1
|
Qiu W, Lin X, Yang S, Chen Z, Zhang K, Yang C, Li Y, Miao Z, Deng X, Duan X, Qian A. MACF1 deficiency suppresses tooth mineralization through IGF1 mediated crosstalk between odontoblasts and ameloblasts. Genes Dis 2024; 11:101103. [PMID: 38756354 PMCID: PMC11096715 DOI: 10.1016/j.gendis.2023.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/16/2023] [Accepted: 08/04/2023] [Indexed: 05/18/2024] Open
Affiliation(s)
- Wuxia Qiu
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, China
| | - Xiao Lin
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518063, China
| | - Shaoqing Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhihao Chen
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Kewen Zhang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chaofei Yang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Puyang Institute of Technology, Henan University, Puyang, Henan 457000, China
| | - Yu Li
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Zhiping Miao
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xiaoni Deng
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xiaohong Duan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
2
|
Ida-Yonemochi H, Otsu K, Irié T, Ohazama A, Harada H, Ohshima H. Loss of Autophagy Disrupts Stemness of Ameloblast-Lineage Cells in Aging. J Dent Res 2024; 103:156-166. [PMID: 38058147 DOI: 10.1177/00220345231209931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Autophagy is one of the intracellular degradation pathways and maintains cellular homeostasis, regulating the stress response, cell proliferation, and signal transduction. To elucidate the role of autophagy in the maintenance of dental epithelial stem cells and the subsequent enamel formation, we analyzed autophagy-deficient mice in epithelial cells (Atg7f/f;KRT14-Cre mice), focusing on the influence of aging and stress environments. We also performed in vitro cell and organ culture experiments with an autophagy inhibitor. In young Atg7f/f;KRT14-Cre mice, morphological change was not obvious in maxillary incisors, except for the remarkable cell death in the stratum intermedium of the transitional stage. However, under stress conditions of hyperglycemia, the incisor color changed to white in diabetes Atg7f/f;KRT14-Cre mice. Regarding dental epithelial stem cells, the shape of the apical bud region of the incisor became irregular with age, and odontoma was formed in aged Atg7f/f;KRT14-Cre mice. In addition, the shape of apical bud culture cells of Atg7f/f;KRT14-Cre mice became irregular and enlarged atypically, with epigenetic changes during culture, suggesting that autophagy deficiency may induce tumorigenesis in dental epithelial cells. The epigenetic change and upregulation of p21 expression were induced by autophagy inhibition in vivo and in vitro. These findings suggest that autophagy is important for the regulation of stem cell maintenance, proliferation, and differentiation of ameloblast-lineage cells, and an autophagy disorder may induce tumorigenesis in odontogenic epithelial cells.
Collapse
Affiliation(s)
- H Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - K Otsu
- Division of Developmental Biology & Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - T Irié
- Division of Anatomical and Cellular Pathology, Department of Pathology, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - A Ohazama
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata, Japan
| | - H Harada
- Division of Developmental Biology & Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - H Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| |
Collapse
|
3
|
Gotoh H, Chimhanda TA, Nomura T, Ono K. STAT3 transcriptionally regulates the expression of genes related to glycogen metabolism in developing motor neurons. FEBS Lett 2022; 596:2940-2951. [PMID: 36050761 DOI: 10.1002/1873-3468.14489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/29/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
Motor neurons in the spinal cord are essential for movement. During the embryonic period, developing motor neurons store glycogen to protect against hypoglycemic and hypoxic stress. However, the mechanisms by which glycogen metabolism is regulated in motor neurons remain unclear. We herein investigated the transcriptional regulation of genes related to glycogen metabolism in the developing spinal cord. We focused on the regulatory mechanism of glycogen synthase (Gys1) and glycogen phosphorylase brain isoform (PygB), which play central roles in glycogen metabolism, and found that the transcription factor STAT3 regulated the expression of Gys1 and PygB via cis-regulatory promoter sequences in the developing spinal cord. These results suggest that STAT3 is important for the regulation of glycogen metabolism during motor neuron development.
Collapse
Affiliation(s)
- Hitoshi Gotoh
- Department of Biology, Kyoto Prefectural University of Medicine. Inamori Memorial Building, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto city, Kyoto, 603-0823, Japan
| | - Tatenda Alois Chimhanda
- Department of Biology, Kyoto Prefectural University of Medicine. Inamori Memorial Building, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto city, Kyoto, 603-0823, Japan.,Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center, Universiteitssingel 40, 6229, ER, Maastricht, the Netherlands
| | - Tadashi Nomura
- Department of Biology, Kyoto Prefectural University of Medicine. Inamori Memorial Building, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto city, Kyoto, 603-0823, Japan
| | - Katsuhiko Ono
- Department of Biology, Kyoto Prefectural University of Medicine. Inamori Memorial Building, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto city, Kyoto, 603-0823, Japan
| |
Collapse
|
4
|
Ida-Yonemochi H, Takeuchi K, Ohshima H. Role of chondroitin sulfate in the developmental and healing process of the dental pulp in mice. Cell Tissue Res 2022; 388:133-148. [DOI: 10.1007/s00441-022-03575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 01/10/2022] [Indexed: 11/27/2022]
|
5
|
Iwata K, Kawarabayashi K, Yoshizaki K, Tian T, Saito K, Sugimoto A, Kurogoushi R, Yamada A, Yamamoto A, Kudo Y, Ishimaru N, Fukumoto S, Iwamoto T. von Willebrand factor D and EGF domains regulate ameloblast differentiation and enamel formation. J Cell Physiol 2021; 237:1964-1979. [DOI: 10.1002/jcp.30667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Kokoro Iwata
- Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University Tokyo Japan
| | - Keita Kawarabayashi
- Department of Pediatric Dentistry, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima Japan
| | - Keigo Yoshizaki
- Orthodontics and Dentofacial Orthopedics Section, Division of Oral Health, Growth and Development Kyushu University Faculty of Dental Science Fukuoka Japan
| | - Tian Tian
- Orthodontics and Dentofacial Orthopedics Section, Division of Oral Health, Growth and Development Kyushu University Faculty of Dental Science Fukuoka Japan
| | - Kan Saito
- Department of Oral Health and Development Sciences, Pediatric Dentistry Division Tohoku University Graduate School of Dentistry Sendai Japan
| | - Asuna Sugimoto
- Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University Tokyo Japan
| | - Rika Kurogoushi
- Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University Tokyo Japan
| | - Aya Yamada
- Department of Oral Health and Development Sciences, Pediatric Dentistry Division Tohoku University Graduate School of Dentistry Sendai Japan
| | - Akihito Yamamoto
- Department of Tissue Regeneration, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima Japan
| | - Yasuei Kudo
- Department of Oral Bioscience, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima Japan
| | - Satoshi Fukumoto
- Department of Oral Health and Development Sciences, Pediatric Dentistry Division Tohoku University Graduate School of Dentistry Sendai Japan
- Pediatric Dentistry Section, Division of Oral Health, Growth and Development Kyushu University Faculty of Dental Science Fukuoka Japan
| | - Tsutomu Iwamoto
- Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University Tokyo Japan
| |
Collapse
|
6
|
PER2-mediated ameloblast differentiation via PPARγ/AKT1/β-catenin axis. Int J Oral Sci 2021; 13:16. [PMID: 34011974 PMCID: PMC8134554 DOI: 10.1038/s41368-021-00123-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 01/11/2023] Open
Abstract
Circadian rhythm is involved in the development and diseases of many tissues. However, as an essential environmental regulating factor, its effect on amelogenesis has not been fully elucidated. The present study aims to investigate the correlation between circadian rhythm and ameloblast differentiation and to explore the mechanism by which circadian genes regulate ameloblast differentiation. Circadian disruption models were constructed in mice for in vivo experiments. An ameloblast-lineage cell (ALC) line was used for in vitro studies. As essential molecules of the circadian system, Bmal1 and Per2 exhibited circadian expression in ALCs. Circadian disruption mice showed reduced amelogenin (AMELX) expression and enamel matrix secretion and downregulated expression of BMAL1, PER2, PPARγ, phosphorylated AKT1 and β-catenin, cytokeratin-14 and F-actin in ameloblasts. According to previous findings and our study, BMAL1 positively regulated PER2. Therefore, the present study focused on PER2-mediated ameloblast differentiation and enamel formation. Per2 knockdown decreased the expression of AMELX, PPARγ, phosphorylated AKT1 and β-catenin, promoted nuclear β-catenin accumulation, inhibited mineralization and altered the subcellular localization of E-cadherin in ALCs. Overexpression of PPARγ partially reversed the above results in Per2-knockdown ALCs. Furthermore, in in vivo experiments, the length of incisor eruption was significantly decreased in the circadian disturbance group compared to that in the control group, which was rescued by using a PPARγ agonist in circadian disturbance mice. In conclusion, through regulation of the PPARγ/AKT1/β-catenin signalling axis, PER2 played roles in amelogenin expression, cell junctions and arrangement, enamel matrix secretion and mineralization during ameloblast differentiation, which exert effects on enamel formation.
Collapse
|
7
|
Ishikawa Y, Ida-Yonemochi H, Saito K, Nakatomi M, Ohshima H. The Sonic Hedgehog–Patched–Gli Signaling Pathway Maintains Dental Epithelial and Pulp Stem/Progenitor Cells and Regulates the Function of Odontoblasts. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.651334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This study aimed to elucidate the role of the Sonic hedgehog (Shh)–Patched (Ptch)–Gli signaling pathway in maintaining dental epithelial and pulp stem/progenitor cells and regulating the function of odontoblasts. Doxycycline (dox)-inducible histone 2B (H2B)–green fluorescent protein (GFP) transgenic mice ingested dox at prenatal embryonic days 14.5 or 15.5 and their offspring were collected from postnatal day 1 (P1) to week 3 (P3W). Immunohistochemistry for Gli1, Ptch1, and Ptch2 andin situhybridization forShhandPtch1were conducted. Mandibular incisors of postnatal day 2 H2B-GFP transgenic and wild-type mice were cultivated in a nutrient medium with Shh antibody for 4 days and subsequently processed for immunohistochemistry for Sox2. In molars, dense H2B-GFP-label-retaining cells (H2B-GFP-LRCs) were densely distributed throughout the dental pulp during P1 to postnatal week 2 (P2W) and decreased in number by postnatal P3W, whereas the number of dense H2B-GFP-LRCs in the subodontoblastic layer increased in number at P2W. Gli1+and Pthc1+cells were distributed throughout the enamel organ and dental pulp, including the odontoblast and subodontoblastic layers.ShhmRNA was expressed in the inner enamel epithelium and shifted into odontoblasts after dentin deposition.Ptch1mRNA was expressed in the inner enamel epithelium and cuspal pulpal tissue on P1 and decreased in intensity from postnatal week 1 to P3W. In incisors, the apical bud contained H2B-GFP-LRCs, Gli1+cells, and Ptch1+cells. The addition of Shh antibody to explants induced a decrease in the number of Sox2+cells due to the increase in apoptotic cells in the apical bud. Thus, the Shh–Ptch–Gli signaling pathway plays a role in maintaining quiescent adult stem cells and regulating the function of odontoblasts.
Collapse
|
8
|
Otsu K, Ida-Yonemochi H, Ikezaki S, Ema M, Hitomi J, Ohshima H, Harada H. Oxygen regulates epithelial stem cell proliferation via RhoA-actomyosin-YAP/TAZ signal in mouse incisor. Development 2021; 148:dev.194787. [PMID: 33472844 DOI: 10.1242/dev.194787] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022]
Abstract
Stem cells are maintained in specific niches that strictly regulate their proliferation and differentiation for proper tissue regeneration and renewal. Molecular oxygen (O2) is an important component of the niche microenvironment, but little is known about how O2 governs epithelial stem cell (ESC) behavior. Here, we demonstrate that O2 plays a crucial role in regulating the proliferation of ESCs using the continuously growing mouse incisors. We have revealed that slow-cycling cells in the niche are maintained under relatively hypoxic conditions compared with actively proliferating cells, based on the blood vessel distribution and metabolic status. Mechanistically, we have demonstrated that, during hypoxia, HIF1α upregulation activates the RhoA signal, thereby promoting cortical actomyosin and stabilizing the adherens junction complex, including merlin. This leads to the cytoplasmic retention of YAP/TAZ to attenuate cell proliferation. These results shed light on the biological significance of blood-vessel geometry and the signaling mechanism through microenvironmental O2 to orchestrate ESC behavior, providing a novel molecular basis for the microenvironmental O2-mediated stem cell regulation during tissue development and renewal.
Collapse
Affiliation(s)
- Keishi Otsu
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Shojiro Ikezaki
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Jiro Hitomi
- Division of Human Embryology, Department of Anatomy, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Hidemitsu Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate 028-3694, Japan
| |
Collapse
|
9
|
Epithelial loss of mitochondrial oxidative phosphorylation leads to disturbed enamel and impaired dentin matrix formation in postnatal developed mouse incisor. Sci Rep 2020; 10:22037. [PMID: 33328493 PMCID: PMC7744519 DOI: 10.1038/s41598-020-77954-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/12/2020] [Indexed: 12/03/2022] Open
Abstract
The formation of dentin and enamel matrix depends on reciprocal interactions between epithelial-mesenchymal cells. To assess the role of mitochondrial function in amelogenesis and dentinogenesis, we studied postnatal incisor development in K320E-TwinkleEpi mice. In these mice, a loss of mitochondrial DNA (mtDNA), followed by a severe defect in the oxidative phosphorylation system is induced specifically in Keratin 14 (K14+) expressing epithelial cells. Histochemical staining showed severe reduction of cytochrome c oxidase activity only in K14+ epithelial cells. In mutant incisors, H&E staining showed severe defects in the ameloblasts, in the epithelial cells of the stratum intermedium and the papillary cell layer, but also a disturbed odontoblast layer. The lack of amelogenin in the enamel matrix of K320E-TwinkleEpi mice indicated that defective ameloblasts are not able to form extracellular enamel matrix proteins. In comparison to control incisors, von Kossa staining showed enamel biomineralization defects and dentin matrix impairment. In mutant incisor, TUNEL staining and ultrastructural analyses revealed differentiation defects, while in hair follicle cells apoptosis is prevalent. We concluded that mitochondrial oxidative phosphorylation in epithelial cells of the developed incisor is required for Ca2+ homeostasis to regulate the formation of enamel matrix and induce the differentiation of ectomesenchymal cells into odontoblasts.
Collapse
|
10
|
Ida-Yonemochi H, Otsu K, Harada H, Ohshima H. Functional Expression of Sodium-Dependent Glucose Transporter in Amelogenesis. J Dent Res 2020; 99:977-986. [PMID: 32345094 DOI: 10.1177/0022034520916130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Glucose is an essential source of energy for mammalian cells and is transported into the cells by glucose transporters. There are 2 types of glucose transporters: one is a passive glucose transporter, GLUT (SLC2A), and the other is a sodium-dependent active glucose transporter, SGLT (SLC5A). We previously reported that the expression of GLUTs during tooth development is precisely and spatiotemporally controlled and that the glucose uptake mediated by GLUT1 plays a crucial role in early tooth morphogenesis and tooth size determination. This study aimed to clarify the localization and roles of SGLT1 and SGLT2 in murine ameloblast differentiation by using immunohistochemistry, immunoelectron microscopy, an in vitro tooth organ culture experiment, and in vivo administration of an inhibitor of SGLT1/2, phloridzin. SGLT1, which has high affinity with glucose, was immunolocalized in the early secretory ameloblasts and the ruffle-ended ameloblasts in the maturation stage. However, SGLT2, which has high glucose transport capacity, was observed in the stratum intermedium, papillary layer, and ameloblasts at the maturation stage and colocalized with Na+-K+-ATPase. The inhibition of SGLT1/2 by phloridzin in the tooth germs induced the disturbance of ameloblast differentiation and enamel matrix formation both in vitro (organ culture) and in vivo (mouse model). The expression of SGLT1 and SGLT2 was significantly upregulated in hypoxic conditions in the ameloblast-lineage cells. These findings suggest that the active glucose uptake mediated by SGLT1 and SGLT2 is strictly regulated and dependent on the intra- and extracellular microenvironments during tooth morphogenesis and that the appropriate passive and active glucose transport is an essential event in amelogenesis.
Collapse
Affiliation(s)
- H Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Japan
| | - K Otsu
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Shiwa-gun, Japan
| | - H Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Shiwa-gun, Japan
| | - H Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Japan
| |
Collapse
|
11
|
Imai A, Yamashita A, Ota MS. High-fat diet increases labial groove formation in maxillary incisors and is related to aging in C57BL/6 mice. J Oral Biosci 2019; 62:58-63. [PMID: 31862385 DOI: 10.1016/j.job.2019.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVES The aim of this study was to explore the relationship between the consumption of a high-fat diet and aging-dependent formation of maxillary incisor grooves in C57BL/6 mice, and to identify putative maxillary incisor groove-related genes. METHODS We fed 2-month-old and 16-month-old C57BL/6 mice on either a chow diet or a high-fat diet for three months and observed changes in maxillary incisor grooves. We examined tissue sections of the maxillary incisors with grooves and carried out transcriptome analysis of the apical tissue fragments of maxillary incisors with/without grooves. RESULTS Consumption of a high-fat diet for three months resulted in significant increases in both body weight and the number of incisor grooves. Both the number and frequency of incisor grooves increased in an age-dependent manner from 26 to 28 months, during which time an additional groove appeared. There was abnormal differentiation and apoptosis of ameloblasts on the labial surface at the grooves of the maxillary incisors. Transcriptome analysis identified 23 genes as being specific to 24-month-old mice; these included several genes related to apoptosis and cell differentiation. CONCLUSIONS The study findings indicate that, in C57BL/6 mice, consumption of a high-fat diet increases labial groove formation in maxillary incisors, which is related to aging of the tissue stem cells in the apical root end of the teeth.
Collapse
Affiliation(s)
- Atsuko Imai
- The Division of Clinical Nutrition, Department of Food and Nutrition, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| | - Atsuko Yamashita
- Laboratory of Anatomy and Physiology, Department of Food and Nutrition, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| | - Masato S Ota
- Laboratory of Anatomy and Physiology, Department of Food and Nutrition, Japan Women's University, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
12
|
Ida-Yonemochi H, Nakagawa E, Takata H, Furuyashiki T, Kakutani R, Tanaka M, Ohshima H. Extracellular enzymatically synthesized glycogen promotes osteogenesis by activating osteoblast differentiation via Akt/GSK-3β signaling pathway. J Cell Physiol 2019; 234:13602-13616. [PMID: 30604872 DOI: 10.1002/jcp.28039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/30/2018] [Indexed: 11/05/2022]
Abstract
Glycogen is the stored form of glucose and plays a major role in energy metabolism. Recently, it has become clear that enzymatically synthesized glycogen (ESG) has biological functions, such as the macrophage-stimulating activity. This study aimed to evaluate the effect of ESG on osteogenesis. MC3T3-E1 cells were cultured with ESG, and their cell proliferative activity and osteoblast differentiation were measured. An in vivo study was conducted in which ESG pellets with BMP-2 were grafted into mouse calvarial defects and histomorphometrically analyzed for the new bone formation. To confirm the effect of ESG on bone growth in vivo, ESG was orally administered to pregnant mice and the femurs of their pups were examined. We observed that ESG stimulated cell proliferation and enhanced messenger RNA expression of osteocalcin and osteopontin in MC3T3-E1 cells. ESG was taken up by the cells associated with GLUT-1 and activated the Akt/GSK-3β pathway. In vivo, the new bone formation in the calvarial defect was significantly accelerated by ESG and the maternal administration of ESG promoted fetal bone growth. In conclusion, ESG stimulates cell proliferation and differentiation of preosteoblasts via the activation of Akt/GSK-3β signaling and promotes new bone formation in vivo, suggesting that ESG could be a useful stimulant for osteogenesis.
Collapse
Affiliation(s)
- Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Eizo Nakagawa
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroki Takata
- Institute of Health Sciences, Ezaki Glico Co., Ltd, Osaka, Japan
| | | | - Ryo Kakutani
- Institute of Health Sciences, Ezaki Glico Co., Ltd, Osaka, Japan
| | - Mikako Tanaka
- Department of Dental Technician, Meirin College, Niigata, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
13
|
Otsu K, Ida-Yonemochi H, Fujiwara N, Harada H. The Semaphorin 4D-RhoA-Akt Signal Cascade Regulates Enamel Matrix Secretion in Coordination With Cell Polarization During Ameloblast Differentiation. J Bone Miner Res 2016; 31:1943-1954. [PMID: 27218883 DOI: 10.1002/jbmr.2876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 11/08/2022]
Abstract
During tooth development, oral epithelial cells differentiate into ameloblasts in order to form the most mineralized tissue in the vertebrate body: enamel. During this process, ameloblasts directionally secrete enamel matrix proteins and morphologically change from low columnar cells to polarized tall columnar cells, both of which are essential for the proper formation of enamel. In this study, we elucidated the molecular mechanism that integrates ameloblast function and morphology. Immunohistochemistry revealed that the restricted expression of semaphorin 4D (Sema4D) and RhoA activation status are closely associated with ameloblast differentiation in mouse incisors. In addition, in vitro gain-of-function and loss-of-function experiments demonstrated that Sema4D acts upstream of RhoA to regulate cell polarity and amelogenin expression via the Plexin B1/Leukemia-associated RhoGEF (LARG) complex during ameloblast differentiation. Experiments in transgenic mice demonstrated that expression of a dominant-negative form of RhoA in dental epithelium hindered ameloblast differentiation and subsequent enamel formation, as well as perturbing the establishment of polarized cell morphology and vectorial amelogenin expression. Finally, we showed that spatially restricted Akt mediates between Sema4D-RhoA signaling and these downstream cellular events. Collectively, our results reveal a novel signaling network, the Sema4D-RhoA-Akt signal cascade, that coordinates cellular function and morphology and highlights the importance of specific spatiotemporally restricted components of a signaling pathway in the regulation of ameloblast differentiation. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Keishi Otsu
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Iwate, Japan
| | - Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Fujiwara
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Iwate, Japan
| | - Hidemitsu Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Iwate, Japan
| |
Collapse
|