deregulation of VRKs is implicated in sterility, cancer and neurological defects. In contrast to previous observations, we describe here that Caenorhabditis elegans VRK-1 is expressed in all cell types, including proliferating and post-mitotic cells. Despite the ubiquitous expression pattern, we find that vrk-1 mutants are particularly impaired in uterine development. Our data show that VRK-1 is required for uterine cell proliferation and differentiation. Moreover, the anchor cell, a specialized uterine cell, fails to fuse with neighboring cells to form the utse syncytium in vrk-1 mutants, thus providing further insight on the role of VRKs in organogenesis.
Collapse
Affiliation(s)
- Agnieszka Dobrzynska
- Andalusian Center for Developmental Biology, CSIC-Junta de Andalucia-Universidad Pablo de Olavide, Carretera de Utrera, km 1, 41013 Seville, Spain
| | - Peter Askjaer
- Andalusian Center for Developmental Biology, CSIC-Junta de Andalucia-Universidad Pablo de Olavide, Carretera de Utrera, km 1, 41013 Seville, Spain.
| |
Collapse
|
13
|
Kim SH, Ryu HG, Lee J, Shin J, Harikishore A, Jung HY, Kim YS, Lyu HN, Oh E, Baek NI, Choi KY, Yoon HS, Kim KT. Ursolic acid exerts anti-cancer activity by suppressing vaccinia-related kinase 1-mediated damage repair in lung cancer cells. Sci Rep 2015; 5:14570. [PMID: 26412148 PMCID: PMC4585938 DOI: 10.1038/srep14570] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/04/2015] [Indexed: 01/26/2023] Open
Abstract
Many mitotic kinases have been targeted for the development of anti-cancer drugs, and inhibitors of these kinases have been expected to perform well for cancer therapy. Efforts focused on selecting good targets and finding specific drugs to target are especially needed, largely due to the increased frequency of anti-cancer drugs used in the treatment of lung cancer. Vaccinia-related kinase 1 (VRK1) is a master regulator in lung adenocarcinoma and is considered a key molecule in the adaptive pathway, which mainly controls cell survival. We found that ursolic acid (UA) inhibits the catalytic activity of VRK1 via direct binding to the catalytic domain of VRK1. UA weakens surveillance mechanisms by blocking 53BP1 foci formation induced by VRK1 in lung cancer cells, and possesses synergistic anti-cancer effects with DNA damaging drugs. Taken together, UA can be a good anti-cancer agent for targeted therapy or combination therapy with DNA damaging drugs for lung cancer patients.
Collapse
Affiliation(s)
- Seong-Hoon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Hye Guk Ryu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Juhyun Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Joon Shin
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | | | - Hoe-Youn Jung
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Ye Seul Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Ha-Na Lyu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Eunji Oh
- The Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon 449-701, Republic of Korea
| | - Nam-In Baek
- The Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon 449-701, Republic of Korea
| | - Kwan-Yong Choi
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Ho Sup Yoon
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
- Department of Genetic Engineering, College of Life Sciences, Kyung-Hee University, Suwon 449-701, Republic of Korea
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| |
Collapse
|
14
|
VRK1 regulates Cajal body dynamics and protects coilin from proteasomal degradation in cell cycle. Sci Rep 2015; 5:10543. [PMID: 26068304 PMCID: PMC4464288 DOI: 10.1038/srep10543] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/24/2015] [Indexed: 12/20/2022] Open
Abstract
Cajal bodies (CBs) are nuclear organelles associated with ribonucleoprotein functions and RNA maturation. CBs are assembled on coilin, its main scaffold protein, in a cell cycle dependent manner. The Ser-Thr VRK1 (vaccinia-related kinase 1) kinase, whose activity is also cell cycle regulated, interacts with and phosphorylates coilin regulating assembly of CBs. Coilin phosphorylation is not necessary for its interaction with VRK1, but it occurs in mitosis and regulates coilin stability. Knockdown of VRK1 or VRK1 inactivation by serum deprivation causes a loss of coilin phosphorylation in Ser184 and of CBs formation, which are rescued with an active VRK1, but not by kinase-dead VRK1. The phosphorylation of coilin in Ser184 occurs during mitosis before assembly of CBs. Loss of coilin phosphorylation results in disintegration of CBs, and of coilin degradation that is prevented by proteasome inhibitors. After depletion of VRK1, coilin is ubiquitinated in nuclei, which is partly mediated by mdm2, but its proteasomal degradation occurs in cytosol and is prevented by blocking its nuclear export. We conclude that VRK1 is a novel regulator of CBs dynamics and stability in cell cycle by protecting coilin from ubiquitination and degradation in the proteasome, and propose a model of CB dynamics.
Collapse
|
15
|
López-Sánchez I, Valbuena A, Vázquez-Cedeira M, Khadake J, Sanz-García M, Carrillo-Jiménez A, Lazo PA. VRK1 interacts with p53 forming a basal complex that is activated by UV-induced DNA damage. FEBS Lett 2014; 588:692-700. [PMID: 24492002 DOI: 10.1016/j.febslet.2014.01.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/09/2014] [Accepted: 01/19/2014] [Indexed: 01/08/2023]
Abstract
DNA damage immediate cellular response requires the activation of p53 by kinases. We found that p53 forms a basal stable complex with VRK1, a Ser-Thr kinase that responds to UV-induced DNA damage by specifically phosphorylating p53. This interaction takes place through the p53 DNA binding domain, and frequent DNA-contact mutants of p53, such as R273H, R248H or R280K, do not disrupt the complex. UV-induced DNA damage activates VRK1, and is accompanied by phosphorylation of p53 at Thr-18 before it accumulates. We propose that the VRK1-p53 basal complex is an early-warning system for immediate cellular responses to DNA damage.
Collapse
Affiliation(s)
- Inmaculada López-Sánchez
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, Spain
| | - Alberto Valbuena
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, Spain
| | - Marta Vázquez-Cedeira
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Jyoti Khadake
- European Bioinformatics Institute-EMBL, Cambridge, England, United Kingdom
| | - Marta Sanz-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, Spain
| | - Alejandro Carrillo-Jiménez
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, Spain
| | - Pedro A Lazo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.
| |
Collapse
|
16
|
Molecular genetic analysis of VRK1 in mammary epithelial cells: depletion slows proliferation in vitro and tumor growth and metastasis in vivo. Oncogenesis 2013; 2:e48. [PMID: 23732708 PMCID: PMC3740298 DOI: 10.1038/oncsis.2013.11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The vaccinia-related kinases (VRKs) comprise a branch of the casein kinase family. VRK1, a ser/thr kinase with a nuclear localization, is the most well-studied paralog and has been described as a proproliferative protein. In lower eukaryotes, a loss of VRK1 activity is associated with severe mitotic and meiotic defects. Mice that are hypomorphic for VRK1 expression are infertile, and depletion of VRK1 in tissue culture cells can impair cell proliferation and alter several signaling pathways. VRK1 has been implicated as part of a ‘gene-expression signature' whose overexpression correlates with poor clinical outcome in breast cancer patients. We present here our investigation of the role of VRK1 in the growth of normal (MCF10) and malignant (MDA-MB-231) human mammary epithelial cells, and demonstrate that shRNA-mediated depletion of VRK1 slows their proliferation significantly. Conversely, stable overexpression of a FLAG-tagged VRK1 transgene imparts a survival advantage to highly malignant MDA-MB-231 cells under conditions of nutrient and growth factor deprivation. Moreover, in a murine orthotopic xenograft model of breast cancer, we demonstrate that tumors depleted of VRK1 show a 50% reduction in size from 4–13 weeks postengraftment. The incidence and burden of distal metastases in the lungs and brain was also significantly reduced in mice engrafted with VRK1-depleted cells. These studies demonstrate that VRK1 depletion or overexpression has an impact on the proliferation and survival of cell lines derived from normal or malignant mammary tissue, and moreover show that depletion of VRK1 in MDA-MB-231 cells reduces their oncogenic and metastatic properties in vivo.
Collapse
|
17
|
Barcia-Sanjurjo I, Vázquez-Cedeira M, Barcia R, Lazo PA. Sensitivity of the kinase activity of human vaccinia-related kinase proteins to toxic metals. J Biol Inorg Chem 2013; 18:473-82. [DOI: 10.1007/s00775-013-0992-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/26/2013] [Indexed: 01/22/2023]
|
18
|
Jeong MW, Kang TH, Kim W, Choi YH, Kim KT. Mitogen-activated protein kinase phosphatase 2 regulates histone H3 phosphorylation via interaction with vaccinia-related kinase 1. Mol Biol Cell 2012; 24:373-84. [PMID: 23223570 PMCID: PMC3564537 DOI: 10.1091/mbc.e12-06-0456] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Vaccinia-related kinase 1 (VRK1) is a histone kinase that phosphorylates histone H3 at Thr-3 and Ser-10. This study shows that mitogen-activated protein kinase phosphatase 2 regulates this phosphorylation negatively via interaction with VRK1, regardless of VRK1’s phosphatase activity. Mitogen-activated protein kinase phosphatase 2 (MKP2) is a member of the dual-specificity MKPs that regulate MAP kinase signaling. However, MKP2 functions are still largely unknown. In this study, we showed that MKP2 could regulate histone H3 phosphorylation under oxidative stress conditions. We found that MKP2 inhibited histone H3 phosphorylation by suppressing vaccinia-related kinase 1 (VRK1) activity. Moreover, this regulation was dependent on the selective interaction with VRK1, regardless of its phosphatase activity. The interaction between MKP2 and VRK1 mainly occurred in the chromatin, where histones are abundant. We also observed that the protein level of MKP2 and its interaction with histone H3 increased from G1 to M phase during the cell cycle, which is similar to the VRK1 profile. Furthermore, MKP2 specifically regulated the VRK1-mediated histone H3 phosphorylation at M phase. Taken together, these data suggest a novel function of MKP2 as a negative regulator of VRK1-mediated histone H3 phosphorylation.
Collapse
Affiliation(s)
- Min-Woo Jeong
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | | | | | | | | |
Collapse
|
19
|
Choi YH, Lim JK, Jeong MW, Kim KT. HnRNP A1 phosphorylated by VRK1 stimulates telomerase and its binding to telomeric DNA sequence. Nucleic Acids Res 2012; 40:8499-518. [PMID: 22740652 PMCID: PMC3458570 DOI: 10.1093/nar/gks634] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The telomere integrity is maintained via replication machinery, telomere associated proteins and telomerase. Many telomere associated proteins are regulated in a cell cycle-dependent manner. Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), a single-stranded oligonucleotide binding protein, is thought to play a pivotal role in telomere maintenance. Here, we identified hnRNP A1 as a novel substrate for vaccinia-related kinase 1 (VRK1), a cell cycle regulating kinase. Phosphorylation by VRK1 potentiates the binding of hnRNP A1 to telomeric ssDNA and telomerase RNA in vitro and enhances its function for telomerase reaction. VRK1 deficiency induces a shortening of telomeres with an abnormal telomere arrangement and activation of DNA-damage signaling in mouse male germ cells. Together, our data suggest that VRK1 is required for telomere maintenance via phosphorylation of hnRNP A1, which regulates proteins associated with the telomere and telomerase RNA.
Collapse
Affiliation(s)
- Yoon Ha Choi
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology (POSTECH), San-31, Hyoja-Dong, Pohang 790-784, Republic of Korea
| | | | | | | |
Collapse
|
20
|
Defective folliculogenesis in female mice lacking Vaccinia-related kinase 1. Sci Rep 2012; 2:468. [PMID: 22741057 PMCID: PMC3384087 DOI: 10.1038/srep00468] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/11/2012] [Indexed: 12/02/2022] Open
Abstract
The Vaccinia-related kinase 1(VRK1), which is generally implicated in modulating cell cycle, plays important roles in mammalian gametogenesis. Female infertility in VRK1-deficient mice was reported to be caused by defective meiotic progression in oocyte at postovulatory stage. VRK1 roles in folliculogenesis, however, remain largely unknown. Here, accurate quantification of folliculogenesis is performed by a direct visualization of ‘intact’ ovary in 3-dimensions (3-D) using a synchrotron X-ray microtomography. In VRK1-deficient ovaries, the numbers of pre-antral and antral follicles are significantly reduced by 38% and 46%, respectively, comparing to control. The oocytes volumes in antral and Graffian follicles also decrease by 42% and 37% in the mutants, respectively, indicating defects in oocyte quality at preovulatory stage. Genetic analysis shows that gene expressions related to folliculogenesis are down-regulated in VRK1-deficient ovaries, implying defects in folliculogenesis. We suggest that VRK1 is required for both follicle development and oocyte growth in mammalian female reproduction system.
Collapse
|
21
|
Baillet A, Mandon-Pepin B. Mammalian ovary differentiation - a focus on female meiosis. Mol Cell Endocrinol 2012; 356:13-23. [PMID: 21964319 DOI: 10.1016/j.mce.2011.09.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 09/01/2011] [Accepted: 09/13/2011] [Indexed: 02/03/2023]
Abstract
Over the past 50 years, the ovary development has been subject of fewer studies as compare to the male pathway. Nevertheless due to the advancement of genetics, mouse ES cells and the development of genetic models, studies of ovarian differentiation was boosted. This review emphasizes some of new progresses in the research field of the mammalian ovary differentiation that have occurred in recent years with focuses of the period around prophase I of meiosis and of recent roles of small non-RNAs in the ovarian gene expression.
Collapse
Affiliation(s)
- Adrienne Baillet
- Laboratoire de Génétique et Biologie Cellulaire, EA 4589 Université de Versailles Saint-Quentin-en-Yvelines, Ecole Pratique des Hautes Etudes, F-78035 Versailles cedex, France.
| | | |
Collapse
|
22
|
Sanz-García M, Monsalve DM, Sevilla A, Lazo PA. Vaccinia-related kinase 1 (VRK1) is an upstream nucleosomal kinase required for the assembly of 53BP1 foci in response to ionizing radiation-induced DNA damage. J Biol Chem 2012; 287:23757-68. [PMID: 22621922 DOI: 10.1074/jbc.m112.353102] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cellular responses to DNA damage require the formation of protein complexes in a highly organized fashion. The complete molecular components that participate in the sequential signaling response to DNA damage remain unknown. Here we demonstrate that vaccinia-related kinase 1 (VRK1) in resting cells plays an important role in the formation of ionizing radiation-induced foci that assemble on the 53BP1 scaffold protein during the DNA damage response. The kinase VRK1 is activated by DNA double strand breaks induced by ionizing radiation (IR) and specifically phosphorylates 53BP1 in serum-starved cells. VRK1 knockdown resulted in the defective formation of 53BP1 foci in response to IR both in number and size. This observed effect on 53BP1 foci is p53- and ataxia-telangiectasia mutated (ATM)-independent and can be rescued with VRK1 mutants resistant to siRNA. VRK1 knockdown also prevented the activating phosphorylation of ATM, CHK2, and DNA-dependent protein kinase in response to IR. VRK1 activation in response to DNA damage is a novel and early step in the signaling of mammalian DNA damage responses.
Collapse
Affiliation(s)
- Marta Sanz-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | | | | | | |
Collapse
|
23
|
De La Fuente R, Baumann C, Viveiros MM. Chromatin structure and ATRX function in mouse oocytes. Results Probl Cell Differ 2012; 55:45-68. [PMID: 22918800 DOI: 10.1007/978-3-642-30406-4_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Differentiation of chromatin structure and function during oogenesis is essential to confer the mammalian oocyte with meiotic and developmental potential. Errors in chromosome segregation during female meiosis and subsequent transmission of an abnormal chromosome complement (aneuploidy) to the early conceptus are one of the leading causes of pregnancy loss in women. The chromatin remodeling protein ATRX (α-thalassemia mental retardation X-linked) has recently emerged as a critical factor involved in heterochromatin formation at mammalian centromeres during meiosis. In mammalian oocytes, ATRX binds to centromeric heterochromatin domains where it is required for accurate chromosome segregation. Loss of ATRX function induces abnormal meiotic chromosome morphology, reduces histone H3 phosphorylation, and promotes a high incidence of aneuploidy associated with severely reduced fertility. The presence of centromeric breaks during the transition to the first mitosis in the early embryo indicates that the role of ATRX in chromosome segregation is mediated through an epigenetic mechanism involving the maintenance of chromatin modifications associated with pericentric heterochromatin (PCH) formation and chromosome condensation. This is consistent with the existence of a potential molecular link between centromeric and PCH in the epigenetic control of centromere function and maintenance of chromosome stability in mammalian oocytes. Dissecting the molecular mechanisms of ATRX function during meiosis will have important clinical implications towards uncovering the epigenetic factors contributing to the onset of aneuploidy in the human oocyte.
Collapse
|
24
|
Kim W, Chakraborty G, Kim S, Shin J, Park CH, Jeong MW, Bharatham N, Yoon HS, Kim KT. Macro histone H2A1.2 (macroH2A1) protein suppresses mitotic kinase VRK1 during interphase. J Biol Chem 2011; 287:5278-89. [PMID: 22194607 DOI: 10.1074/jbc.m111.281709] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
VRK1-mediated phosphorylation of histone H3 should be restricted in mitosis for consistent cell cycling, and defects in this process trigger cellular catastrophe. However, an interphasic regulator against VRK1 has not been actually investigated so far. Here, we show that the histone variant macrodomain-containing histone H2A1.2 functions as a suppressor against VRK1 during interphase. The level of macroH2A1.2 was markedly reduced in the mitotic phase, and the macroH2A1.2-mediated inhibition of histone H3 phosphorylation occurred mainly during interphase. We also found direct interaction and binding features between VRK1 and macroH2A1.2 by NMR spectroscopy. Hence, our findings might provide valuable insight into the underlying molecular mechanism regarding an epigenetic regulation of histone H3 during the cell cycle.
Collapse
Affiliation(s)
- Wanil Kim
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sanz-García M, Vázquez-Cedeira M, Kellerman E, Renbaum P, Levy-Lahad E, Lazo PA. Substrate profiling of human vaccinia-related kinases identifies coilin, a Cajal body nuclear protein, as a phosphorylation target with neurological implications. J Proteomics 2011; 75:548-60. [PMID: 21920476 DOI: 10.1016/j.jprot.2011.08.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 08/19/2011] [Accepted: 08/23/2011] [Indexed: 01/13/2023]
Abstract
Protein phosphorylation by kinases plays a central role in the regulation and coordination of multiple biological processes. In general, knowledge on kinase specificity is restricted to substrates identified in the context of specific cellular responses, but kinases are likely to have multiple additional substrates and be integrated in signaling networks that might be spatially and temporally different, and in which protein complexes and subcellular localization can play an important role. In this report the substrate specificity of atypical human vaccinia-related kinases (VRK1 and VRK2) using a human peptide-array containing 1080 sequences phosphorylated in known signaling pathways has been studied. The two kinases identify a subset of potential peptide targets, all of them result in a consensus sequence composed of at least four basic residues in peptide targets. Linear peptide arrays are therefore a useful approach in the characterization of kinases and substrate identification, which can contribute to delineate the signaling network in which VRK proteins participate. One of these target proteins is coilin; a basic protein located in nuclear Cajal bodies. Coilin is phosphorylated in Ser184 by both VRK1 and VRK2. Coilin colocalizes and interacts with VRK1 in Cajal bodies, but not with the mutant VRK1 (R358X). VRK1 (R358X) is less active than VRK1. Altered regulation of coilin might be implicated in several neurological diseases such as ataxias and spinal muscular atrophies.
Collapse
Affiliation(s)
- Marta Sanz-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas(CSIC)-Universidad de Salamanca, Salamanca 37007, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Valbuena A, Sanz-García M, López-Sánchez I, Vega FM, Lazo PA. Roles of VRK1 as a new player in the control of biological processes required for cell division. Cell Signal 2011; 23:1267-72. [PMID: 21514377 DOI: 10.1016/j.cellsig.2011.04.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 04/04/2011] [Indexed: 11/28/2022]
Abstract
Cell division, in addition to an accurate transmission of genetic information to daughter cells, also requires the temporal and spatial coordination of several biological processes without which cell division would not be feasible. These processes include the temporal coordination of DNA replication and chromosome segregation, regulation of nuclear envelope disassembly and assembly, chromatin condensation and Golgi fragmentation for its redistribution into daughter cells, among others. However, little is known regarding regulatory proteins and signalling pathways that might participate in the coordination of all these different biological functions. Such regulatory players should directly have a role in the processes leading to cell division. VRK1 (Vaccinia-related kinase 1) is an early response gene required for cyclin D1 expression, regulates p53 by a specific Thr18 phosphorylation, controls chromatin condensation by histone phosphorylation, nuclear envelope assembly by phosphorylation of BANF1, and participates in signalling required for Golgi fragmentation late in the G2 phase. We propose that VRK1, a Ser-Thr kinase, might be a candidate to play an important coordinator role in these cell division processes as part of a novel signalling pathway.
Collapse
Affiliation(s)
- Alberto Valbuena
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | | | | | | | | |
Collapse
|