1
|
Lee ES, Aryal YP, Kim TY, Pokharel E, Kim JY, Yamamoto H, An CH, An SY, Jung JK, Lee Y, Ha JH, Sohn WJ, Kim JY. The effects of 4-Phenylbutyric acid on ER stress during mouse tooth development. Front Physiol 2023; 13:1079355. [PMID: 36685173 PMCID: PMC9848431 DOI: 10.3389/fphys.2022.1079355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction: During tooth development, proper protein folding and trafficking are significant processes as newly synthesized proteins proceed to form designated tissues. Endoplasmic reticulum (ER) stress occurs inevitably in tooth development as unfolded and misfolded proteins accumulate in ER. 4-Phenylbutyric acid (4PBA) is a FDA approved drug and known as a chemical chaperone which alleviates the ER stress. Recently, several studies showed that 4PBA performs therapeutic effects in some genetic diseases due to misfolding of proteins, metabolic related-diseases and apoptosis due to ER stress. However, the roles of 4PBA during odontogenesis are not elucidated. This study revealed the effects of 4PBA during molar development in mice. Methods: We employed in vitro organ cultivation and renal transplantation methods which would mimic the permanent tooth development in an infant period of human. The in vitro cultivated tooth germs and renal calcified teeth were examined by histology and immunohistochemical analysis. Results and Discussion: Our results revealed that treatment of 4PBA altered expression patterns of enamel knot related signaling molecules, and consequently affected cellular secretion and patterned formation of dental hard tissues including dentin and enamel during tooth morphogenesis. The alteration of ER stress by 4PBA treatment during organogenesis would suggest that proper ER stress is important for pattern formation during tooth development and morphogenesis, and 4PBA as a chemical chaperone would be one of the candidate molecules for dental and hard tissue regeneration.
Collapse
Affiliation(s)
| | | | | | | | - Ji-Youn Kim
- Department of Dental Hygiene, Gachon University, Incheon, Korea
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan
| | - Chang-Hyeon An
- Department of Oral and Maxillofacial Radiology, Daegu, South Korea
| | - Seo-Young An
- Department of Oral and Maxillofacial Radiology, Daegu, South Korea
| | | | | | - Jung-Hong Ha
- Department of Conservative Dentistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Wern-Joo Sohn
- Department of K-Beauty Business, College of Cosmetics and Pharmaceuticals, Daegu Haany University, Gyeongsan, Korea
| | - Jae-Young Kim
- Department of Biochemistry, Daegu, South Korea,*Correspondence: Jae-Young Kim,
| |
Collapse
|
2
|
Mukhopadhyay P, Smolenkova I, Seelan RS, Pisano MM, Greene RM. Spatiotemporal Expression and Functional Analysis of miRNA-22 in the Developing Secondary Palate. Cleft Palate Craniofac J 2023; 60:27-38. [PMID: 34730446 DOI: 10.1177/10556656211054004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Normal development of the embryonic orofacial region requires precise spatiotemporal coordination between numerous genes. MicroRNAs represent small, single-stranded, non-coding molecules that regulate gene expression. This study examines the role of microRNA-22 (miR-22) in murine orofacial ontogeny. METHODS Spatiotemporal and differential expression of miR-22 (mmu-miR-22-3p) within the developing secondary palate was determined by in situ hybridization and quantitative real-time PCR, respectively. Bioinformatic approaches were used to predict potential mRNA targets of miR-22 and analyze their association with cellular functions indispensable for normal orofacial ontogeny. An in vitro palate organ culture system was used to assess the role of miR-22 in secondary palate development. RESULTS There was a progressive increase in miR-22 expression from GD12.5 to GD14.5 in palatal processes. On GD12.5 and GD13.5, miR-22 was expressed in the future oral, nasal, and medial edge epithelia. On GD14.5, miR-22 expression was observed in the residual midline epithelial seam (MES), the nasal epithelium and the mesenchyme, but not in the oral epithelium. Inhibition of miR-22 activity in palate organ cultures resulted in failure of MES removal. Bioinformatic analyses revealed potential mRNA targets of miR-22 that may play significant roles in regulating apoptosis, migration, and/or convergence/extrusion, developmental processes that modulate MES removal during palatogenesis. CONCLUSIONS Results from the current study suggest a key role for miR-22 in the removal of the MES during palatogenesis and that miR-22 may represent a potential contributor to the etiology of cleft palate.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, School of Dentistry, 5170University of Louisville, Louisville, KY 40202
| | - Irina Smolenkova
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, School of Dentistry, 5170University of Louisville, Louisville, KY 40202
| | - Ratnam S Seelan
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, School of Dentistry, 5170University of Louisville, Louisville, KY 40202
| | - M Michele Pisano
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, School of Dentistry, 5170University of Louisville, Louisville, KY 40202
| | - Robert M Greene
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, School of Dentistry, 5170University of Louisville, Louisville, KY 40202
| |
Collapse
|
3
|
De Clercq S, Keruzore M, Desmaris E, Pollart C, Assimacopoulos S, Preillon J, Ascenzo S, Matson CK, Lee M, Nan X, Li M, Nakagawa Y, Hochepied T, Zarkower D, Grove EA, Bellefroid EJ. DMRT5 Together with DMRT3 Directly Controls Hippocampus Development and Neocortical Area Map Formation. Cereb Cortex 2019; 28:493-509. [PMID: 28031177 DOI: 10.1093/cercor/bhw384] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/16/2016] [Indexed: 11/14/2022] Open
Abstract
Mice that are constitutively null for the zinc finger doublesex and mab-3 related (Dmrt) gene, Dmrt5/Dmrta2, show a variety of patterning abnormalities in the cerebral cortex, including the loss of the cortical hem, a powerful cortical signaling center. In conditional Dmrt5 gain of function and loss of function mouse models, we generated bidirectional changes in the neocortical area map without affecting the hem. Analysis indicated that DMRT5, independent of the hem, directs the rostral-to-caudal pattern of the neocortical area map. Thus, DMRT5 joins a small number of transcription factors shown to control directly area size and position in the neocortex. Dmrt5 deletion after hem formation also reduced hippocampal size and shifted the position of the neocortical/paleocortical boundary. Dmrt3, like Dmrt5, is expressed in a gradient across the cortical primordium. Mice lacking Dmrt3 show cortical patterning defects akin to but milder than those in Dmrt5 mutants, perhaps in part because Dmrt5 expression increases in the absence of Dmrt3. DMRT5 upregulates Dmrt3 expression and negatively regulates its own expression, which may stabilize the level of DMRT5. Together, our findings indicate that finely tuned levels of DMRT5, together with DMRT3, regulate patterning of the cerebral cortex.
Collapse
Affiliation(s)
- Sarah De Clercq
- ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Marc Keruzore
- ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Elodie Desmaris
- ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Charlotte Pollart
- ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | | | - Julie Preillon
- ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Sabrina Ascenzo
- ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Clinton K Matson
- Department of Genetics, Cell Biology and Development , Minneapolis, MN 55455, USA
| | - Melody Lee
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xinsheng Nan
- School of Medicine and School of Bioscience , Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF10 3XQ, UK
| | - Meng Li
- School of Medicine and School of Bioscience , Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF10 3XQ, UK
| | - Yasushi Nakagawa
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tino Hochepied
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.,Inflammation Research Center, VIB, B-9052 Ghent, Belgium
| | - David Zarkower
- Department of Genetics, Cell Biology and Development , Minneapolis, MN 55455, USA
| | - Elizabeth A Grove
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Eric J Bellefroid
- ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| |
Collapse
|
4
|
Mukhopadhyay P, Smolenkova I, Warner D, Pisano MM, Greene RM. Spatio-Temporal Expression and Functional Analysis of miR-206 in Developing Orofacial Tissue. Microrna 2019; 8:43-60. [PMID: 30068287 DOI: 10.2174/2211536607666180801094528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/28/2018] [Accepted: 07/27/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Development of the mammalian palate is dependent on precise, spatiotemporal expression of a panoply of genes. MicroRNAs (miRNAs), the largest family of noncoding RNAs, function as crucial modulators of cell and tissue differentiation, regulating expression of key downstream genes. OBSERVATIONS Our laboratory has previously identified several developmentally regulated miRNAs, including miR-206, during critical stages of palatal morphogenesis. The current study reports spatiotemporal distribution of miR-206 during development of the murine secondary palate (gestational days 12.5-14.5). RESULT AND CONCLUSION Potential cellular functions and downstream gene targets of miR-206 were investigated using functional assays and expression profiling, respectively. Functional analyses highlighted potential roles of miR-206 in governing TGFß- and Wnt signaling in mesenchymal cells of the developing secondary palate. In addition, altered expression of miR-206 within developing palatal tissue of TGFß3-/- fetuses reinforced the premise that crosstalk between this miRNA and TGFß3 is crucial for secondary palate development.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- Division of Craniofacial Development and Anomalies, Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202, United States
| | - Irina Smolenkova
- Division of Craniofacial Development and Anomalies, Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202, United States
| | - Dennis Warner
- Division of Craniofacial Development and Anomalies, Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202, United States
| | - Michele M Pisano
- Division of Craniofacial Development and Anomalies, Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202, United States
| | - Robert M Greene
- Division of Craniofacial Development and Anomalies, Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202, United States
| |
Collapse
|
5
|
Grhl3 modulates epithelial structure formation of the circumvallate papilla during mouse development. Histochem Cell Biol 2016; 147:5-16. [DOI: 10.1007/s00418-016-1487-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2016] [Indexed: 02/06/2023]
|
6
|
Kehrl JH. The impact of RGS and other G-protein regulatory proteins on Gαi-mediated signaling in immunity. Biochem Pharmacol 2016; 114:40-52. [PMID: 27071343 DOI: 10.1016/j.bcp.2016.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/08/2016] [Indexed: 01/30/2023]
Abstract
Leukocyte chemoattractant receptors are members of the G-protein coupled receptor (GPCR) family. Signaling downstream of these receptors directs the localization, positioning and homeostatic trafficking of leukocytes; as well as their recruitment to, and their retention at, inflammatory sites. Ligand induced changes in the molecular conformation of chemoattractant receptors results in the engagement of heterotrimeric G-proteins, which promotes α subunits to undergo GTP/GDP exchange. This results in the functional release of βγ subunits from the heterotrimers, thereby activating downstream effector molecules, which initiate leukocyte polarization, gradient sensing, and directional migration. Pertussis toxin ADP ribosylates Gαi subunits and prevents chemoattractant receptors from triggering Gαi nucleotide exchange. The use of pertussis toxin revealed the essential importance of Gαi subunit nucleotide exchange for chemoattractant receptor signaling. More recent studies have identified a range of regulatory mechanisms that target these receptors and their associated heterotrimeric G-proteins, thereby helping to control the magnitude, kinetics, and duration of signaling. A failure in these regulatory pathways can lead to impaired receptor signaling and immunopathology. The analysis of mice with targeted deletions of Gαi isoforms as well as some of these G-protein regulatory proteins is providing insights into their roles in chemoattractant receptor signaling.
Collapse
Affiliation(s)
- John H Kehrl
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 2089, United States.
| |
Collapse
|
7
|
Seelan RS, Mukhopadhyay P, Warner DR, Appana SN, Brock GN, Pisano MM, Greene RM. Methylated microRNA genes of the developing murine palate. Microrna 2015; 3:160-73. [PMID: 25642850 DOI: 10.2174/2211536604666150131125805] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 02/07/2023]
Abstract
Environmental factors contribute to the etiology of cleft palate (CP). Environmental factors can also affect gene expression via alterations in DNA methylation suggesting a possible mechanism for the induction of CP. Identification of genes methylated during development of the secondary palate provides the basis for examination of the means by which environmental factors may adversely influence palatal ontogeny. We previously characterized the methylome of the developing murine secondary palate focusing primarily on protein- encoding genes. We now extend this study to include methylated microRNA (miRNA) genes. A total of 42 miRNA genes were found to be stably methylated in developing murine palatal tissue. Twenty eight of these were localized within host genes. Gene methylation was confirmed by pyrosequencing of selected miRNA genes. Integration of methylated miRNA gene and expression datasets identified 62 miRNAs, 69% of which were non-expressed. For a majority of genes (83%), upstream CpG islands (CGIs) were highly methylated suggesting down-regulation of CGI-associated promoters. DAVID and IPA analyses indicated that both expressed and non-expressed miRNAs target identical signaling pathways and biological processes associated with palatogenesis. Furthermore, these analyses also identified novel signaling pathways whose roles in palatogenesis remain to be elucidated. In summary, we identify methylated miRNA genes in the developing murine secondary palate, correlate miRNA gene methylation with expression of their cognate miRNA transcripts, and identify pathways and biological processes potentially mediated by these miRNAs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Robert M Greene
- Department of Molecular, Cellular and Craniofacial Biology, Birth Defects Center, ULSD, University of Louisville, 501 S. Preston Street, Suite 350, Louisville, KY 40202, USA
| |
Collapse
|
8
|
Mesenchymal signaling in dorsoventral differentiation of palatal epithelium. Cell Tissue Res 2015; 362:541-56. [DOI: 10.1007/s00441-015-2222-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 05/22/2015] [Indexed: 10/23/2022]
|
9
|
Ji YR, Kim HJ, Park SJ, Bae KB, Park SJ, Jang WY, Kang MC, Jeong J, Sung YH, Choi M, Lee W, Lee DG, Park SJ, Lee S, Kim MO, Ryoo ZY. Critical role of Rgs19 in mouse embryonic stem cell proliferation and differentiation. Differentiation 2015; 89:42-50. [DOI: 10.1016/j.diff.2015.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 01/20/2015] [Accepted: 01/23/2015] [Indexed: 10/23/2022]
|
10
|
Neupane S, Sohn WJ, Rijal G, Lee YJ, Lee S, Yamamoto H, An CH, Cho SW, Lee Y, Shin HI, Kwon TY, Kim JY. Developmental regulations of Perp in mice molar morphogenesis. Cell Tissue Res 2014; 358:109-21. [DOI: 10.1007/s00441-014-1908-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/30/2014] [Indexed: 12/17/2022]
|
11
|
Jung JK, Sohn WJ, Lee Y, Bae YC, Choi JK, Kim JY. Morphological and cellular examinations of experimentally induced malocclusion in mice mandibular condyle. Cell Tissue Res 2013; 355:355-63. [DOI: 10.1007/s00441-013-1754-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/31/2013] [Indexed: 12/11/2022]
|
12
|
Sohn WJ, Choi MA, Yamamoto H, Lee S, Lee Y, Jung JK, Jin MU, An CH, Jung HS, Suh JY, Shin HI, Kim JY. Contribution of mesenchymal proliferation in tooth root morphogenesis. J Dent Res 2013; 93:78-83. [PMID: 24155265 DOI: 10.1177/0022034513511247] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In mouse tooth development, the roots of the first lower molar develop after crown formation to form 2 cylindrical roots by post-natal day 5. This study compared the morphogenesis and cellular events of the mesial-root-forming (MRF) and bifurcation-forming (BF) regions, located in the mesial and center of the first lower molar, to better define the developmental mechanisms involved in multi-rooted tooth formation. We found that the mesenchyme in the MRF showed relatively higher proliferation than the bifurcation region. This suggested that spatially regulated mesenchymal proliferation is required for creating cylindrical root structure. The mechanism may involve the mesenchyme forming a physical barrier to epithelial invagination of Hertwig's epithelial root sheath. To test these ideas, we cultured roots in the presence of pharmacological inhibitors of microtubule and actin polymerization, nocodazole and cytochalasin-D. Cytochalasin D also inhibits proliferation in epithelium and mesenchyme. Both drugs resulted in altered morphological changes in the tooth root structures. In particular, the nocodazole- and cytochalasin-D-treated specimens showed a loss of root diameter and formation of a single-root, respectively. Immunolocalization and three-dimensional reconstruction results confirmed these mesenchymal cellular events, with higher proliferation in MRF in multi-rooted tooth formation.
Collapse
Affiliation(s)
- W-J Sohn
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Seelan RS, Warner DR, Mukhopadhyay PM, Andres SA, Smolenkova IA, Wittliff JL, Michele Pisano M, Greene RM. Epigenetic analysis of laser capture microdissected fetal epithelia. Anal Biochem 2013; 442:68-74. [PMID: 23911529 DOI: 10.1016/j.ab.2013.07.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 12/30/2022]
Abstract
Laser capture microdissection (LCM) is a superior method for nondestructive collection of specific cell populations from tissue sections. Although DNA, RNA, and protein have been analyzed from LCM-procured samples, epigenetic analyses, particularly of fetal, highly hydrated tissue, have not been attempted. A standardized protocol with quality assurance measures was established to procure cells by LCM of the medial edge epithelia (MEE) of the fetal palatal processes for isolation of intact microRNA for expression analyses and genomic DNA (gDNA) for CpG methylation analyses. MicroRNA preparations, obtained using the RNAqueous Micro kit (Life Technologies), exhibited better yields and higher quality than those obtained using the Arcturus PicoPure RNA Isolation kit (Life Technologies). The approach was validated using real-time polymerase chain reaction (PCR) to determine expression of selected microRNAs (miR-99a and miR-200b) and pyrosequencing to determine CpG methylation status of selected genes (Aph1a and Dkk4) in the MEE. These studies describe an optimized approach for employing LCM of epithelial cells from fresh frozen fetal tissue that enables quantitative analyses of microRNA expression levels and CpG methylation.
Collapse
Affiliation(s)
- Ratnam S Seelan
- Birth Defects Center, Department of Molecular, Cellular, and Craniofacial Biology, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | |
Collapse
|